1
|
Negrón-Piñeiro LJ, Di Gregorio A. Single-cell Transcriptomic Studies Unveil Potential Nodes of the Notochord Gene Regulatory Network. Integr Comp Biol 2024; 64:1194-1213. [PMID: 38914463 PMCID: PMC11579531 DOI: 10.1093/icb/icae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024] Open
Abstract
Transcription factors (TFs) are DNA-binding proteins able to modulate the timing, location, and levels of gene expression by binding to regulatory DNA regions. Therefore, the repertoire of TFs present in the genome of a multicellular organism and the expression of variable constellations of TFs in different cellular cohorts determine the distinctive characteristics of developing tissues and organs. The information on tissue-specific assortments of TFs, their cross-regulatory interactions, and the genes/regulatory regions targeted by each TF is summarized in gene regulatory networks (GRNs), which provide genetic blueprints for the specification, development, and differentiation of multicellular structures. In this study, we review recent transcriptomic studies focused on the complement of TFs expressed in the notochord, a distinctive feature of all chordates. We analyzed notochord-specific datasets available from organisms representative of the three chordate subphyla, and highlighted lineage-specific variations in the suite of TFs expressed in their notochord. We framed the resulting findings within a provisional evolutionary scenario, which allows the formulation of hypotheses on the genetic/genomic changes that sculpted the structure and function of the notochord on an evolutionary scale.
Collapse
Affiliation(s)
- Lenny J Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
2
|
Dai Y, Zhong Y, Pan R, Yuan L, Fu Y, Chen Y, Du J, Li M, Wang X, Liu H, Shi C, Liu G, Zhu P, Shimeld S, Zhou X, Li G. Evolutionary origin of the chordate nervous system revealed by amphioxus developmental trajectories. Nat Ecol Evol 2024; 8:1693-1710. [PMID: 39025981 DOI: 10.1038/s41559-024-02469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
The common ancestor of all vertebrates had a highly sophisticated nervous system, but questions remain about the evolution of vertebrate neural cell types. The amphioxus, a chordate that diverged before the origin of vertebrates, can inform vertebrate evolution. Here we develop and analyse a single-cell RNA-sequencing dataset from seven amphioxus embryo stages to understand chordate cell type evolution and to study vertebrate neural cell type origins. We identified many new amphioxus cell types, including homologues to the vertebrate hypothalamus and neurohypophysis, rooting the evolutionary origin of these structures. On the basis of ancestor-descendant reconstruction of cell trajectories of the amphioxus and other species, we inferred expression dynamics of transcription factor genes throughout embryogenesis and identified three ancient developmental routes forming chordate neurons. We characterized cell specification at the mechanistic level and generated mutant lines to examine the function of five key transcription factors involved in neural specification. Our results show three developmental origins for the vertebrate nervous system: an anterior FoxQ2-dependent mechanism that is deeply conserved in invertebrates, a less-conserved route leading to more posterior neurons in the vertebrate spinal cord and a mechanism for specifying neuromesoderm progenitors that is restricted to chordates. The evolution of neuromesoderm progenitors may have led to a dramatic shift in posterior neural and mesodermal cell fate decisions and the body elongation process in a stem chordate.
Collapse
Affiliation(s)
- Yichen Dai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| | - Yanhong Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rongrong Pan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Liang Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Yongheng Fu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuwei Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Juan Du
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| | - Meng Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| | - Xiao Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| | - Huimin Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chenggang Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Gaoming Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| | - Pingfen Zhu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| | | | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China.
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
3
|
Huang X, Ren Q, Wang Y, Shimeld SM, Li G. Amphioxus Gli knockout disrupts the development of left-right asymmetry but has limited impact on neural patterning. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:492-499. [PMID: 38045549 PMCID: PMC10689630 DOI: 10.1007/s42995-023-00195-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/18/2023] [Indexed: 12/05/2023]
Abstract
The Gli transcription factors are the primary mediators of Hedgehog (Hh) signaling. Vertebrate genomes contain multiple Gli paralogues with different functions downstream of Hh signal receipt, in part explaining the complexity of cellular responses to Hh that allow concentration-dependent target gene activation. Amphioxus is a chordate that split from the vertebrate lineage early in the evolution of chordates, before the genome duplications that occurred in early vertebrate evolution. It has a single Gli gene whose transcripts can be alternately spliced to yield two protein isoforms called GliS and GliL. We generated two knockout mutations in amphioxus Gli, one that affects the whole gene and a second that only affects GliL. Both knockouts showed major morphological and molecular defects in the development of left-right asymmetry, a phenotype that is similar but not identical to that previously found in Hh mutants. Hh signaling also patterns the amphioxus neural tube. Here, however, knockout of GliL showed no identifiable phenotype, while knockout of the full gene showed only small changes to the expression of one gene family, Olig. Other genes that were prominently affected by Hh knockout were not altered in expression in either knockout. Reasons for the differences between Hh and Gli knockouts in the pharynx and neural tube are discussed in the context of the likely different functions of amphioxus Gli isoforms. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00195-w.
