1
|
Posnien N, Hunnekuhl VS, Bucher G. Gene expression mapping of the neuroectoderm across phyla - conservation and divergence of early brain anlagen between insects and vertebrates. eLife 2023; 12:e92242. [PMID: 37750868 PMCID: PMC10522337 DOI: 10.7554/elife.92242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
Gene expression has been employed for homologizing body regions across bilateria. The molecular comparison of vertebrate and fly brains has led to a number of disputed homology hypotheses. Data from the fly Drosophila melanogaster have recently been complemented by extensive data from the red flour beetle Tribolium castaneum with its more insect-typical development. In this review, we revisit the molecular mapping of the neuroectoderm of insects and vertebrates to reconsider homology hypotheses. We claim that the protocerebrum is non-segmental and homologous to the vertebrate fore- and midbrain. The boundary between antennal and ocular regions correspond to the vertebrate mid-hindbrain boundary while the deutocerebrum represents the anterior-most ganglion with serial homology to the trunk. The insect head placode is shares common embryonic origin with the vertebrate adenohypophyseal placode. Intriguingly, vertebrate eyes develop from a different region compared to the insect compound eyes calling organ homology into question. Finally, we suggest a molecular re-definition of the classic concepts of archi- and prosocerebrum.
Collapse
Affiliation(s)
- Nico Posnien
- Department of Developmental Biology, Johann-Friedrich-Blumenbach Institute, University GoettingenGöttingenGermany
| | - Vera S Hunnekuhl
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, University of GöttingenGöttingenGermany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, University of GöttingenGöttingenGermany
| |
Collapse
|
2
|
Wang R, Leite DJ, Karadas L, Schiffer PH, Pechmann M. FGF signalling is involved in cumulus migration in the common house spider Parasteatoda tepidariorum. Dev Biol 2023; 494:35-45. [PMID: 36470448 DOI: 10.1016/j.ydbio.2022.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Cell migration is a fundamental component during the development of most multicellular organisms. In the early spider embryo, the collective migration of signalling cells, known as the cumulus, is required to set the dorsoventral body axis. Here, we show that FGF signalling plays an important role during cumulus migration in the spider Parasteatoda tepidariorum. Spider embryos with reduced FGF signalling show reduced or absent cumulus migration and display dorsoventral patterning defects. Our study reveals that the transcription factor Ets4 regulates the expression of several FGF signalling components in the cumulus. In conjunction with a previous study, we show that the expression of fgf8 in the germ-disc is regulated via the Hedgehog signalling pathway. We also demonstrate that FGF signalling influences the BMP signalling pathway activity in the region around cumulus cells. Finally, we show that FGFR signalling might also influence cumulus migration in basally branching spiders and we propose that fgf8 might act as a chemo-attractant to guide cumulus cells towards the future dorsal pole of the spider embryo.
Collapse
Affiliation(s)
- Ruixun Wang
- Institute for Zoology/Developmental Biology, Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674, Cologne, Germany
| | - Daniel J Leite
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Linda Karadas
- Institute for Zoology/Developmental Biology, Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674, Cologne, Germany
| | - Philipp H Schiffer
- Institute for Zoology/Developmental Biology, Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674, Cologne, Germany
| | - Matthias Pechmann
- Institute for Zoology/Developmental Biology, Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
3
|
Diaz-Cuadros M, Pourquié O, El-Sherif E. Patterning with clocks and genetic cascades: Segmentation and regionalization of vertebrate versus insect body plans. PLoS Genet 2021; 17:e1009812. [PMID: 34648490 PMCID: PMC8516289 DOI: 10.1371/journal.pgen.1009812] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Oscillatory and sequential processes have been implicated in the spatial patterning of many embryonic tissues. For example, molecular clocks delimit segmental boundaries in vertebrates and insects and mediate lateral root formation in plants, whereas sequential gene activities are involved in the specification of regional identities of insect neuroblasts, vertebrate neural tube, vertebrate limb, and insect and vertebrate body axes. These processes take place in various tissues and organisms, and, hence, raise the question of what common themes and strategies they share. In this article, we review 2 processes that rely on the spatial regulation of periodic and sequential gene activities: segmentation and regionalization of the anterior-posterior (AP) axis of animal body plans. We study these processes in species that belong to 2 different phyla: vertebrates and insects. By contrasting 2 different processes (segmentation and regionalization) in species that belong to 2 distantly related phyla (arthropods and vertebrates), we elucidate the deep logic of patterning by oscillatory and sequential gene activities. Furthermore, in some of these organisms (e.g., the fruit fly Drosophila), a mode of AP patterning has evolved that seems not to overtly rely on oscillations or sequential gene activities, providing an opportunity to study the evolution of pattern formation mechanisms.