1
|
Nishiyama S, Matsushita MC, Yamane H, Honda C, Okada K, Tamada Y, Moriya S, Tao R. Functional and expressional analyses of apple FLC-like in relation to dormancy progress and flower bud development. TREE PHYSIOLOGY 2021; 41:562-570. [PMID: 31728534 DOI: 10.1093/treephys/tpz111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/22/2019] [Indexed: 05/26/2023]
Abstract
We previously identified the FLOWERING LOCUS C (FLC)-like gene, a MADS-box transcription factor gene that belongs to Arabidopsis thaliana L. FLC clade, in apple (Malus $\times$ domestica Borkh.), and its expression in dormant flower buds is positively correlated with cumulative cold exposure. To elucidate the role of the MdFLC-like in the dormancy process and flower development, we first characterized the phenotypes of MdFLC-like overexpressing lines with the Arabidopsis Columbia-0 background. The overexpression of MdFLC-like significantly delayed the bolting date and reduced the plant size, but it did not significantly affect the number of rosette leaves or flower organ formation. Thus, MdFLC-like may affect vegetative growth and development rather than flowering when expressed in Arabidopsis, which is not like Arabidopsis FLC that affects development of flowering. We compared seasonal expression patterns of MdFLC-like in low-chill 'Anna' and high-chill 'Fuji' and 'Tsugaru' apples collected from trees grown in a cold winter region in temperate zone and found an earlier upregulation in 'Anna' compared with 'Fuji' and 'Tsugaru'. Expression patterns were also compared in relation to developmental changes in the flower primordia during the chilling accumulation period. Overall, MdFLC-like was progressively upregulated during flower primordia differentiation and development in autumn to early winter and reached a maximum expression level at around the same time as the genotype-dependent chilling requirements were fulfilled in high-chill cultivars. Thus, we hypothesize MdFLC-like may be upregulated in response to cold exposure and flower primordia development during the progress of endodormancy. Our study also suggests MdFLC-like may have a growth-inhibiting function during the end of endodormancy and ecodormancy when the temperature is low and unfavorable for rapid bud outgrowth.
Collapse
Affiliation(s)
- Soichiro Nishiyama
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | | | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Chikako Honda
- Graduate School of Agricultural and Life Science, The University of Tokyo, Midori-Cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Kazuma Okada
- Apple Research Station, Institute of Fruit Tree and Tea Science, NARO, Morioka 020-0123, Japan
| | - Yosuke Tamada
- National Institute for Basic Biology, Okazaki 444-8585, Japan
- School of Life Science, Sokendai, Okazaki 444-8585, Japan
| | - Shigeki Moriya
- Apple Research Station, Institute of Fruit Tree and Tea Science, NARO, Morioka 020-0123, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Ma YJ, Li PT, Sun LM, Zhou H, Zeng RF, Ai XY, Zhang JZ, Hu CG. HD-ZIP I Transcription Factor ( PtHB13) Negatively Regulates Citrus Flowering through Binding to FLOWERING LOCUS C Promoter. PLANTS 2020; 9:plants9010114. [PMID: 31963238 PMCID: PMC7020176 DOI: 10.3390/plants9010114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/26/2019] [Accepted: 01/14/2020] [Indexed: 02/03/2023]
Abstract
For floral induction in adult citrus, low temperature is one of the most important environmental factors. FLOWERING LOCUS C (FLC) plays a very important role in low-temperature-induced Arabidopsis flowering by repressed FLC expression under exposure to prolonged low-temperature conditions. However, little is known about the FLC regulation mechanism in perennial woody plants such as citrus. In this study, the functions of citrus FLC homolog (PtFLC) were investigated by ectopic expression in Arabidopsis. Transcription factor of homeodomain leucine zipper I (HD-ZIP I) as an upstream regulator of PtFLC was identified by yeast one-hybrid screen to regulate its transcription. The HD-ZIP I transcription factor was highly homologous to Arabidopsis ATHB13 and thus was named PtHB13. Ectopically expressed PtHB13 inhibited flowering in transgenic Arabidopsis. Furthermore, the expression of PtFLC and PtHB13 showed a seasonal change during the floral induction period and was also affected by low temperature. Thus, we propose that PtHB13 binds to PtFLC promoter to regulate its activity during the citrus floral induction process.
Collapse
Affiliation(s)
- Yu-Jiao Ma
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Y.-J.M.); (P.-T.L.); (H.Z.); (R.-F.Z.)
| | - Pei-Ting Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Y.-J.M.); (P.-T.L.); (H.Z.); (R.-F.Z.)
| | - Lei-Ming Sun
- Chinese Academy of Agriculture Sciences, Zhengzhou Fruit Research Institute, Zhengzhou 450009, China;
| | - Huan Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Y.-J.M.); (P.-T.L.); (H.Z.); (R.-F.Z.)
| | - Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Y.-J.M.); (P.-T.L.); (H.Z.); (R.-F.Z.)
| | - Xiao-Yan Ai
- Institute of Pomology and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430070, China;
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Y.-J.M.); (P.-T.L.); (H.Z.); (R.-F.Z.)