Collapse
Affiliation(s)
- Xin Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Qiongqiong Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Yiquan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | | | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| |
Collapse
|
4
|
Zhang L, Tao R, Wang S, Gao Y, Wang L, Yang S, Zhang X, Yu W, Wu X, Li K, Ni J, Teng Y, Bai S. PpZAT5 suppresses the expression of a B-box gene PpBBX18 to inhibit anthocyanin biosynthesis in the fruit peel of red pear. FRONTIERS IN PLANT SCIENCE 2022; 13:1022034. [PMID: 36304405 PMCID: PMC9592862 DOI: 10.3389/fpls.2022.1022034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
BBX (B-box) proteins play a vital role in light-induced anthocyanin biosynthesis. PpBBX18 was an indispensable regulator for the induction of anthocyanin biosynthesis in the peel of red pear fruit (Pyrus pyrifolia Nakai.). However, the upstream regulation of BBX genes has not been well characterized. In this study, PpZAT5, a cysteine2/histidine2-type transcription factor, was discovered as the upstream negative regulator of PpBBX18. The results showed that PpZAT5 functions as a transcriptional repressor and directly binds to the CAAT motif of PpBBX18 and inhibits its expression. PpZAT5 expression was inhibited by light, which is converse to the expression pattern of anthocyanin-related structural genes. In addition, less anthocyanin accumulated in the PpZAT5-overexpressing pear calli than in the wild-type pear calli; on the contrary, more anthocyanin accumulated in PpZAT5-RNAi pear calli. Moreover, the crucial genes involved in light-induced anthocyanin biosynthesis were markedly down-regulated in the transcriptome of PpZAT5 overexpression pear calli compared to wild-type. In conclusion, our study indicates that PpBBX18 is negatively regulated by a C2H2-type transcriptional repressor, PpZAT5, which reduces anthocyanin content in pear. The present results demonstrate an upstream molecular mechanism of PpBBX18 and provide insights into light-induced anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Ruiyan Tao
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Simai Wang
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Yuhao Gao
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Lu Wang
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Shulin Yang
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Xiao Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Wenjie Yu
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Xinyue Wu
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Kunfeng Li
- Agricultural Experiment Station, Zhejiang University, Hangzhou, China
| | - Junbei Ni
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Yuanwen Teng
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| | - Songling Bai
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, China
| |
Collapse
|
5
|
Hu F, Ren Y, Wang Z, Zhou H, Luo Y, Wang M, Tian F, Zheng J, Du J, Pang G. Bioinformatics analysis of KLF2 as a potential prognostic factor in ccRCC and association with epithelial‑mesenchymal transition. Exp Ther Med 2022; 24:561. [PMID: 35978925 PMCID: PMC9366276 DOI: 10.3892/etm.2022.11498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a primary pathological subtype of RCC and has poor clinical outcome. Krüppel-like factors (KLFs), which are zinc-finger proteins, may be involved in ccRCC development and progression. KLFs belong to the zinc-finger family of DNA-binding transcription factors and regulate transcription of downstream target genes. KLFs are involved in cancer development. The present study aimed to investigate the role of KLFs in ccRCC prognosis. The Cancer Genome Atlas database and multifactorial analysis showed that KLFs were widely expressed in pan-cancers and KLF2 was an independent protective factor for ccRCC prognosis. Patients with low KLF2 expression had a low survival probability and expression of KLF2 was downregulated in patients with ccRCC with high pathological grade (II + III vs. I). In addition, western blot and reverse transcription-quantitative PCR revealed that KLF2 was expressed at low levels in ccRCC cell lines and overexpression of KLF2 inhibited cell migration. In addition, KLF2 expression was negatively correlated with methylation. KLF2 expression was elevated following treatment of ccRCC cells with DNA methyltransferase inhibitor. A prognostic risk index prediction model was constructed based on multiple Cox regression. The receiver operating characteristic curve was 0.780 (area under curve >0.5). Furthermore, Gene Ontology enrichment analysis showed that ‘cell adhesion’ and ‘junction’ were negatively correlated with KLF2 and that high-risk group exhibited significantly activated ‘epithelial-mesenchymal transition’. Western blot analysis showed that overexpression of KLF2 increased expression of E-cadherin, while decreasing levels of N-cadherin and vimentin. The present study highlighted the role of KLFs in ccRCC prognosis prediction and provides a research base for the search of validated prognostic biological markers for ccRCC.
Collapse
Affiliation(s)
- Fangfang Hu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yan Ren
- Department of Human Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zunyun Wang
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Hui Zhou
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yumei Luo
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Minghua Wang
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Faqing Tian
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Jian Zheng
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Juan Du
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Gang Pang
- Department of Human Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
6
|
Genome-Wide Identification and Expression Patterns of the C2H2-Zinc Finger Gene Family Related to Stress Responses and Catechins Accumulation in Camellia sinensis [L.] O. Kuntze. Int J Mol Sci 2021; 22:ijms22084197. [PMID: 33919599 PMCID: PMC8074030 DOI: 10.3390/ijms22084197] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
The C2H2-zinc finger protein (C2H2-ZFP) is essential for the regulation of plant development and widely responsive to diverse stresses including drought, cold and salt stress, further affecting the late flavonoid accumulation in higher plants. Tea is known as a popular beverage worldwide and its quality is greatly dependent on the physiological status and growing environment of the tea plant. To date, the understanding of C2H2-ZFP gene family in Camellia sinensis [L.] O. Kuntze is not yet available. In the present study, 134 CsC2H2-ZFP genes were identified and randomly distributed on 15 chromosomes. The CsC2H2-ZFP gene family was classified into four clades and gene structures and motif compositions of CsC2H2-ZFPs were similar within the same clade. Segmental duplication and negative selection were the main forces driving the expansion of the CsC2H2-ZFP gene family. Expression patterns suggested that CsC2H2-ZFPs were responsive to different stresses including drought, salt, cold and methyl jasmonate (MeJA) treatment. Specially, several C2H2-ZFPs showed a significant correlation with the catechins content and responded to the MeJA treatment, which might contribute to the tea quality and specialized astringent taste. This study will lay the foundations for further research of C2H2-type zinc finger proteins on the stress responses and quality-related metabolites accumulation in C. sinensis.
Collapse
|
7
|
McCulloch KJ, Koenig KM. Krüppel-like factor/specificity protein evolution in the Spiralia and the implications for cephalopod visual system novelties. Proc Biol Sci 2020; 287:20202055. [PMID: 33081641 PMCID: PMC7661307 DOI: 10.1098/rspb.2020.2055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The cephalopod visual system is an exquisite example of convergence in biological complexity. However, we have little understanding of the genetic and molecular mechanisms underpinning its elaboration. The generation of new genetic material is considered a significant contributor to the evolution of biological novelty. We sought to understand if this mechanism may be contributing to cephalopod-specific visual system novelties. Specifically, we identified duplications in the Krüppel-like factor/specificity protein (KLF/SP) sub-family of C2H2 zinc-finger transcription factors in the squid Doryteuthis pealeii. We cloned and analysed gene expression of the KLF/SP family, including two paralogs of the DpSP6-9 gene. These duplicates showed overlapping expression domains but one paralog showed unique expression in the developing squid lens, suggesting a neofunctionalization of DpSP6-9a. To better understand this neofunctionalization, we performed a thorough phylogenetic analysis of SP6-9 orthologues in the Spiralia. We find multiple duplications and losses of the SP6-9 gene throughout spiralian lineages and at least one cephalopod-specific duplication. This work supports the hypothesis that gene duplication and neofunctionalization contribute to novel traits like the cephalopod image-forming eye and to the diversity found within Spiralia.