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ezzat El-Sherif
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Structural and Functional Characterization of the FGF Signaling Pathway in Regeneration of the Polychaete Worm Alitta virens (Annelida, Errantia). Genes (Basel) 2021; 12:genes12060788. [PMID: 34063978 PMCID: PMC8224027 DOI: 10.3390/genes12060788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022] Open
Abstract
Epimorphic regeneration of lost body segments is a widespread phenomenon across annelids. However, the molecular inducers of the cell sources for this reparative morphogenesis have not been identified. In this study, we focused on the role of fibroblast growth factor (FGF) signaling in the posterior regeneration of Alitta virens. For the first time, we showed an early activation of FGF ligands and receptor expression in an annelid regenerating after amputation. The expression patterns indicate that the entire regenerative bud is competent to FGFs, whose activity precedes the initiation of cell proliferation. The critical requirement of FGF signaling, especially at early stages, is also supported by inhibitor treatments followed by proliferation assay, demonstrating that induction of blastemal cells depends on FGFs. Our results show that FGF signaling pathway is a key player in regenerative response, while the FGF-positive wound epithelium, ventral nerve cord and some mesodermal cells around the gut could be the inducing tissues. This mechanism resembles reparative regeneration of vertebrate appendages suggesting such a response to the injury may be ancestral for all bilaterians.
Collapse
|
5
|
Lemke S, Kale G, Urbansky S. Comparing gastrulation in flies: Links between cell biology and the evolution of embryonic morphogenesis. Mech Dev 2020. [DOI: 10.1016/j.mod.2020.103648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Jin S, O J, Stellabotte F, Brown SJ, Choe CP. Expression of teneurin-m/odd Oz during segmentation in the beetle Tribolium castaneum. Gene Expr Patterns 2019; 31:26-31. [DOI: 10.1016/j.gep.2019.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/02/2019] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
|
7
|
The Roles of the Wnt-Antagonists Axin and Lrp4 during Embryogenesis of the Red Flour Beetle Tribolium castaneum. J Dev Biol 2017; 5:jdb5040010. [PMID: 29615567 PMCID: PMC5831798 DOI: 10.3390/jdb5040010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/22/2017] [Accepted: 10/12/2017] [Indexed: 01/09/2023] Open
Abstract
In both vertebrates and invertebrates, the Wnt-signaling pathway is essential for numerous processes in embryogenesis and during adult life. Wnt activity is fine-tuned at various levels by the interplay of a number of Wnt-agonists (Wnt ligands, Frizzled-receptors, Lrp5/6 coreceptors) and Wnt-antagonists (among them Axin, Secreted frizzled and Lrp4) to define anterior–posterior polarity of the early embryo and specify cell fate in organogenesis. So far, the functional analysis of Wnt-pathway components in insects has concentrated on the roles of Wnt-agonists and on the Wnt-antagonist Axin. We depict here additional features of the Wnt-antagonist Axin in the flour beetle Tribolium castaneum. We show that Tc-axin is dynamically expressed throughout embryogenesis and confirm its essential role in head development. In addition, we describe an as yet undetected, more extreme Tc-axin RNAi-phenotype, the ectopic formation of posterior abdominal segments in reverse polarity and a second hindgut at the anterior. For the first time, we describe here that an lrp4 ortholog is involved in axis formation in an insect. The Tribolium Lrp4 ortholog is ubiquitously expressed throughout embryogenesis. Its downregulation via maternal RNAi results in the reduction of head structures but not in axis polarity reversal. Furthermore, segmentation is impaired and larvae develop with a severe gap-phenotype. We conclude that, as in vertebrates, Tc-lrp4 functions as a Wnt-inhibitor in Tribolium during various stages of embryogenesis. We discuss the role of both components as negative modulators of Wnt signaling in respect to axis formation and segmentation in Tribolium.
