1
|
Ford C, de Sena-Tomás C, Wun TTR, Aleman AG, Rangaswamy U, Leyhr J, Nuñez MI, Gao CZ, Nim HT, See M, Coppola U, Waxman JS, Ramialison M, Haitina T, Smeeton J, Sanges R, Targoff KL. Nkx2.7 is a conserved regulator of craniofacial development. Nat Commun 2025; 16:3802. [PMID: 40268889 PMCID: PMC12019251 DOI: 10.1038/s41467-025-58821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/02/2025] [Indexed: 04/25/2025] Open
Abstract
Craniofacial malformations arise from developmental defects in the head, face, and neck with phenotypes such as 22q11.2 deletion syndrome illustrating a developmental link between cardiovascular and craniofacial morphogenesis. NKX2-5 is a key cardiac transcription factor associated with congenital heart disease and mouse models of Nkx2-5 deficiency highlight roles in cardiac development. In zebrafish, nkx2.5 and nkx2.7 are paralogues in the NK4 family expressed in cardiomyocytes and pharyngeal arches. Despite shared cellular origins of cardiac and craniofacial tissues, the function of NK4 factors in head and neck patterning has not been elucidated. Molecular evolutionary analysis of NK4 genes shows that nkx2.5 and nkx2.7 are ohnologs resulting from whole genome duplication events. Nkx2.7 serves as a previously unappreciated regulator of branchiomeric muscle and cartilage formation for which nkx2.5 cannot fully compensate. Mechanistically, our results highlight that Nkx2.7 patterns the cranial neural crest and functions upstream of Endothelin1 to inhibit Notch signals. Together, our studies shed light on an evolutionarily conserved Nkx transcription factor with unique functions in vertebrate craniofacial development, advancing our understanding of congenital head and neck deformities.
Collapse
Affiliation(s)
- Caitlin Ford
- Department of Genetics & Development, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Carmen de Sena-Tomás
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036, Barcelona, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, 08028, Barcelona, Spain
| | - Tint Tha Ra Wun
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Angelika G Aleman
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Department of Physiology & Cellular Biophysics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Uday Rangaswamy
- Functional and Structural Genomics, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | - Jake Leyhr
- Department of Organismal Biology, Uppsala University, 75236, Uppsala, Sweden
| | - María I Nuñez
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Cynthia Zehui Gao
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Department of Computer Science, Columbia University, New York, NY, 10027, USA
| | - Hieu T Nim
- The Novo Nordisk Foundation Center for Stem Cell Medicine & Stem Cell Biology, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, 3052, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Michael See
- The Novo Nordisk Foundation Center for Stem Cell Medicine & Stem Cell Biology, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Ugo Coppola
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, FL, 33965, USA
| | - Joshua S Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mirana Ramialison
- The Novo Nordisk Foundation Center for Stem Cell Medicine & Stem Cell Biology, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, 3052, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, 75236, Uppsala, Sweden
| | - Joanna Smeeton
- Department of Genetics & Development, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Department of Rehabilitation and Regenerative Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Remo Sanges
- Functional and Structural Genomics, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136, Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Via Enrico Melen 83, 16152, Genova, Italy
| | - Kimara L Targoff
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA.