Collapse
Affiliation(s)
- Kyle J McCulloch
- Department of Organismic and Evolutionary Biology, Harvard University Cambridge, MA 02138, USA.,John Harvard Distinguished Science Fellows, Harvard University, Cambridge, MA 02138, USA
| | - Kristen M Koenig
- Department of Organismic and Evolutionary Biology, Harvard University Cambridge, MA 02138, USA.,John Harvard Distinguished Science Fellows, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Han G, Lu C, Guo J, Qiao Z, Sui N, Qiu N, Wang B. C2H2 Zinc Finger Proteins: Master Regulators of Abiotic Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:115. [PMID: 32153617 PMCID: PMC7044346 DOI: 10.3389/fpls.2020.00115] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/24/2020] [Indexed: 05/04/2023]
Abstract
Abiotic stresses such as drought and salinity are major environmental factors that limit crop yields. Unraveling the molecular mechanisms underlying abiotic stress resistance is crucial for improving crop performance and increasing productivity under adverse environmental conditions. Zinc finger proteins, comprising one of the largest transcription factor families, are known for their finger-like structure and their ability to bind Zn2+. Zinc finger proteins are categorized into nine subfamilies based on their conserved Cys and His motifs, including the Cys2/His2-type (C2H2), C3H, C3HC4, C2HC5, C4HC3, C2HC, C4, C6, and C8 subfamilies. Over the past two decades, much progress has been made in understanding the roles of C2H2 zinc finger proteins in plant growth, development, and stress signal transduction. In this review, we focus on recent progress in elucidating the structures, functions, and classifications of plant C2H2 zinc finger proteins and their roles in abiotic stress responses.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chaoxia Lu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ziqi Qiao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Nianwei Qiu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
9
|
Yasuoka Y, Matsumoto M, Yagi K, Okazaki Y. Evolutionary History of GLIS Genes Illuminates Their Roles in Cell Reprograming and Ciliogenesis. Mol Biol Evol 2020; 37:100-109. [PMID: 31504761 PMCID: PMC6984359 DOI: 10.1093/molbev/msz205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The GLIS family transcription factors, GLIS1 and GLIS3, potentiate generation of induced pluripotent stem cells (iPSCs). In contrast, another GLIS family member, GLIS2, suppresses cell reprograming. To understand how these disparate roles arose, we examined evolutionary origins and genomic organization of GLIS genes. Comprehensive phylogenetic analysis shows that GLIS1 and GLIS3 originated during vertebrate whole genome duplication, whereas GLIS2 is a sister group to the GLIS1/3 and GLI families. This result is consistent with their opposing functions in cell reprograming. Glis1 evolved faster than Glis3, losing many protein-interacting motifs. This suggests that Glis1 acquired new functions under weakened evolutionary constraints. In fact, GLIS1 induces induced pluripotent stem cells more strongly. Transcriptomic data from various animal embryos demonstrate that glis1 is maternally expressed in some tetrapods, whereas vertebrate glis3 and invertebrate glis1/3 genes are rarely expressed in oocytes, suggesting that vertebrate (or tetrapod) Glis1 acquired a new expression domain and function as a maternal factor. Furthermore, comparative genomic analysis reveals that glis1/3 is part of a bilaterian-specific gene cluster, together with rfx3, ndc1, hspb11, and lrrc42. Because known functions of these genes are related to cilia formation and function, the last common ancestor of bilaterians may have acquired this cluster by shuffling gene order to establish more sophisticated epithelial tissues involving cilia. This evolutionary study highlights the significance of GLIS1/3 for cell reprograming, development, and diseases in ciliated organs such as lung, kidney, and pancreas.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masahito Matsumoto
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Advanced Diabetic Therapeutics, Department of Metabolic Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken Yagi
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yasushi Okazaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
10
|
Tan Y, Hu Y, Xiao Q, Tang Y, Chen H, He J, Chen L, Jiang K, Wang Z, Yuan Y, Ding K. Silencing of brain-expressed X-linked 2 (BEX2) promotes colorectal cancer metastasis through the Hedgehog signaling pathway. Int J Biol Sci 2020; 16:228-238. [PMID: 31929751 PMCID: PMC6949152 DOI: 10.7150/ijbs.38431] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence of colorectal cancer is increasing, and cancer metastasis is one of the major causes of poor outcomes. BEX2 has been reported to be involved in tumor development in several types of cancer, but its role in metastatic colorectal cancer remains largely undefined. Herein, we demonstrated that BEX2 knockout resulted in enhanced migratory and metastatic potential in colorectal cancer cells both in vitro and in vivo, and re-expression of BEX2 in knockout cells could reverse the enhanced migratory capacity. RNA-Seq results indicated that the hedgehog signaling pathway was activated after BEX2 knockout; moreover, the hedgehog signaling inhibitors, GANT61 and GDC-0449 could reverse the migratory enhancement of BEX2-/- colorectal cancer cells. We also demonstrated that the nuclear translocation of Zic2 after BEX2 silencing could activate the hedgehog signaling pathway, while Zic2 knockdown abrogated the migratory enhancement of BEX2-/- cells and inhibited the hedgehog signaling pathway. In summary, our findings suggest that BEX2 negatively modulates the hedgehog signaling pathway by retaining Zic2 in the cytoplasm in colorectal cancer cells, thereby inhibiting migration and metastasis of colorectal cancer cells.