Collapse
|
8
|
Stappert D, Frey N, von Levetzow C, Roth S. Genome-wide identification of Tribolium dorsoventral patterning genes. Development 2016; 143:2443-54. [PMID: 27287803 DOI: 10.1242/dev.130641] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/19/2016] [Indexed: 01/24/2023]
Abstract
The gene regulatory network controlling dorsoventral axis formation in insects has undergone drastic evolutionary changes. In Drosophila, a stable long-range gradient of Toll signalling specifies ventral cell fates and restricts BMP signalling to the dorsal half of the embryo. In Tribolium, however, Toll signalling is transient and only indirectly controls BMP signalling. In order to gain unbiased insights into the Tribolium network, we performed comparative transcriptome analyses of embryos with various dorsoventral pattering defects produced by parental RNAi for Toll and BMP signalling components. We also included embryos lacking the mesoderm (produced by Tc-twist RNAi) and characterized similarities and differences between Drosophila and Tribolium twist loss-of-function phenotypes. Using stringent conditions, we identified over 750 differentially expressed genes and analysed a subset with altered expression in more than one knockdown condition. We found new genes with localized expression and showed that conserved genes frequently possess earlier and stronger phenotypes than their Drosophila orthologues. For example, the leucine-rich repeat (LRR) protein Tartan, which has only a minor influence on nervous system development in Drosophila, is essential for early neurogenesis in Tribolium and the Tc-zinc-finger homeodomain protein 1 (Tc-zfh1), the orthologue of which plays a minor role in Drosophila muscle development, is essential for maintaining early Tc-twist expression, indicating an important function for mesoderm specification.
Collapse
Affiliation(s)
- Dominik Stappert
- Institute of Developmental Biology, Biocenter, Zuelpicher Str. 47b, University of Cologne, Cologne 50674, Germany
| | - Nadine Frey
- Institute of Developmental Biology, Biocenter, Zuelpicher Str. 47b, University of Cologne, Cologne 50674, Germany
| | - Cornelia von Levetzow
- Centrum für Integrierte Onkologie (CIO) Köln Bonn, Universitätsklinikum Köln, Kerpener Str. 62, Köln 50937, Germany
| | - Siegfried Roth
- Institute of Developmental Biology, Biocenter, Zuelpicher Str. 47b, University of Cologne, Cologne 50674, Germany
| |
Collapse
|
9
|
Lavore A, Pascual A, Salinas FM, Esponda-Behrens N, Martinez-Barnetche J, Rodriguez M, Rivera-Pomar R. Comparative analysis of zygotic developmental genes in Rhodnius prolixus genome shows conserved features on the tracheal developmental pathway. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 64:32-43. [PMID: 26187251 DOI: 10.1016/j.ibmb.2015.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 06/13/2015] [Accepted: 06/21/2015] [Indexed: 06/04/2023]
Abstract
Most of the in-depth studies on insect developmental genetic have been carried out in the fruit fly Drosophila melanogaster, an holometabolous insect, so much more still remains to be studied in hemimetabolous insects. Having Rhodnius prolixus sequenced genome available, we search for orthologue genes of zygotic signaling pathways, segmentation, and tracheogenesis in the R. prolixus genome and in three species of Triatoma genus transcriptomes, concluding that there is a high level of gene conservation. We also study the function of two genes required for tracheal system development in D. melanogaster - R. prolixus orthologues: trachealess (Rp-trh) and empty spiracles (Rp-ems). From that we see that Rp-trh is required for early tracheal development since Rp-trh RNAi shows that the primary tracheal branches fail to form. On the other hand, Rp-ems is implied in the proper formation of the posterior tracheal branches, in a similar way to D. melanogaster. These results represent the initial characterization of the genes involved in the tracheal development of an hemimetabolous insect building a bridge between the current genomic era and V. Wigglesworth's classical studies on insects' respiratory system physiology.