- Correspondence: (J.-Z.Z.); (C.-G.H.); Tel.: +86-27-6201-8231 (J.-Z.Z.); Fax: +86-27-8728-2010 (J.-Z.Z.)
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (Y.-J.M.); (P.-T.L.); (H.Z.); (R.-F.Z.)
- Correspondence: (J.-Z.Z.); (C.-G.H.); Tel.: +86-27-6201-8231 (J.-Z.Z.); Fax: +86-27-8728-2010 (J.-Z.Z.)
| |
Collapse
|
3
|
Li W, Zhang L, Zhang Y, Wang G, Song D, Zhang Y. Selection and Validation of Appropriate Reference Genes for Quantitative Real-Time PCR Normalization in Staminate and Perfect Flowers of Andromonoecious Taihangia rupestris. FRONTIERS IN PLANT SCIENCE 2017; 8:729. [PMID: 28579993 PMCID: PMC5437146 DOI: 10.3389/fpls.2017.00729] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 04/19/2017] [Indexed: 05/19/2023]
Abstract
Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is the most commonly used and powerful method for gene expression analysis due to its high sensitivity, specificity, and high throughput, and the accuracy of this approach depends on the stability of reference genes used for normalization. Taihangia rupestris Yu and Li (Rosaceae), an andromonoecious plant, produces both bisexual flowers and unisexual male flowers within the same individual. Using qRT-PCR technique, investigation of the gene expression profiling in staminate and perfect flowers would improve our understanding of the molecular mechanism in regulation of flower formation and sex differentiation in andromonoecious T. rupestris. To accurate normalize the gene expression level in Taihangia flower, 16 candidate reference genes, including 10 traditional housekeeping genes, and 6 newly stable genes, were selected based on transcriptome sequence data and previous studies. The expressions of these genes were assessed by qRT-PCR analysis in 51 samples, including 30 staminate and perfect flower samples across developmental stages and 21 different floral tissue samples from mature flowers. By using geNorm, NormFinder, BestKeeper, and comprehensive RefFinder algorithms, ADF3 combined with UFD1 were identified as the optimal reference genes for staminate flowers, while the combination of HIS3/ADF3 was the most accurate reference genes for perfect floral samples. For floral tissues, HIS3, UFD1, and TMP50 were the most suitable reference genes. Furthermore, two target genes, TruPI, and TruFBP24, involved in floral organ identity were selected to validate the most and least stable reference genes in staminate flowers, perfect flowers, and different floral tissues, indicating that the use of inappropriate reference genes for normalization will lead to the adverse results. The reference genes identified in this study will improve the accuracy of qRT-PCR quantification of target gene expression in andromonoecious T. rupestris flowers, and will facilitate the functional genomics studies on flower development and sex differentiation in the future.
Collapse
Affiliation(s)
- Weiguo Li
- College of Life Sciences, Changchun Normal UniversityChangchun, China
- College of Resource and Environment, Henan Polytechnic UniversityJiaozuo, China
- *Correspondence: Weiguo Li
| | - Lihui Zhang
- College of Life Sciences, Changchun Normal UniversityChangchun, China
| | - Yandi Zhang
- College of Resource and Environment, Henan Polytechnic UniversityJiaozuo, China
| | - Guodong Wang
- College of Resource and Environment, Henan Polytechnic UniversityJiaozuo, China
| | - Dangyu Song
- College of Resource and Environment, Henan Polytechnic UniversityJiaozuo, China
| | - Yanwen Zhang
- College of Life Sciences, Changchun Normal UniversityChangchun, China
- Yanwen Zhang
| |
Collapse
|
4
|
Smaczniak C, Immink RGH, Angenent GC, Kaufmann K. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 2012; 139:3081-98. [PMID: 22872082 DOI: 10.1242/dev.074674] [Citation(s) in RCA: 372] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Members of the MADS-box transcription factor family play essential roles in almost every developmental process in plants. Many MADS-box genes have conserved functions across the flowering plants, but some have acquired novel functions in specific species during evolution. The analyses of MADS-domain protein interactions and target genes have provided new insights into their molecular functions. Here, we review recent findings on MADS-box gene functions in Arabidopsis and discuss the evolutionary history and functional diversification of this gene family in plants. We also discuss possible mechanisms of action of MADS-domain proteins based on their interactions with chromatin-associated factors and other transcriptional regulators.