Collapse
Affiliation(s)
- Yinuo Tan
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yeting Hu
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qian Xiao
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yang Tang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Haiyan Chen
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jinjie He
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Liubo Chen
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Kai Jiang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhanhuai Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Kefeng Ding
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
11
|
Mutations in TFAP2B and previously unimplicated genes of the BMP, Wnt, and Hedgehog pathways in syndromic craniosynostosis. Proc Natl Acad Sci U S A 2019; 116:15116-15121. [PMID: 31292255 PMCID: PMC6660739 DOI: 10.1073/pnas.1902041116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Craniosynostosis (CS) is a frequent congenital malformation featuring premature fusion of cranial sutures; 15% of these children have syndromic disease, often due to rare mutations with large effect. While many genes causing Mendelian forms of syndromic CS have been identified, clinical sequencing often fails to identify a likely causative mutation. We performed whole-exome sequencing of 12 case-parent trios with previously negative genetic evaluations. The results identified likely pathogenic mutations in TFAP2B, KAT6A, GLI2, SOX11, CTNNA1, and GPC4 in these families, adding several loci to those known to cause syndromic CS. The findings have implications for determining risk of disease in subsequent offspring and demonstrate that unexplained syndromic CS cases are a particularly rich vein for discovery of CS loci. Craniosynostosis (CS) is a frequent congenital anomaly featuring the premature fusion of 1 or more sutures of the cranial vault. Syndromic cases, featuring additional congenital anomalies, make up 15% of CS. While many genes underlying syndromic CS have been identified, the cause of many syndromic cases remains unknown. We performed exome sequencing of 12 syndromic CS cases and their parents, in whom previous genetic evaluations were unrevealing. Damaging de novo or transmitted loss of function (LOF) mutations were found in 8 genes that are highly intolerant to LOF mutation (P = 4.0 × 10−8); additionally, a rare damaging mutation in SOX11, which has a lower level of intolerance, was identified. Four probands had rare damaging mutations (2 de novo) in TFAP2B, a transcription factor that orchestrates neural crest cell migration and differentiation; this mutation burden is highly significant (P = 8.2 × 10−12). Three probands had rare damaging mutations in GLI2, SOX11, or GPC4, which function in the Hedgehog, BMP, and Wnt signaling pathways; other genes in these pathways have previously been implicated in syndromic CS. Similarly, damaging de novo mutations were identified in genes encoding the chromatin modifier KAT6A, and CTNNA1, encoding catenin α-1. These findings establish TFAP2B as a CS gene, have implications for assessing risk to subsequent children in these families, and provide evidence implicating other genes in syndromic CS. This high yield indicates the value of performing exome sequencing of syndromic CS patients when sequencing of known disease loci is unrevealing.
Collapse
|
12
|
Albuixech-Crespo B, López-Blanch L, Burguera D, Maeso I, Sánchez-Arrones L, Moreno-Bravo JA, Somorjai I, Pascual-Anaya J, Puelles E, Bovolenta P, Garcia-Fernàndez J, Puelles L, Irimia M, Ferran JL. Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain. PLoS Biol 2017; 15:e2001573. [PMID: 28422959 PMCID: PMC5396861 DOI: 10.1371/journal.pbio.2001573] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/22/2017] [Indexed: 11/25/2022] Open
Abstract
All vertebrate brains develop following a common Bauplan defined by anteroposterior (AP) and dorsoventral (DV) subdivisions, characterized by largely conserved differential expression of gene markers. However, it is still unclear how this Bauplan originated during evolution. We studied the relative expression of 48 genes with key roles in vertebrate neural patterning in a representative amphioxus embryonic stage. Unlike nonchordates, amphioxus develops its central nervous system (CNS) from a neural plate that is homologous to that of vertebrates, allowing direct topological comparisons. The resulting genoarchitectonic model revealed that the amphioxus incipient neural tube is unexpectedly complex, consisting of several AP and DV molecular partitions. Strikingly, comparison with vertebrates indicates that the vertebrate thalamus, pretectum, and midbrain domains jointly correspond to a single amphioxus region, which we termed Di-Mesencephalic primordium (DiMes). This suggests that these domains have a common developmental and evolutionary origin, as supported by functional experiments manipulating secondary organizers in zebrafish and mice.
Collapse
Affiliation(s)
- Beatriz Albuixech-Crespo
- Department of Genetics, School of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Spain
| | - Laura López-Blanch
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Demian Burguera
- Department of Genetics, School of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), Sevilla, Spain
| | - Luisa Sánchez-Arrones
- Centro de Biología Molecular Severo Ochoa CSIC-UAM and CIBERER, ISCIII, Madrid, Spain
| | | | - Ildiko Somorjai
- The Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, Scotland, United Kingdom
- Biomedical Sciences Research Complex, University of St Andrews, Fife, Scotland, United Kingdom
| | | | - Eduardo Puelles
- Instituto de Neurociencias, UMH-CSIC, Campus de San Juan, Sant Joan d'Alacant, Alicante, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa CSIC-UAM and CIBERER, ISCIII, Madrid, Spain
| | - Jordi Garcia-Fernàndez
- Department of Genetics, School of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| |
Collapse
|
13
|
Dailey SC, Kozmikova I, Somorjai IM. Amphioxus Sp5 is a member of a conserved Specificity Protein complement and is modulated by Wnt/β-catenin signalling. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2017; 61:723-732. [PMID: 29319119 PMCID: PMC5777634 DOI: 10.1387/ijdb.170205is] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A cluster of three Specificity Protein (Sp) genes (Sp1-4, Sp5 and Sp6-9) is thought to be ancestral in both chordates and the wider Eumetazoa. Sp5 and Sp6-9 gene groups are associated with embryonic growth zones, such as tailbuds, and are both Wnt/β-catenin signalling pathway members and targets. Currently, there are conflicting reports as to the number and identity of Sp genes in the cephalochordates, the sister group to the vertebrates and urochordates. We confirm the SP complement of Branchiostoma belcheri and Branchiostoma lanceolatum, as well as their genomic arrangement, protein domain structure and residue frequency. We assay Sp5 expression in B. lanceolatum embryos, and determine its response to pharmacologically increased β-catenin signalling. Branchiostoma possesses three Sp genes, located on the same genomic scaffold. Phylogenetic and domain structure analyses are consistent with their identification as SP1-4, SP5 and SP6-9, although SP1-4 contains a novel glutamine-rich N-terminal region. SP5 is expressed in axial mesoderm and neurectoderm, and marks the cerebral vesicle and presumptive pharynx. Early exposure to increased β-catenin caused ubiquitous SP5 expression in late gastrula, while later treatment at gastrula stages reduced SP5 expression in the posterior growth zone during axis elongation. Amphioxus possess a typical invertebrate eumetazoan SP complement, and SP5 expression in embryos is well conserved with vertebrate homologues. Its expression in the tailbud, a posterior growth zone, is consistent with expression seen in other bilaterians. Branchiostoma SP5 shows a dynamic response to Wnt/β-catenin signalling.