Collapse
Affiliation(s)
- A Lavore
- Centro de Bioinvestigaciones and Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, 2700, Pergamino, Buenos Aires, Argentina.
| | - A Pascual
- Centro de Bioinvestigaciones and Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, 2700, Pergamino, Buenos Aires, Argentina; Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 y 62, La Plata, Buenos Aires, Argentina.
| | - F M Salinas
- Centro de Bioinvestigaciones and Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, 2700, Pergamino, Buenos Aires, Argentina.
| | - N Esponda-Behrens
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 y 62, La Plata, Buenos Aires, Argentina.
| | - J Martinez-Barnetche
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Sta. María Ahuacatitlán, Cuernavaca, Mexico.
| | - M Rodriguez
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Sta. María Ahuacatitlán, Cuernavaca, Mexico.
| | - R Rivera-Pomar
- Centro de Bioinvestigaciones and Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, 2700, Pergamino, Buenos Aires, Argentina; Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 y 62, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Neijts R, Simmini S, Giuliani F, van Rooijen C, Deschamps J. Region-specific regulation of posterior axial elongation during vertebrate embryogenesis. Dev Dyn 2013; 243:88-98. [PMID: 23913366 DOI: 10.1002/dvdy.24027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/18/2013] [Accepted: 07/21/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The vertebrate body axis extends sequentially from the posterior tip of the embryo, fueled by the gastrulation process at the primitive streak and its continuation within the tailbud. Anterior structures are generated early, and subsequent nascent tissues emerge from the posterior growth zone and continue to elongate the axis until its completion. The underlying processes have been shown to be disrupted in mouse mutants, some of which were described more than half a century ago. RESULTS Important progress in elucidating the cellular and genetic events involved in body axis elongation has recently been made on several fronts. Evidence for the residence of self-renewing progenitors, some of which are bipotential for neurectoderm and mesoderm, has been obtained by embryo-grafting techniques and by clonal analyses in the mouse embryo. Transcription factors of several families including homeodomain proteins have proven instrumental for regulating the axial progenitor niche in the growth zone. A complex genetic network linking these transcription factors and signaling molecules is being unraveled that underlies the phenomenon of tissue lengthening from the axial stem cells. The concomitant events of cell fate decision among descendants of these progenitors begin to be better understood at the levels of molecular genetics and cell behavior. CONCLUSIONS The emerging picture indicates that the ontogenesis of the successive body regions is regulated according to different rules. In addition, parameters controlling vertebrate axial length during evolution have emerged from comparative experimental studies. It is on these issues that this review will focus, mainly addressing the study of axial extension in the mouse embryo with some comparison with studies in chick and zebrafish, aiming at unveiling the recent progress, and pointing at still unanswered questions for a thorough understanding of the process of embryonic axis elongation.
Collapse
Affiliation(s)
- Roel Neijts
- Hubrecht Institute and University Medical Center, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Sharma R, Beermann A, Schröder R. FGF signalling controls anterior extraembryonic and embryonic fate in the beetle Tribolium. Dev Biol 2013; 381:121-33. [DOI: 10.1016/j.ydbio.2013.05.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/27/2013] [Accepted: 05/31/2013] [Indexed: 11/30/2022]
|
12
|
Rudolf A, Hübinger C, Hüsken K, Vogt A, Rebscher N, Onel SF, Renkawitz-Pohl R, Hassel M. The Hydra FGFR, Kringelchen, partially replaces the Drosophila Heartless FGFR. Dev Genes Evol 2013; 223:159-69. [PMID: 23111653 DOI: 10.1007/s00427-012-0424-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
Fibroblast growth factor receptors (FGFR) are highly conserved receptor tyrosine kinases, and evolved early in metazoan evolution. In order to investigate their functional conservation, we asked whether the Kringelchen FGFR in the freshwater polyp Hydra vulgaris, is able to functionally replace FGFR in fly embryos. In Drosophila, two endogenous FGFR, Breathless (Btl) and Heartless (Htl), ensure formation of the tracheal system and mesodermal cell migration as well as formation of the heart. Using UAS-kringelchen-5xmyc transgenic flies and targeted expression, we show that Kringelchen is integrated correctly into the cell membrane of mesodermal and tracheal cells in Drosophila. Nevertheless, Kringelchen expression driven in tracheal cells failed to rescue the btl (LG19) mutant. The Hydra FGFR was able to substitute for Heartless in the htl (AB42) null mutant; however, this occurred only during early mesodermal cell migration. Our data provide evidence for functional conservation of this early-diverged FGFR across these distantly related phyla, but also selectivity for the Htl FGFR in the Drosophila system.