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Aase-Remedios ME, Janssen R, Leite DJ, Sumner-Rooney L, McGregor AP. Evolution of the Spider Homeobox Gene Repertoire by Tandem and Whole Genome Duplication. Mol Biol Evol 2023; 40:msad239. [PMID: 37935059 PMCID: PMC10726417 DOI: 10.1093/molbev/msad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/02/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Gene duplication generates new genetic material that can contribute to the evolution of gene regulatory networks and phenotypes. Duplicated genes can undergo subfunctionalization to partition ancestral functions and/or neofunctionalization to assume a new function. We previously found there had been a whole genome duplication (WGD) in an ancestor of arachnopulmonates, the lineage including spiders and scorpions but excluding other arachnids like mites, ticks, and harvestmen. This WGD was evidenced by many duplicated homeobox genes, including two Hox clusters, in spiders. However, it was unclear which homeobox paralogues originated by WGD versus smaller-scale events such as tandem duplications. Understanding this is a key to determining the contribution of the WGD to arachnopulmonate genome evolution. Here we characterized the distribution of duplicated homeobox genes across eight chromosome-level spider genomes. We found that most duplicated homeobox genes in spiders are consistent with an origin by WGD. We also found two copies of conserved homeobox gene clusters, including the Hox, NK, HRO, Irx, and SINE clusters, in all eight species. Consistently, we observed one copy of each cluster was degenerated in terms of gene content and organization while the other remained more intact. Focussing on the NK cluster, we found evidence for regulatory subfunctionalization between the duplicated NK genes in the spider Parasteatoda tepidariorum compared to their single-copy orthologues in the harvestman Phalangium opilio. Our study provides new insights into the relative contributions of multiple modes of duplication to the homeobox gene repertoire during the evolution of spiders and the function of NK genes.
Collapse
Affiliation(s)
| | - Ralf Janssen
- Department of Earth Sciences, Uppsala University, Uppsala, 752 36, Sweden
| | - Daniel J Leite
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Lauren Sumner-Rooney
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, 10115, Germany
| | - Alistair P McGregor
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
3
|
Haws W, England S, Grieb G, Susana G, Hernandez S, Mirer H, Lewis K. Analyses of binding partners and functional domains for the developmentally essential protein Hmx3a/HMX3. Sci Rep 2023; 13:1151. [PMID: 36670152 PMCID: PMC9859826 DOI: 10.1038/s41598-023-27878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
HMX3 is a homeodomain protein with essential roles in CNS and ear development. Homeodomains are DNA-binding domains and hence homeodomain-containing proteins are usually assumed to be transcription factors. However, intriguingly, our recent data suggest that zebrafish Hmx3a may not require its homeodomain to function, raising the important question of what molecular interactions mediate its effects. To investigate this, we performed a yeast two-hybrid screen and identified 539 potential binding partners of mouse HMX3. Using co-immunoprecipitation, we tested whether a prioritized subset of these interactions are conserved in zebrafish and found that Tle3b, Azin1b, Prmt2, Hmgb1a, and Hmgn3 bind Hmx3a. Next, we tested whether these proteins bind the products of four distinct hmx3a mutant alleles that all lack the homeodomain. Embryos homozygous for two of these alleles develop abnormally and die, whereas zebrafish homozygous for the other two alleles are viable. We found that all four mutations abrogate binding to Prmt2 and Tle3b, whereas Azin1b binding was preserved in all cases. Interestingly, Hmgb1a and Hmgn3 had more affinity for products of the viable mutant alleles. These data shed light on how HMX3/Hmx3a might function at a molecular level and identify new targets for future study in these vital developmental processes.
Collapse
Affiliation(s)
- William Haws
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Samantha England
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Ginny Grieb
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Gabriela Susana
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Sophie Hernandez
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Hunter Mirer
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
| | - Katharine Lewis
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA.