Collapse
Affiliation(s)
- Cezary Smaczniak
- Laboratory of Molecular Biology, Wageningen University, 6708PB Wageningen, The Netherlands
| | | | | | | |
Collapse
|
5
|
Zhang JZ, Ai XY, Sun LM, Zhang DL, Guo WW, Deng XX, Hu CG. Molecular cloning and functional characterization of genes associated with flowering in citrus using an early-flowering trifoliate orange (Poncirus trifoliata L. Raf.) mutant. PLANT MOLECULAR BIOLOGY 2011; 76:187-204. [PMID: 21533840 DOI: 10.1007/s11103-011-9780-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 04/18/2011] [Indexed: 05/30/2023]
Abstract
To isolate differentially expressed genes during the juvenile-to-adult phase transition of an early-flowering trifoliate orange mutant (precocious trifoliate orange, Poncirus trifoliata), suppression subtractive hybridization was performed. In total, 463 cDNA clones chosen by differential screening of 1,920 clones were sequenced and 178 differentially expressed genes were identified, among which 41 sequences did not match any known nucleotide sequence. Analysis of expression profiles of the differentially expressed genes through hybridization on customized chips revealed their expression change was associated with the phase transition from juvenile to adult in the mutant. Open reading frames of nine selected genes were successfully determined by rapid amplification of cDNA ends. Expression analysis of these genes by real-time RT-PCR showed that transcript levels of several genes were associated with floral induction and inflorescence development. Among these genes, HM596718, a sequence sharing a high degree of similarity with Arabidopsis EARLY FLOWERING 5 (AtELF5) was discovered. Real-time PCR and in situ hybridization indicated its expression pattern was closely correlated with floral induction and flowering of the mutant. Ectopic expression of the gene in Arabidopsis caused early flowering; however, its functional characterization is different than the role of AtELF5 observed in Arabidopsis. A yeast two-hybrid assay indicated that PtELF5 significantly interacted with DUF1336 domain of a hypothetical protein, which has not yet been functionally characterized in woody plants. These findings suggest that PtELF5 may be a novel gene that plays an important role during the early flowering of precocious trifoliate orange.
Collapse
Affiliation(s)
- Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Lü S, Fan Y, Liu L, Liu S, Zhang W, Meng Z. Ectopic expression of TrPI, a Taihangia rupestris (Rosaceae) PI ortholog, causes modifications of vegetative architecture in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1613-21. [PMID: 20828868 DOI: 10.1016/j.jplph.2010.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 05/30/2010] [Accepted: 06/06/2010] [Indexed: 05/13/2023]
Abstract
In eudicotyledonous model plants, the B-function genes encode a pair of partner MADS-domain proteins, APETALA3 (AP3) and PISTILLATA (PI) in Arabidopsis and DEFICIENS (DEF) and GLOBOSA (GLO) in Antirrhinum. These proteins, which must form heterodimers to function, are required to specify petal and stamen identity during flower development. Here, we report cloning and characterization of TrPI (Taihangia rupestris PISTILLATA), a PI/GLO-like gene from the core eudicot species Taihangia rupestris (Rosaceae). DNA gel blot analysis showed that TrPI is a single copy gene in the T. rupestris genome. Quantitative RT-PCR and in situ hybridization analyses revealed that TrPI is transcribed in both the vegetative and reproductive organs at different levels. Ectopic expression of TrPI in Arabidopsis caused severe modifications in vegetative plant architecture, including rosette leaves and cauline leaves arranged in a non-spiral phyllotaxy, and a flattened primary inflorescence stem that produced two or three offshoots at the base, middle or top. Moreover, we show that the TrPI gene is capable of rescuing pi-1 mutant phenotypes. Yeast two-hybrid assays showed that TrPI forms homodimers. Taken together, these results show that TrPI might function in regulating plant architecture in addition to its function as a floral organ identity gene in T. rupestris, suggesting that the TrPI protein has biochemical features that distinguish it from the well-studied orthologs, PI and GLO.
Collapse
Affiliation(s)
- Shanhua Lü
- School of Agriculture, Liaocheng University, Liaocheng 252059, China
| | | | | | | | | | | |
Collapse
|
7
|
Zhang JZ, Li ZM, Mei L, Yao JL, Hu CG. PtFLC homolog from trifoliate orange (Poncirus trifoliata) is regulated by alternative splicing and experiences seasonal fluctuation in expression level. PLANTA 2009; 229:847-59. [PMID: 19125288 DOI: 10.1007/s00425-008-0885-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 12/19/2008] [Indexed: 05/03/2023]
Abstract
In many plant species, exposure to a prolonged period of low temperature during the winter promotes flowering in the spring, a process termed vernalization. In Arabidopsis, the vernalization requirement of winter annual ecotypes is caused by a MADS-box gene FLOWERING LOCUS C (FLC), which is a repressor of flowering gene. Here, a MADS-box gene was isolated from an early flowering trifoliate orange mutant (precocious trifoliate orange, Poncirus trifoliata L. Raf) by the RACE method combined with a cDNA library. Phylogenetic analysis reveals that the MADS-box gene is more closely related to the homologs of the FLOWERING LOCUS C lineage than to any of the other MIKC-type MADS-box lineages known from Arabidopsis. The expression profile of the MADS-box gene by real-time PCR showed upregulation of PtFLC during the winter, followed by a decrease in the spring and summer. This kind of cycling is contrary to the pattern observed in Arabidopsis. In situ hybridization reveals that the MADS-box gene is predominately expressed in the vegetative and reproductive meristems. In addition, five alternatively spliced transcripts of the MADS-box gene were also isolated at juvenile and adult mutant developmental stages. Expression analysis of these transcripts at different developmental stages indicated involvement of alternative splicing during phase change. The information suggests a complicated regulation mechanism in seasonal response and flower formation in perennial woody plants.
Collapse
Affiliation(s)
- Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, 430070, Wuhan, China.
| | | | | | | | | |
Collapse
|