Collapse
Affiliation(s)
- Anja Rudolf
- Faculty of Biology, Morphology and Evolution of Invertebrates, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kittelmann S, Ulrich J, Posnien N, Bucher G. Changes in anterior head patterning underlie the evolution of long germ embryogenesis. Dev Biol 2012. [PMID: 23201022 DOI: 10.1016/j.ydbio.2012.11.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Early embryonic stages differ significantly among related animal taxa while subsequent development converges at the conserved phylotypic stage before again diverging. Although this phenomenon has long been observed, its underlying genetic mechanisms remain enigmatic. The dipteran Drosophila melanogaster develops as a long germ embryo where the head anlagen form a cap at the anterior pole of the blastoderm. Consequently, the anterior and terminal maternal systems give crucial input for head patterning. However, in the short germ beetle Tribolium castaneum, as in most insects, the head anlagen is located at a ventral position distant from the anterior pole of the blastoderm. In line with these divergent embryonic anlagen, several differences in the axis formation between the insects have been discovered. We now ask to what extent patterning and morphogenesis of the anterior median region (AMR) of the head, including clypeolabral and stomodeal anlagen, differ among these insects. Unexpectedly, we find that Tc-huckebein is not a terminal gap gene and, unlike its Drosophila ortholog, is not involved in Tribolium head development. Instead, Tc-six3 acts upstream of Tc-crocodile and Tc-cap'n'collar to pattern posterior and anterior parts of the AMR, respectively. We further find that instead of huckebein, Tc-crocodile is required for stomodeum development by activating Tc-forkhead. Finally, a morphogenetic movement not found in Drosophila shapes the embryonic head of Tribolium. Apparently, with anterior displacement of the head anlagen during long germ evolution of Drosophila, the ancestral regulation by the bilaterian anterior control gene six3 was replaced by the anterior and terminal maternal systems, which were further elaborated by adding bicoid, tailless and huckebein as anterior regionalization genes.
Collapse
Affiliation(s)
- Sebastian Kittelmann
- Department of Evolutionary Genetics, Göttingen Center of Molecular Biology, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| | | | | | | |
Collapse
|
14
|
Mitten EK, Jing D, Suzuki Y. Matrix metalloproteinases (MMPs) are required for wound closure and healing during larval leg regeneration in the flour beetle, Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:854-864. [PMID: 22940602 DOI: 10.1016/j.ibmb.2012.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/04/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
Regenerative abilities are found ubiquitously among many metazoan taxa. To compare mechanisms underlying the initial stages of limb regeneration between insects and vertebrates, the roles of matrix metalloproteinases (MMPs) and fibroblast growth factor (FGF) signaling were investigated in the red flour beetle, Tribolium castaneum. RNA interference-mediated knockdown of MMP2 expression delayed wound healing and subsequent leg regeneration. Additionally, pairwise knockdown of MMP1/2 and MMP2/3, but not MMP1/3, resulted in inhibition of wound closure. Wound healing on the dorsal epidermis after injury was also delayed when MMPs were silenced. Our findings show that functionally redundant MMPs play key roles during limb regeneration and wound healing in Tribolium. This MMP-mediated wound healing is necessary for the subsequent formation of a blastema. In contrast, silencing of FGF receptor did not interfere with the initial stages of leg regeneration despite the alterations in tanning of the cuticle. Thus, insects and vertebrates appear to employ similar developmental processes for the initial stages of wound closure during limb regeneration, while the role of FGF in limb regeneration appears to be unique to vertebrates.
Collapse
Affiliation(s)
- Emilie K Mitten
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481, USA
| | | | | |
Collapse
|
15
|
Evolution of the FGF Gene Family. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:298147. [PMID: 22919541 PMCID: PMC3420111 DOI: 10.1155/2012/298147] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/06/2012] [Indexed: 12/22/2022]
Abstract
Fibroblast Growth Factors (FGFs) are small proteins generally secreted, acting through binding to transmembrane tyrosine kinase receptors (FGFRs). Activation of FGFRs triggers several cytoplasmic cascades leading to the modification of cell behavior. FGFs play critical roles in a variety of developmental and physiological processes. Since their discovery in mammals, FGFs have been found in many metazoans and some arthropod viruses. Efforts have been previously made to decipher the evolutionary history of this family but conclusions were limited due to a poor taxonomic coverage. We took advantage of the availability of many new sequences from diverse metazoan lineages to further explore the possible evolutionary scenarios explaining the diversity of the FGF gene family. Our analyses, based on phylogenetics and synteny conservation approaches, allow us to propose a new classification of FGF genes into eight subfamilies, and to draw hypotheses for the evolutionary events leading to the present diversity of this gene family.