| |
Collapse
|
4
|
Ranz JM, González PM, Su RN, Bedford SJ, Abreu-Goodger C, Markow T. Multiscale analysis of the randomization limits of the chromosomal gene organization between Lepidoptera and Diptera. Proc Biol Sci 2022; 289:20212183. [PMID: 35042416 PMCID: PMC8767184 DOI: 10.1098/rspb.2021.2183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 11/12/2022] Open
Abstract
How chromosome gene organization and gene content evolve among distantly related and structurally malleable genomes remains unresolved. This is particularly the case when considering different insect orders. We have compared the highly contiguous genome assemblies of the lepidopteran Danaus plexippus and the dipteran Drosophila melanogaster, which shared a common ancestor around 290 Ma. The gene content of 23 out of 30 D. plexippus chromosomes was significantly associated with one or two of the six chromosomal elements of the Drosophila genome, denoting common ancestry. Despite the phylogenetic distance, 9.6% of the 1-to-1 orthologues still reside within the same ancestral genome neighbourhood. Furthermore, the comparison D. plexippus-Bombyx mori indicated that the rates of chromosome repatterning are lower in Lepidoptera than in Diptera, although still within the same order of magnitude. Concordantly, 14 developmental gene clusters showed a higher tendency to retain full or partial clustering in D. plexippus, further supporting that the physical association between the SuperHox and NK clusters existed in the ancestral bilaterian. Our results illuminate the scope and limits of the evolution of the gene organization and content of the ancestral chromosomes to the Lepidoptera and Diptera while helping reconstruct portions of the genome in their most recent common ancestor.
Collapse
Affiliation(s)
- José M. Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Pablo M. González
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
| | - Ryan N. Su
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Sarah J. Bedford
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine CA 92647, USA
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
| | - Therese Markow
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato GTO 36824, México
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Spead O, Weaver CJ, Moreland T, Poulain FE. Live imaging of retinotectal mapping reveals topographic map dynamics and a previously undescribed role for Contactin 2 in map sharpening. Development 2021; 148:272618. [PMID: 34698769 DOI: 10.1242/dev.199584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022]
Abstract
Organization of neuronal connections into topographic maps is essential for processing information. Yet, our understanding of topographic mapping has remained limited by our inability to observe maps forming and refining directly in vivo. Here, we used Cre-mediated recombination of a new colorswitch reporter in zebrafish to generate the first transgenic model allowing the dynamic analysis of retinotectal mapping in vivo. We found that the antero-posterior retinotopic map forms early but remains dynamic, with nasal and temporal retinal axons expanding their projection domains over time. Nasal projections initially arborize in the anterior tectum but progressively refine their projection domain to the posterior tectum, leading to the sharpening of the retinotopic map along the antero-posterior axis. Finally, using a CRISPR-mediated mutagenesis approach, we demonstrate that the refinement of nasal retinal projections requires the adhesion molecule Contactin 2. Altogether, our study provides the first analysis of a topographic map maturing in real time in a live animal and opens new strategies for dissecting the molecular mechanisms underlying precise topographic mapping in vertebrates.
Collapse
Affiliation(s)
- Olivia Spead
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Cory J Weaver
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Trevor Moreland
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Fabienne E Poulain
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
6
|
Juárez-Morales JL, Weierud F, England SJ, Demby C, Santos N, Grieb G, Mazan S, Lewis KE. Evolution of lbx spinal cord expression and function. Evol Dev 2021; 23:404-422. [PMID: 34411410 DOI: 10.1111/ede.12387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022]
Abstract
Ladybird homeobox (Lbx) transcription factors have crucial functions in muscle and nervous system development in many animals. Amniotes have two Lbx genes, but only Lbx1 is expressed in spinal cord. In contrast, teleosts have three lbx genes and we show here that zebrafish lbx1a, lbx1b, and lbx2 are expressed by distinct spinal cell types, and that lbx1a is expressed in dI4, dI5, and dI6 interneurons, as in amniotes. Our data examining lbx expression in Scyliorhinus canicula and Xenopus tropicalis suggest that the spinal interneuron expression of zebrafish lbx1a is ancestral, whereas lbx1b has acquired a new expression pattern in spinal cord progenitor cells. lbx2 spinal expression was probably acquired in the ray-finned lineage, as this gene is not expressed in the spinal cords of either amniotes or S. canicula. We also show that the spinal function of zebrafish lbx1a is conserved with mouse Lbx1. In zebrafish lbx1a mutants, there is a reduction in the number of inhibitory spinal interneurons and an increase in the number of excitatory spinal interneurons, similar to mouse Lbx1 mutants. Interestingly, the number of inhibitory spinal interneurons is also reduced in lbx1b mutants, although in this case the number of excitatory interneurons is not increased. lbx1a;lbx1b double mutants have a similar spinal interneuron phenotype to lbx1a single mutants. Taken together these data suggest that lbx1b and lbx1a may be required in succession for correct specification of dI4 and dI6 spinal interneurons, although only lbx1a is required for suppression of excitatory fates in these cells.