Collapse
Affiliation(s)
- Simon C. Dailey
- University of St Andrews, Biomedical Sciences Research Complex, North Haugh, St Andrews, UK
- Scottish Oceans Institute, East Sands, St Andrews, UK
| | - Iryna Kozmikova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ildikó M.L. Somorjai
- University of St Andrews, Biomedical Sciences Research Complex, North Haugh, St Andrews, UK
- Scottish Oceans Institute, East Sands, St Andrews, UK
| |
Collapse
|
14
|
Fernandez-Valverde SL, Degnan BM. Bilaterian-like promoters in the highly compact Amphimedon queenslandica genome. Sci Rep 2016; 6:22496. [PMID: 26931148 PMCID: PMC4773876 DOI: 10.1038/srep22496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/15/2016] [Indexed: 12/13/2022] Open
Abstract
The regulatory systems underlying animal development must have evolved prior to the emergence of eumetazoans (cnidarians and bilaterians). Although representatives of earlier-branching animals - sponges ctenophores and placozoans - possess most of the developmental transcription factor families present in eumetazoans, the DNA regulatory elements that these transcription factors target remain uncharted. Here we characterise the core promoter sequences, U1 snRNP-binding sites (5' splice sites; 5'SSs) and polyadenylation sites (PASs) in the sponge Amphimedon queenslandica. Similar to unicellular opisthokonts, Amphimedon's genes are tightly packed in the genome and have small introns. In contrast, its genes possess metazoan-like core promoters populated with binding motifs previously deemed to be specific to vertebrates, including Nrf-1 and Krüppel-like elements. Also as in vertebrates, Amphimedon's PASs and 5'SSs are depleted downstream and upstream of transcription start sites, respectively, consistent with non-elongating transcripts being short-lived; PASs and 5'SSs are more evenly distributed in bidirectional promoters in Amphimedon. The presence of bilaterian-like regulatory DNAs in sponges is consistent with these being early and essential innovations of the metazoan gene regulatory repertoire.
Collapse
Affiliation(s)
| | - Bernard M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
15
|
Abstract
The Wilms' tumor suppressor gene 1 (Wt1) is critically involved in a number of developmental processes in vertebrates, including cell differentiation, control of the epithelial/mesenchymal phenotype, proliferation, and apoptosis. Wt1 proteins act as transcriptional and post-transcriptional regulators, in mRNA splicing and in protein-protein interactions. Furthermore, Wt1 is involved in adult tissue homeostasis, kidney function, and cancer. For these reasons, Wt1 function has been extensively studied in a number of animal models to establish its spatiotemporal expression pattern and the developmental fate of the cells expressing this gene. In this chapter, we review the developmental anatomy of Wt1, collecting information about its dynamic expression in mesothelium, kidney, gonads, cardiovascular system, spleen, nervous system, lung, and liver. We also describe the adult expression of Wt1 in kidney podocytes, gonads, mesothelia, visceral adipose tissue, and a small fraction of bone marrow cells. We have reviewed the available animal models for Wt1-expressing cell lineage analysis, including direct Wt1 expression reporters and systems for permanent Wt1 lineage tracing, based on constitutive or inducible Cre recombinase expression under control of a Wt1 promoter. Finally we provide a number of laboratory protocols to be used with these animal models in order to assess reporter expression.
Collapse
|
16
|
Presnell JS, Schnitzler CE, Browne WE. KLF/SP Transcription Factor Family Evolution: Expansion, Diversification, and Innovation in Eukaryotes. Genome Biol Evol 2015; 7:2289-309. [PMID: 26232396 PMCID: PMC4558859 DOI: 10.1093/gbe/evv141] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2015] [Indexed: 11/13/2022] Open
Abstract
The Krüppel-like factor and specificity protein (KLF/SP) genes play key roles in critical biological processes including stem cell maintenance, cell proliferation, embryonic development, tissue differentiation, and metabolism and their dysregulation has been implicated in a number of human diseases and cancers. Although many KLF/SP genes have been characterized in a handful of bilaterian lineages, little is known about the KLF/SP gene family in nonbilaterians and virtually nothing is known outside the metazoans. Here, we analyze and discuss the origins and evolutionary history of the KLF/SP transcription factor family and associated transactivation/repression domains. We have identified and characterized the complete KLF/SP gene complement from the genomes of 48 species spanning the Eukarya. We have also examined the phylogenetic distribution of transactivation/repression domains associated with this gene family. We report that the origin of the KLF/SP gene family predates the divergence of the Metazoa. Furthermore, the expansion of the KLF/SP gene family is paralleled by diversification of transactivation domains via both acquisitions of pre-existing ancient domains as well as by the appearance of novel domains exclusive to this gene family and is strongly associated with the expansion of cell type complexity.
Collapse
Affiliation(s)
| | - Christine E Schnitzler
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health
| | | |
Collapse
|
17
|
Pei J, Grishin NV. C2H2 zinc finger proteins of the SP/KLF, Wilms tumor, EGR, Huckebein, and Klumpfuss families in metazoans and beyond. Gene 2015; 573:91-9. [PMID: 26187067 DOI: 10.1016/j.gene.2015.07.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 10/23/2022]
Abstract
Specificity proteins (SPs) and Krüppel-Like Factors (KLFs) are C2H2-type zinc finger transcription factors that play essential roles in differentiation, development, proliferation and cell death. SP/KLF proteins, similarly to Wilms tumor protein 1 (WT1), Early Growth Response (EGR), Huckebein, and Klumpfuss, prefer to bind GC-rich sequences such as GC-box and CACCC-box (GT-box). We searched various genomes and transcriptomes of metazoans and single-cell holozoans for members of these families. Seven groups of KLFs (KLFA-G) and three groups of SPs (SPA-C) were identified in the three lineages of Bilateria (Deuterostomia, Ecdysozoa, and Lophotrochozoa). The last ancestor of jawed vertebrates was inferred to have at least 18 KLFs (group A: KLF1/2/4/17, group B: KLF3/8/12; group C: KLF5/5l; group D: KLF6/7; group E: KLF9/13/16; group F: KLF10/KLF11; group G: KLF15/15l) and 10 SPs (group A: SP1/2/3/4; group B: SP5/5l; group C: SP6/7/8/9), since they were found in both cartilaginous and boned fishes. Placental mammals have added KLF14 (group E) and KLF18 (group A), and lost KLF5l (KLF5-like) and KLF15l (KLF15-like). Multiple KLF members were found in basal metazoans (Ctenophora, Porifera, Placozoa, and Cnidaria). Ctenophora has the least number of KLFs and no SPs, which could be attributed to its proposed sister group relationship to other metazoans or gene loss. While SP, EGR and Klumpfuss were only detected in metazoans, KLF, WT1, and Huckebein are present in nonmetazoan holozoans. Of the seven metazoan KLF groups, only KLFG, represented by KLF15 in human, was found in nonmetazoans. In addition, two nonmetazoan groups of KLFs are present in Choanoflagellatea and Filasterea. WT1 could be evolutionarily the earliest among these GC/GT-box-binding families due to its sole presence in Ichthyosporea.