Collapse
|
16
|
van Rooijen C, Simmini S, Bialecka M, Neijts R, van de Ven C, Beck F, Deschamps J. Evolutionarily conserved requirement of Cdx for post-occipital tissue emergence. Development 2012; 139:2576-83. [PMID: 22675207 DOI: 10.1242/dev.079848] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mouse Cdx genes are involved in axial patterning and partial Cdx mutants exhibit posterior embryonic defects. We found that mouse embryos in which all three Cdx genes are inactivated fail to generate any axial tissue beyond the cephalic and occipital primordia. Anterior axial tissues are laid down and well patterned in Cdx null embryos, and a 3' Hox gene is initially transcribed and expressed in the hindbrain normally. Axial elongation stops abruptly at the post-occipital level in the absence of Cdx, as the posterior growth zone loses its progenitor activity. Exogenous Fgf8 rescues the posterior truncation of Cdx mutants, and the spectrum of defects of Cdx null embryos matches that resulting from loss of posterior Fgfr1 signaling. Our data argue for a main function of Cdx in enforcing trunk emergence beyond the Cdx-independent cephalo-occipital region, and for a downstream role of Fgfr1 signaling in this function. Cdx requirement for the post-head section of the axis is ancestral as it takes place in arthropods as well.
Collapse
Affiliation(s)
- Carina van Rooijen
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584 CT Utrecht, and University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
Posnien N, Koniszewski NDB, Hein HJ, Bucher G. Candidate gene screen in the red flour beetle Tribolium reveals six3 as ancient regulator of anterior median head and central complex development. PLoS Genet 2011; 7:e1002416. [PMID: 22216011 PMCID: PMC3245309 DOI: 10.1371/journal.pgen.1002416] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/13/2011] [Indexed: 11/19/2022] Open
Abstract
Several highly conserved genes play a role in anterior neural plate patterning of vertebrates and in head and brain patterning of insects. However, head involution in Drosophila has impeded a systematic identification of genes required for insect head formation. Therefore, we use the red flour beetle Tribolium castaneum in order to comprehensively test the function of orthologs of vertebrate neural plate patterning genes for a function in insect head development. RNAi analysis reveals that most of these genes are indeed required for insect head capsule patterning, and we also identified several genes that had not been implicated in this process before. Furthermore, we show that Tc-six3/optix acts upstream of Tc-wingless, Tc-orthodenticle1, and Tc-eyeless to control anterior median development. Finally, we demonstrate that Tc-six3/optix is the first gene known to be required for the embryonic formation of the central complex, a midline-spanning brain part connected to the neuroendocrine pars intercerebralis. These functions are very likely conserved among bilaterians since vertebrate six3 is required for neuroendocrine and median brain development with certain mutations leading to holoprosencephaly.
Collapse
Affiliation(s)
- Nico Posnien
- Center for Molecular Physiology of the Brain (CMPB), Göttingen Center of Molecular Biology, Caspari-Haus, Georg-August-University Göttingen, Göttingen, Germany
- School of Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Nikolaus Dieter Bernhard Koniszewski
- Center for Molecular Physiology of the Brain (CMPB), Göttingen Center of Molecular Biology, Caspari-Haus, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Gregor Bucher
- Center for Molecular Physiology of the Brain (CMPB), Göttingen Center of Molecular Biology, Caspari-Haus, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
18
|
Beermann A, Prühs R, Lutz R, Schröder R. A context-dependent combination of Wnt receptors controls axis elongation and leg development in a short germ insect. Development 2011; 138:2793-805. [PMID: 21652652 DOI: 10.1242/dev.063644] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Short germ embryos elongate their primary body axis by consecutively adding segments from a posteriorly located growth zone. Wnt signalling is required for axis elongation in short germ arthropods, including Tribolium castaneum, but the precise functions of the different Wnt receptors involved in this process are unclear. We analysed the individual and combinatorial functions of the three Wnt receptors, Frizzled-1 (Tc-Fz1), Frizzled-2 (Tc-Fz2) and Frizzled-4 (Tc-Fz4), and their co-receptor Arrow (Tc-Arr) in the beetle Tribolium. Knockdown of gene function and expression analyses revealed that Frizzled-dependent Wnt signalling occurs anteriorly in the growth zone in the presegmental region (PSR). We show that simultaneous functional knockdown of the Wnt receptors Tc-fz1 and Tc-fz2 via RNAi resulted in collapse of the growth zone and impairment of embryonic axis elongation. Although posterior cells of the growth zone were not completely abolished, Wnt signalling within the PSR controls axial elongation at the level of pair-rule patterning, Wnt5 signalling and FGF signalling. These results identify the PSR in Tribolium as an integral tissue required for the axial elongation process, reminiscent of the presomitic mesoderm in vertebrates. Knockdown of Tc-fz1 alone interfered with the formation of the proximo-distal and the dorso-ventral axes during leg development, whereas no effect was observed with single Tc-fz2 or Tc-fz4 RNAi knockdowns. We identify Tc-Arr as an obligatory Wnt co-receptor for axis elongation, leg distalisation and segmentation. We discuss how Wnt signalling is regulated at the receptor and co-receptor levels in a dose-dependent fashion.