Collapse
Affiliation(s)
| | - Frida Weierud
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Celia Demby
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Nicole Santos
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Ginny Grieb
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Sylvie Mazan
- Biologie Intégrative des Organismes Marins, UMR 7232 CNRS, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | | |
Collapse
|
7
|
England SJ, Cerda GA, Kowalchuk A, Sorice T, Grieb G, Lewis KE. Hmx3a Has Essential Functions in Zebrafish Spinal Cord, Ear and Lateral Line Development. Genetics 2020; 216:1153-1185. [PMID: 33077489 PMCID: PMC7768253 DOI: 10.1534/genetics.120.303748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022] Open
Abstract
Transcription factors that contain a homeodomain DNA-binding domain have crucial functions in most aspects of cellular function and embryonic development in both animals and plants. Hmx proteins are a subfamily of NK homeodomain-containing proteins that have fundamental roles in development of sensory structures such as the eye and the ear. However, Hmx functions in spinal cord development have not been analyzed. Here, we show that zebrafish (Danio rerio) hmx2 and hmx3a are coexpressed in spinal dI2 and V1 interneurons, whereas hmx3b, hmx1, and hmx4 are not expressed in spinal cord. Using mutational analyses, we demonstrate that, in addition to its previously reported role in ear development, hmx3a is required for correct specification of a subset of spinal interneuron neurotransmitter phenotypes, as well as correct lateral line progression and survival to adulthood. Surprisingly, despite similar expression patterns of hmx2 and hmx3a during embryonic development, zebrafish hmx2 mutants are viable and have no obviously abnormal phenotypes in sensory structures or neurons that require hmx3a In addition, embryos homozygous for deletions of both hmx2 and hmx3a have identical phenotypes to severe hmx3a single mutants. However, mutating hmx2 in hypomorphic hmx3a mutants that usually develop normally, results in abnormal ear and lateral line phenotypes. This suggests that while hmx2 cannot compensate for loss of hmx3a, it does function in these developmental processes, although to a much lesser extent than hmx3a More surprisingly, our mutational analyses suggest that Hmx3a may not require its homeodomain DNA-binding domain for its roles in viability or embryonic development.
Collapse
Affiliation(s)
| | - Gustavo A Cerda
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY, UK
| | | | - Taylor Sorice
- Department of Biology, Syracuse University, New York 13244
| | - Ginny Grieb
- Department of Biology, Syracuse University, New York 13244
| | | |
Collapse
|
8
|
Nagel S, Pommerenke C, Meyer C, MacLeod RAF, Drexler HG. Aberrant expression of NKL homeobox genes HMX2 and HMX3 interferes with cell differentiation in acute myeloid leukemia. PLoS One 2020; 15:e0240120. [PMID: 33048949 PMCID: PMC7553312 DOI: 10.1371/journal.pone.0240120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/18/2020] [Indexed: 12/30/2022] Open
Abstract
The NKL-code describes normal expression patterns of NKL homeobox genes in hematopoiesis. Aberrant expression of NKL homeobox gene subclass members have been reported in several hematopoietic malignancies including acute myeloid leukemia (AML). Here, we analyzed the oncogenic role of the HMX-group of NKL homeobox genes in AML. Public expression profiling data–available for HMX1 and HMX2—indicate aberrant activity of HMX2 in circa 2% AML patients overall, rising to 31% in those with KMT2A/MLL rearrangements whereas HMX1 expression remains inconspicuous. AML cell lines EOL-1, MV4-11 and MOLM-13 expressed both, HMX2 and neighboring HMX3 genes, and harbored KMT2A aberrations, suggesting their potential functional association. Surprisingly, knockdown experiments in these cell lines demonstrated that KMT2A inhibited HMX2/3 which, in turn, did not regulate KMT2A expression. Furthermore, karyotyping and genomic profiling analysis excluded rearrangements of the HMX2/3 locus in these cell lines. However, comparative expression profiling and subsequent functional analyses revealed that IRF8, IL7- and