Collapse
Affiliation(s)
- Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
18
|
Koga H, Hashimoto N, Suzuki DG, Ono H, Yoshimura M, Suguro T, Yonehara Y, Abe T, Satoh N, Wada H. A genome-wide survey of genes encoding transcription factors in Japanese pearl oyster Pinctada fucata: II. Tbx, Fox, Ets, HMG, NFκB, bZIP, and C2H2 zinc fingers. Zoolog Sci 2013; 30:858-67. [PMID: 24125649 DOI: 10.2108/zsj.30.858] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To gain a better understanding of molluscan development and its relation to the evolution of their unique body plan, we performed a genomic survey of genes encoding transcription factors, such as Tbx, Fox, Ets, HMG, NFκB, bZIP, and C2H2 zinc finger proteins in the Japanese pearl oyster, Pinctada fucata. We annotated 133 transcription factor genes. Together with the orthologs of known deuterostome genes, we found several orphan genes in each class of transcription factor. Some possessed clear orthologs in other species of lophotrochozoans, while no counterpart genes were found in the deuterostomes or ecdysozoans. These observations suggest that a number of transcription factor genes are unique to lophotrochozoans, and thus additional research frontiers remain to be explored with regard to such transcription factors.
Collapse
Affiliation(s)
- Hiroyuki Koga
- 1 Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pei J, Grishin NV. A new family of predicted Krüppel-like factor genes and pseudogenes in placental mammals. PLoS One 2013; 8:e81109. [PMID: 24244731 PMCID: PMC3820594 DOI: 10.1371/journal.pone.0081109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 10/15/2013] [Indexed: 01/11/2023] Open
Abstract
Krüppel-like factors (KLF) and specificity proteins (SP) constitute a family of zinc-finger-containing transcription factors that play important roles in a wide range of processes including differentiation and development of various tissues. The human genome possesses 17 KLF genes (KLF1-KLF17) and nine SP genes (SP1-SP9) with diverse functions. We used sequence similarity searches and gene synteny analysis to identify a new putative KLF gene/pseudogene named KLF18 that is present in most of the placental mammals with sequenced genomes. KLF18 is a chromosomal neighbor of the KLF17 gene and is likely a product of its duplication. Phylogenetic analyses revealed that mammalian predicted KLF18 proteins and KLF17 proteins experienced elevated rates of evolution and are grouped with KLF1/KLF2/KLF4 and non-mammalian KLF17. Predicted KLF18 proteins maintain conserved features in the zinc fingers of the SP/KLF family, while possessing repeats of a unique sequence motif in their N-terminal regions. No expression data have been reported for KLF18, suggesting that it either has highly restricted expression patterns and specialized functions, or could have become a pseudogene in extant placental mammals. Besides KLF18 genes/pseudogenes, we identified several KLF18-like genes such as Zfp352, Zfp352-like, and Zfp353 in the genomes of mouse and rat. These KLF18-like genes do not possess introns inside their coding regions, and gene expression data indicate that some of them may function in early embryonic development. They represent further expansions of KLF members in the murine lineage, most likely resulted from several events of retrotransposition and local gene duplication starting from an ancient spliced mRNA of KLF18.
Collapse
Affiliation(s)
- Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| | - Nick V. Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
20
|
GRG5/AES interacts with T-cell factor 4 (TCF4) and downregulates Wnt signaling in human cells and zebrafish embryos. PLoS One 2013; 8:e67694. [PMID: 23840876 PMCID: PMC3698143 DOI: 10.1371/journal.pone.0067694] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 05/22/2013] [Indexed: 12/27/2022] Open
Abstract
Transcriptional control by TCF/LEF proteins is crucial in key developmental processes such as embryo polarity, tissue architecture and cell fate determination. TCFs associate with β-catenin to activate transcription in the presence of Wnt signaling, but in its absence act as repressors together with Groucho-family proteins (GRGs). TCF4 is critical in vertebrate intestinal epithelium, where TCF4-β-catenin complexes are necessary for the maintenance of a proliferative compartment, and their abnormal formation initiates tumorigenesis. However, the extent of TCF4-GRG complexes' roles in development and the mechanisms by which they repress transcription are not completely understood. Here we characterize the interaction between TCF4 and GRG5/AES, a Groucho family member whose functional relationship with TCFs has been controversial. We map the core GRG interaction region in TCF4 to a 111-amino acid fragment and show that, in contrast to other GRGs, GRG5/AES-binding specifically depends on a 4-amino acid motif (LVPQ) present only in TCF3 and some TCF4 isoforms. We further demonstrate that GRG5/AES represses Wnt-mediated transcription both in human cells and zebrafish embryos. Importantly, we provide the first evidence of an inherent repressive function of GRG5/AES in dorsal-ventral patterning during early zebrafish embryogenesis. These results improve our understanding of TCF-GRG interactions, have significant implications for models of transcriptional repression by TCF-GRG complexes, and lay the groundwork for in depth direct assessment of the potential role of Groucho-family proteins in both normal and abnormal development.
Collapse
|
21
|
Matise MP, Wang H. Sonic hedgehog signaling in the developing CNS where it has been and where it is going. Curr Top Dev Biol 2011; 97:75-117. [PMID: 22074603 DOI: 10.1016/b978-0-12-385975-4.00010-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sonic Hedgehog (Shh) is one of three mammalian orthologs of the Hedgehog (Hh) family of secreted proteins first identified for their role in patterning the Drosophila embryo. In this review, we will highlight some of the outstanding questions regarding how Shh signaling controls embryonic development. We will mainly consider its role in the developing mammalian central nervous system (CNS) where the pathway plays a critical role in orchestrating the specification of distinct cell fates within ventral regions, a process of exquisite complexity that is necessary for the proper wiring and hence function of the mature system. Embryonic development is a process that plays out in both the spatial and the temporal dimensions, and it is becoming increasingly clear that our understanding of Shh signaling in the CNS is grounded in an appreciation for the dynamic nature of this process. In addition, any consideration of Hh signaling must by necessity include a consideration of data from many different model organisms and systems. In many cases, the extent to which insights gained from these studies are applicable to the CNS remains to be determined, yet they provide a strong framework in which to explore its role in CNS development. We will also discuss how Shh controls cell fate diversification through the regulation of patterned target gene expression in the spinal cord, a region where our understanding of the morphogenetic action of graded Shh signaling is perhaps the furthest advanced.