Collapse
Affiliation(s)
- Anke Beermann
- Universität Rostock, Institut für Biowissenschaften/Abt. Genetik, D-18059 Rostock, Germany.
| | | | | | | |
Collapse
|
19
|
Tulin S, Stathopoulos A. Extending the family table: Insights from beyond vertebrates into the regulation of embryonic development by FGFs. ACTA ACUST UNITED AC 2010; 90:214-27. [PMID: 20860061 DOI: 10.1002/bdrc.20182] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the discovery of fibroblast growth factors (FGFs) much focus has been placed on elucidating the roles for each vertebrate FGF ligand, receptor, and regulating molecules in the context of vertebrate development, human disorders and cancer. Studies in human, mouse, frog, chick, and zebrafish have made great contributions to our understanding of the role of FGFs in specific processes. However, in recent years, as more genomes are sequenced, information is becoming available from many non-vertebrate models and a more complete picture of the FGF superfamily as a whole is emerging. In some cases, less redundancy in these FGF signaling systems may allow for more mechanistic insights. Studies in sea anemones have highlighted how ancient FGF signaling is and helped provide insight into the evolution of the FGF gene family. Work in nematodes has shown that different splice forms can be used for functional specificity in invertebrate FGF signaling. Comparing FGFs between urochordates and vertebrates as well as between different insect species reveals important clues into the process of gene loss, duplication and subfunctionalization of FGFs throughout evolution. Finally, comparing all members of the FGF ligand superfamily reveals variability in many properties, which may point to a feature of FGFs as being highly adaptable with regards to protein structure and signaling mechanism. Further studies on FGF signaling outside of vertebrates is likely to continue to complement work in vertebrates by contributing additional insights to the FGF field and providing unexpected information that could be used for medical applications.
Collapse
Affiliation(s)
- Sarah Tulin
- California Institute of Technology, Pasadena, USA.
| | | |
Collapse
|
20
|
Rebscher N, Deichmann C, Sudhop S, Fritzenwanker JH, Green S, Hassel M. Conserved intron positions in FGFR genes reflect the modular structure of FGFR and reveal stepwise addition of domains to an already complex ancestral FGFR. Dev Genes Evol 2009; 219:455-68. [PMID: 20016912 DOI: 10.1007/s00427-009-0309-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 11/22/2009] [Indexed: 11/26/2022]
Abstract
We have analyzed the evolution of fibroblast growth factor receptor (FGFR) tyrosine kinase genes throughout a wide range of animal phyla. No evidence for an FGFR gene was found in Porifera, but we tentatively identified an FGFR gene in the placozoan Trichoplax adhaerens. The gene encodes a protein with three immunoglobulin-like domains, a single-pass transmembrane, and a split tyrosine kinase domain. By superimposing intron positions of 20 FGFR genes from Placozoa, Cnidaria, Protostomia, and Deuterostomia over the respective protein domain structure, we identified ten ancestral introns and three conserved intron groups. Our analysis shows (1) that the position of ancestral introns correlates to the modular structure of FGFRs, (2) that the acidic domain very likely evolved in the last common ancestor of triploblasts, (3) that splicing of IgIII was enabled by a triploblast-specific insertion, and (4) that IgI is subject to substantial loss or duplication particularly in quickly evolving genomes. Moreover, intron positions in the catalytic domain of FGFRs map to the borders of protein subdomains highly conserved in other serine/threonine kinases. Nevertheless, these introns were introduced in metazoan receptor tyrosine kinases exclusively. Our data support the view that protein evolution dating back to the Cambrian explosion took place in such a short time window that only subtle changes in the domain structure are detectable in extant representatives of animal phyla. We propose that the first multidomain FGFR originated in the last common ancestor of Placozoa, Cnidaria, and Bilateria. Additional domains were introduced mainly in the ancestor of triploblasts and in the Ecdysozoa.