WNT-signalling activated HMX2/3 expression while TNFa/NFkB- signalling proved inhibitory. Whole genome sequencing of EOL-1 identified two mutations in the regulatory upstream regions of HMX2/3 resulting in generation of a consensus ETS-site and transformation of a former NFkB-site into an SP1-site. Reporter-gene assays demonstrated that both mutations contributed to HMX2/3 activation, modifying ETS1/ELK1- and TNFalpha-mediated gene regulation. Moreover, DMSO-induced eosinophilic differentiation of EOL-1 cells coincided with HMX2/3 downregulation while knockdown of HMX2 induced cell differentiation, collectively supporting a fundamental role for these genes in myeloid differentiation arrest. Finally, target genes of HMX2/3 were identified in EOL-1 and included suppression of differentiation gene EPX, and activation of fusion gene FIP1L1-PDGFRA and receptor-encoding gene HTR7, both of which enhanced oncogenic ERK-signalling. Taken together, our study documents a leukemic role for deregulated NKL homeobox genes HMX2 and HMX3 in AML, revealing molecular mechanisms of myeloid differentiation arrest.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- * E-mail:
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Roderick A. F. MacLeod
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
9
|
Hartwell RD, England SJ, Monk NAM, van Hateren NJ, Baxendale S, Marzo M, Lewis KE, Whitfield TT. Anteroposterior patterning of the zebrafish ear through Fgf- and Hh-dependent regulation of hmx3a expression. PLoS Genet 2019; 15:e1008051. [PMID: 31022185 PMCID: PMC6504108 DOI: 10.1371/journal.pgen.1008051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/07/2019] [Accepted: 02/27/2019] [Indexed: 12/16/2022] Open
Abstract
In the zebrafish, Fgf and Hh signalling assign anterior and posterior identity, respectively, to the poles of the developing ear. Mis-expression of fgf3 or inhibition of Hh signalling results in double-anterior ears, including ectopic expression of hmx3a. To understand how this double-anterior pattern is established, we characterised transcriptional responses in Fgf gain-of-signalling or Hh loss-of-signalling backgrounds. Mis-expression of fgf3 resulted in rapid expansion of anterior otic markers, refining over time to give the duplicated pattern. Response to Hh inhibition was very different: initial anteroposterior asymmetry was retained, with de novo duplicate expression domains appearing later. We show that Hmx3a is required for normal anterior otic patterning, and that otic patterning defects in hmx3a-/- mutants are a close phenocopy to those seen in fgf3-/- mutants. However, neither loss nor gain of hmx3a function was sufficient to generate full ear duplications. Using our data to infer a transcriptional regulatory network required for acquisition of otic anterior identity, we can recapitulate both the wild-type and the double-anterior pattern in a mathematical model. Understanding how signalling molecules impart information to developing organ systems, and how this is interpreted through networks of gene activity, is a key goal of developmental genetic analysis. In the developing zebrafish inner ear, differences in gene expression arise between the anterior and posterior poles of the ear placode, ensuring that sensory structures in the ear develop in their correct positions. If signalling pathways are disrupted, a mirror-image ear can result, developing with two anterior poles. We have used genetic, pharmacological and mathematical modelling approaches to decipher the pathway of gene action required to specify anterior structures in the zebrafish ear. Patterns of gene expression are dynamic and plastic, with two different routes leading to the formation of duplicate anterior structures. Expression of the hmx3a gene is an early response to the anterior signalling molecule Fgf3, but is not sufficient to drive the formation of ectopic anterior structures at the posterior of the ear. The hmx3a gene codes for a protein that regulates other genes, and in humans, mutation of HMX genes results in diseases affecting inner ear function. Our work provides a framework for understanding the dynamics of early patterning events in the developing inner ear.