Collapse
Affiliation(s)
- Michael P Matise
- UMDNJ/Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | |
Collapse
|
22
|
Butts T, Holland PWH, Ferrier DEK. Ancient homeobox gene loss and the evolution of chordate brain and pharynx development: deductions from amphioxus gene expression. Proc Biol Sci 2010; 277:3381-9. [PMID: 20554554 PMCID: PMC2982225 DOI: 10.1098/rspb.2010.0647] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 05/21/2010] [Indexed: 12/24/2022] Open
Abstract
Homeobox genes encode a large superclass of transcription factors with widespread roles in animal development. Within chordates there are over 100 homeobox genes in the invertebrate cephalochordate amphioxus and over 200 in humans. Set against this general trend of increasing gene number in vertebrate evolution, some ancient homeobox genes that were present in the last common ancestor of chordates have been lost from vertebrates. Here, we describe the embryonic expression of four amphioxus descendants of these genes--AmphiNedxa, AmphiNedxb, AmphiMsxlx and AmphiNKx7. All four genes are expressed with a striking asymmetry about the left-right axis in the pharyngeal region of neurula embryos, mirroring the pronounced asymmetry of amphioxus embryogenesis. AmphiMsxlx and AmphiNKx7 are also transiently expressed in an anterior neural tube region destined to become the cerebral vesicle. These findings suggest significant rewiring of developmental gene regulatory networks occurred during chordate evolution, coincident with homeobox gene loss. We propose that loss of otherwise widely conserved genes is possible when these genes function in a confined role in development that is subsequently lost or significantly modified during evolution. In the case of these homeobox genes, we propose that this has occurred in relation to the evolution of the chordate pharynx and brain.
Collapse
Affiliation(s)
- Thomas Butts
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Peter W. H. Holland
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - David E. K. Ferrier
- Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, Fife KY16 8LB, UK
| |
Collapse
|
23
|
Layden MJ, Meyer NP, Pang K, Seaver EC, Martindale MQ. Expression and phylogenetic analysis of the zic gene family in the evolution and development of metazoans. EvoDevo 2010; 1:12. [PMID: 21054859 PMCID: PMC2988786 DOI: 10.1186/2041-9139-1-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 11/05/2010] [Indexed: 11/25/2022] Open
Abstract
Background zic genes are members of the gli/glis/nkl/zic super-family of C2H2 zinc finger (ZF) transcription factors. Homologs of the zic family have been implicated in patterning neural and mesodermal tissues in bilaterians. Prior to this study, the origin of the metazoan zic gene family was unknown and expression of zic gene homologs during the development of early branching metazoans had not been investigated. Results Phylogenetic analyses of novel zic candidate genes identified a definitive zic homolog in the placozoan Trichoplax adhaerens, two gli/glis/nkl-like genes in the ctenophore Mnemiopsis leidyi, confirmed the presence of three gli/glis/nkl-like genes in Porifera, and confirmed the five previously identified zic genes in the cnidarian Nematostella vectensis. In the cnidarian N. vectensis, zic homologs are expressed in ectoderm and the gastrodermis (a bifunctional endomesoderm), in presumptive and developing tentacles, and in oral and sensory apical tuft ectoderm. The Capitella teleta zic homolog (Ct-zic) is detectable in a subset of the developing nervous system, the foregut, and the mesoderm associated with the segmentally repeated chaetae. Lastly, expression of gli and glis homologs in Mnemiopsis. leidyi is detected exclusively in neural cells in floor of the apical organ. Conclusions Based on our analyses, we propose that the zic gene family arose in the common ancestor of the Placozoa, Cnidaria and Bilateria from a gli/glis/nkl-like gene and that both ZOC and ZF-NC domains evolved prior to cnidarian-bilaterian divergence. We also conclude that zic expression in neural ectoderm and developing neurons is pervasive throughout the Metazoa and likely evolved from neural expression of an ancestral gli/glis/nkl/zic gene. zic expression in bilaterian mesoderm may be related to the expression in the gastrodermis of a cnidarian-bilaterian common ancestor.
Collapse
Affiliation(s)
- Michael J Layden
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawaii, Manoa, 41 Ahui St Honolulu, HI 96813, USA.
| | | | | | | | | |
Collapse
|
24
|
Irimia M, Piñeiro C, Maeso I, Gómez-Skarmeta JL, Casares F, Garcia-Fernàndez J. Conserved developmental expression of Fezf in chordates and Drosophila and the origin of the Zona Limitans Intrathalamica (ZLI) brain organizer. EvoDevo 2010; 1:7. [PMID: 20849572 PMCID: PMC2942887 DOI: 10.1186/2041-9139-1-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 09/01/2010] [Indexed: 01/17/2023] Open
Abstract
Background The zona limitans intrathalamica (ZLI) and the isthmus organizer (IsO) are two major secondary organizers of vertebrate brain development. These organizers are located at the interface of the expression domains of key patterning genes (Fezf-Irx and Otx-Gbx, respectively). To gain insights into the evolutionary origin of the ZLI, we studied Fezf in bilaterians. Results In this paper, we identified a conserved sequence motif (Fezf box) in all bilaterians. We report the expression pattern of Fezf in amphioxus and Drosophila and compare it with those of Gbx, Otx and Irx. We found that the relative expression patterns of these genes in vertebrates are fully conserved in amphioxus and flies, indicating that the genetic subdivisions defining the location of both secondary organizers in early vertebrate brain development were probably present in the last common ancestor of extant bilaterians. However, in contrast to vertebrates, we found that Irx-defective flies do not show an affected Fezf expression pattern. Conclusions The absence of expression of the corresponding morphogens from cells at these conserved genetic boundaries in invertebrates suggests that the organizing properties might have evolved specifically in the vertebrate lineage by the recruitment of key morphogens to these conserved genetic locations.