Collapse
Affiliation(s)
- Nicole Rebscher
- FB 17, Morphology and Evolution of Invertebrates, Philipps Universitaet Marburg, Karl von Frisch Str. 8, 35032, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Lynch JA, Panfilio KA, da Fonseca RN. As Tribolium matures as a model insect, Coleopteran Community Congregates in Cologne. Dev Genes Evol 2009; 219:531-3. [PMID: 20039059 DOI: 10.1007/s00427-009-0307-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 11/14/2009] [Indexed: 11/29/2022]
Affiliation(s)
- Jeremy A Lynch
- Institute for Developmental Biology, University of Cologne, Gyrhofstrasse 17, 50931, Cologne, Germany
| | | | | |
Collapse
|
22
|
Klingseisen A, Clark IBN, Gryzik T, Müller HAJ. Differential and overlapping functions of two closely related Drosophila FGF8-like growth factors in mesoderm development. Development 2009; 136:2393-402. [PMID: 19515694 PMCID: PMC2729350 DOI: 10.1242/dev.035451] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2009] [Indexed: 11/20/2022]
Abstract
Thisbe (Ths) and Pyramus (Pyr), two closely related Drosophila homologues of the vertebrate fibroblast growth factor (FGF) 8/17/18 subfamily, are ligands for the FGF receptor Heartless (Htl). Both ligands are required for mesoderm development, but their differential expression patterns suggest distinct functions during development. We generated single mutants and found that ths or pyr loss-of-function mutations are semi-lethal and mutants exhibit much weaker phenotypes as compared with loss of both ligands or htl. Thus, pyr and ths display partial redundancy in their requirement in embryogenesis and viability. Nevertheless, we find that pyr and ths single mutants display defects in gastrulation and mesoderm differentiation. We show that localised expression of pyr is required for normal cell protrusions and high levels of MAPK activation in migrating mesoderm cells. The results support the model that Pyr acts as an instructive cue for mesoderm migration during gastrulation. Consistent with this function, mutations in pyr affect the normal segmental number of cardioblasts. Furthermore, Pyr is essential for the specification of even-skipped-positive mesodermal precursors and Pyr and Ths are both required for the specification of a subset of somatic muscles. The results demonstrate both independent and overlapping functions of two FGF8 homologues in mesoderm morphogenesis and differentiation. We propose that the integration of Pyr and Ths function is required for robustness of Htl-dependent mesoderm spreading and differentiation, but that the functions of Pyr have become more specific, possibly representing an early stage of functional divergence after gene duplication of a common ancestor.
Collapse
Affiliation(s)
- Anna Klingseisen
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
23
|
Schröder R, Beermann A, Wittkopp N, Lutz R. From development to biodiversity--Tribolium castaneum, an insect model organism for short germband development. Dev Genes Evol 2008; 218:119-26. [PMID: 18392874 DOI: 10.1007/s00427-008-0214-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 02/12/2008] [Indexed: 01/27/2023]
Abstract
Insect embryogenesis is best understood in the fruit fly Drosophila. However, Drosophila embryogenesis shows evolutionary-derived features: anterior patterning is controlled by a highly derived Hox gene bicoid, the body segments form almost simultaneously and appendages develop from imaginal discs. In contrast, embryogenesis of the red flour beetle Tribolium castaneum displays typical features in anterior patterning, axis and limb formation shared with most insects, other arthropods as well as with vertebrates. Anterior patterning depends on the conserved homeobox gene orthodenticle, the main body axis elongates sequentially and limbs grow continuously starting from an appendage bud. Thus, by analysing developmental processes in the beetle at the molecular and cellular level, inferences can be made for similar processes in other arthropods. With the completion of sequencing the Tribolium genome, the door is now open for post-genomic studies such as RNA expression profiling, proteomics and functional genomics to identify beetle-specific gene circuits.
Collapse
Affiliation(s)
- Reinhard Schröder
- Department of Animal Genetics, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
24
|
|