Collapse
Affiliation(s)
- Ryan D. Hartwell
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Samantha J. England
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Nicholas A. M. Monk
- School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom
| | - Nicholas J. van Hateren
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Sarah Baxendale
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Mar Marzo
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Katharine E. Lewis
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Tanya T. Whitfield
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Obinata D, Takayama K, Takahashi S, Inoue S. Crosstalk of the Androgen Receptor with Transcriptional Collaborators: Potential Therapeutic Targets for Castration-Resistant Prostate Cancer. Cancers (Basel) 2017; 9:E22. [PMID: 28264478 PMCID: PMC5366817 DOI: 10.3390/cancers9030022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is the second leading cause of death from cancer among males in Western countries. It is also the most commonly diagnosed male cancer in Japan. The progression of prostate cancer is mainly influenced by androgens and the androgen receptor (AR). Androgen deprivation therapy is an established therapy for advanced prostate cancer; however, prostate cancers frequently develop resistance to low testosterone levels and progress to the fatal stage called castration-resistant prostate cancer (CRPC). Surprisingly, AR and the AR signaling pathway are still activated in most CRPC cases. To overcome this problem, abiraterone acetate and enzalutamide were introduced for the treatment of CRPC. Despite the impact of these drugs on prolonged survival, CRPC acquires further resistance to keep the AR pathway activated. Functional molecular studies have shown that some of the AR collaborative transcription factors (TFs), including octamer transcription factor (OCT1), GATA binding protein 2 (GATA2) and forkhead box A1 (FOXA1), still stimulate AR activity in the castration-resistant state. Therefore, elucidating the crosstalk between the AR and collaborative TFs on the AR pathway is critical for developing new strategies for the treatment of CRPC. Recently, many compounds targeting this pathway have been developed for treating CRPC. In this review, we summarize the AR signaling pathway in terms of AR collaborators and focus on pyrrole-imidazole (PI) polyamide as a candidate compound for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
| | - Kenichi Takayama
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo 173-8610, Japan.
| | - Satoshi Inoue
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan.
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan.
| |
Collapse
|
11
|
Ferrier DEK. Evolution of Homeobox Gene Clusters in Animals: The Giga-Cluster and Primary vs. Secondary Clustering. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00036] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
12
|
Zhao Y, Gao P, Li W, Zhang Y, Xu K, Guo X, Li B, Cao G. Study on the Developmental Expression ofLbx1Gene inLongissimus Dorsiof Mashen and Large White Pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2015.3720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Chan C, Jayasekera S, Kao B, Páramo M, von Grotthuss M, Ranz JM. Remodelling of a homeobox gene cluster by multiple independent gene reunions in Drosophila. Nat Commun 2015; 6:6509. [DOI: 10.1038/ncomms7509] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/04/2015] [Indexed: 11/09/2022] Open
|
14
|
Mesías-Gansbiller C, Pazos A, Sánchez J, Pérez-Parallé M. First evidence of the presence of NK2and Tlxgenes in bivalve molluscs. CAN J ZOOL 2013. [DOI: 10.1139/cjz-2012-0296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The NK homeobox gene cluster appears to play a primary role in the mesoderm specification and formation and nervous system development of Bilateria. NK2 class genes are transcribed in the developing gut, nervous system, and heart of insects and vertebrates. Tlx genes are involved in a variety of developmental functions such as neurone differentiation. To identify NK box genes in bivalve molluscs, we performed a polymerase chain reaction (PCR) survey with degenerate primers on genomic DNA. Three NK box sequences were identified from two bivalve species: one from the clam Venerupis pullastra (Montagu, 1803) called Vpu Tlx and two from the oyster Ostrea edulis L., 1758 called Oed Tlx and Oed Nk2. The alignment of these sequences in the UniProt database reveals a high level of conservation. Phylogenetic analyses by NJ, UPGMA, ME, MP, and ML analyses show the orthology relationships of the Tlx and Nk2 genes with other Tlx and Nk2 genes present in Metazoa genomes. This is the first report of the isolation of NK box genes in bivalve molluscs. Moreover these Tlx and Nk2 genes are the first to prove that Tlx and NK2 gene cognates exist in bivalve molluscs. The presence of these genes in Venerupis and Ostrea suggests that these genes could be conserved in bivalves in general.