Collapse
Affiliation(s)
- Manuel Irimia
- Departament de Genètica and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
The current understanding of the origin and evolution of the genetic cassette for the vertebrate skeletal system is reviewed. Molecular phylogenetic analyses of fibrillar collagen genes, which encode the main component of both cartilage and mineralized bone, suggest that genome duplications in vertebrate ancestors were essential for producing distinct collagen fibers for cartilage and mineralized bone. Several data Indicate co-expression of the ancestral copy of fibrillar collagen with the SoxE and Runx transcription factors. Therefore, the genetic cassette may have already existed in protochordate ancestors, and may operate in the development of the pharyngeal gill skeleton. Accompanied by genome duplications in vertebrate ancestors, this genetic cassette may have also been duplicated and co-opted for cartilage and bone. Subsequently, the genetic cassette for cartilage recruited novel genetic material via domain shuffling. Aggrecan, acquired by means of domain shuffling, performs an essential role in cartilage as a shock absorber. In contrast, the cassette for bone recruited new genetic material produced by tandem duplication of the SPARC/osteonectin genes. Some of the duplicated copies of SPARC/osteonectin became secretory Cabinding phosphoproteins (SCPPs) performing a central role in mineralization by regulating the calcium phosphate concentration. Comparative genome analysis revealed similar molecular evolutionary histories for the genetic cassettes for cartilage and bone, namely duplication of the ancestral genetic cassette and recruitment of novel genetic material.
Collapse
Affiliation(s)
- Hiroshi Wada
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| |
Collapse
|
26
|
Schaeper ND, Prpic NM, Wimmer EA. A clustered set of three Sp-family genes is ancestral in the Metazoa: evidence from sequence analysis, protein domain structure, developmental expression patterns and chromosomal location. BMC Evol Biol 2010; 10:88. [PMID: 20353601 PMCID: PMC3087555 DOI: 10.1186/1471-2148-10-88] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 03/30/2010] [Indexed: 12/28/2022] Open
Abstract
Background The Sp-family of transcription factors are evolutionarily conserved zinc finger proteins present in many animal species. The orthology of the Sp genes in different animals is unclear and their evolutionary history is therefore controversially discussed. This is especially the case for the Sp gene buttonhead (btd) which plays a key role in head development in Drosophila melanogaster, and has been proposed to have originated by a recent gene duplication. The purpose of the presented study was to trace orthologs of btd in other insects and reconstruct the evolutionary history of the Sp genes within the metazoa. Results We isolated Sp genes from representatives of a holometabolous insect (Tribolium castaneum), a hemimetabolous insect (Oncopeltus fasciatus), primitively wingless hexapods (Folsomia candida and Thermobia domestica), and an amphipod crustacean (Parhyale hawaienis). We supplemented this data set with data from fully sequenced animal genomes. We performed phylogenetic sequence analysis with the result that all Sp factors fall into three monophyletic clades. These clades are also supported by protein domain structure, gene expression, and chromosomal location. We show that clear orthologs of the D. melanogaster btd gene are present even in the basal insects, and that the Sp5-related genes in the genome sequence of several deuterostomes and the basal metazoans Trichoplax adhaerens and Nematostella vectensis are also orthologs of btd. Conclusions All available data provide strong evidence for an ancestral cluster of three Sp-family genes as well as synteny of this Sp cluster and the Hox cluster. The ancestral Sp gene cluster already contained a Sp5/btd ortholog, which strongly suggests that btd is not the result of a recent gene duplication, but directly traces back to an ancestral gene already present in the metazoan ancestor.
Collapse
Affiliation(s)
- Nina D Schaeper
- Georg-August-Universität, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung Entwicklungsbiologie, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|
27
|
Kerner P, Hung J, Béhague J, Le Gouar M, Balavoine G, Vervoort M. Insights into the evolution of the snail superfamily from metazoan wide molecular phylogenies and expression data in annelids. BMC Evol Biol 2009; 9:94. [PMID: 19426549 PMCID: PMC2688512 DOI: 10.1186/1471-2148-9-94] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 05/09/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An important issue concerning the evolution of duplicated genes is to understand why paralogous genes are retained in a genome even though the most likely fate for a redundant duplicated gene is nonfunctionalization and thereby its elimination. Here we study a complex superfamily generated by gene duplications, the snail related genes that play key roles during animal development. We investigate the evolutionary history of these genes by genomic, phylogenetic, and expression data studies. RESULTS We systematically retrieved the full complement of snail related genes in several sequenced genomes. Through phylogenetic analysis, we found that the snail superfamily is composed of three ancestral families, snail, scratchA and scratchB. Analyses of the organization of the encoded proteins point out specific molecular signatures, indicative of functional specificities for Snail, ScratchA and ScratchB proteins. We also report the presence of two snail genes in the annelid Platynereis dumerilii, which have distinct expression patterns in the developing mesoderm, nervous system, and foregut. The combined expression of these two genes is identical to that of two independently duplicated snail genes in another annelid, Capitella spI, but different aspects of the expression patterns are differentially shared among paralogs of Platynereis and Capitella. CONCLUSION Our study indicates that the snail and scratchB families have expanded through multiple independent gene duplications in the different bilaterian lineages, and highlights potential functional diversifications of Snail and ScratchB proteins following duplications, as, in several instances, paralogous proteins in a given species show different domain organizations. Comparisons of the expression pattern domains of the two Platynereis and Capitella snail paralogs provide evidence for independent subfunctionalization events which have occurred in these two species. We propose that the snail related genes may be especially prone to subfunctionalization, and this would explain why the snail superfamily underwent so many independent duplications leading to maintenance of functional paralogs.
Collapse
Affiliation(s)
- Pierre Kerner
- Programme Development and Neurobiology, Institut Jacques Monod, UMR 7592 CNRS/Université Paris Diderot – Paris 7, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
- UFR des Sciences du Vivant, Université Paris Diderot – Paris 7, 5, rue Marie-Andrée Lagroua Weill-Hallé, 75205 Paris Cedex 13, France
| | - Johanne Hung
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
| | - Julien Béhague
- Programme Development and Neurobiology, Institut Jacques Monod, UMR 7592 CNRS/Université Paris Diderot – Paris 7, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
| | - Martine Le Gouar
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
| | - Guillaume Balavoine
- Programme Development and Neurobiology, Institut Jacques Monod, UMR 7592 CNRS/Université Paris Diderot – Paris 7, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
| | - Michel Vervoort
- Programme Development and Neurobiology, Institut Jacques Monod, UMR 7592 CNRS/Université Paris Diderot – Paris 7, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
- UFR des Sciences du Vivant, Université Paris Diderot – Paris 7, 5, rue Marie-Andrée Lagroua Weill-Hallé, 75205 Paris Cedex 13, France
| |
Collapse
|
28
|
The amphioxus genome sequence illuminates the evolutionary origin of vertebrates. Dev Genes Evol 2008; 218:575-8. [PMID: 18949483 DOI: 10.1007/s00427-008-0263-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022]
|