Collapse
Affiliation(s)
- C. Mesías-Gansbiller
- Laboratorio de Biología Molecular y del Desarrollo, Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - A.J. Pazos
- Laboratorio de Biología Molecular y del Desarrollo, Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - J.L. Sánchez
- Laboratorio de Biología Molecular y del Desarrollo, Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M.L. Pérez-Parallé
- Laboratorio de Biología Molecular y del Desarrollo, Departamento de Bioquímica y Biología Molecular, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
15
|
Abstract
To maintain homeostasis under variable nutrient conditions, cells rapidly and robustly respond to fluctuations through adaptable signaling networks. Evidence suggests that the O-linked N-acetylglucosamine (O-GlcNAc) posttranslational modification of serine and threonine residues functions as a critical regulator of intracellular signaling cascades in response to nutrient changes. O-GlcNAc is a highly regulated, reversible modification poised to integrate metabolic signals and acts to influence many cellular processes, including cellular signaling, protein stability, and transcription. This review describes the role O-GlcNAc plays in governing both integrated cellular processes and the activity of individual proteins in response to nutrient levels. Moreover, we discuss the ways in which cellular changes in O-GlcNAc status may be linked to chronic diseases such as type 2 diabetes, neurodegeneration, and cancers, providing a unique window through which to identify and treat disease conditions.
Collapse
Affiliation(s)
- Michelle R. Bond
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; ,
| | - John A. Hanover
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; ,
| |
Collapse
|
16
|
Abstract
NK-like (NKL) homeobox genes code for transcription factors, which can act as key regulators in fundamental cellular processes. NKL genes have been implicated in divergent types of cancer. In this review, we summarize the involvement of NKL genes in cancer and leukemia in particular. NKL genes can act as tumor-suppressor genes and as oncogenes, depending on tissue type. Aberrant expression of NKL genes is especially common in T-cell acute lymphoblastic leukemia (T-ALL). In T-ALL, 8 NKL genes have been reported to be highly expressed in specific T-ALL subgroups, and in ~30% of cases, high expression is caused by chromosomal rearrangement of 1 of 5 NKL genes. Most of these NKL genes are normally not expressed in T-cell development. We hypothesize that the NKL genes might share a similar downstream effect that promotes leukemogenesis, possibly due to mimicking a NKL gene that has a physiological role in early hematopoietic development, such as HHEX. All eight NKL genes posses a conserved Eh1 repressor motif, which has an important role in regulating downstream targets in hematopoiesis and possibly in leukemogenesis as well. Identification of a potential common leukemogenic NKL downstream pathway will provide a promising subject for future studies.
Collapse
|
17
|
Lukowski CM, Drummond DL, Waskiewicz AJ. Pbx-dependent regulation of lbx gene expression in developing zebrafish embryos. Genome 2011; 54:973-85. [PMID: 22077099 DOI: 10.1139/g11-061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ladybird (Lbx) homeodomain transcription factors function in neural and muscle development--roles conserved from Drosophila to vertebrates. Lbx expression in mice specifies neural cell types, including dorsally located interneurons and association neurons, within the neural tube. Little, however, is known about the regulation of vertebrate lbx family genes. Here we describe the expression pattern of three zebrafish ladybird genes via mRNA in situ hybridization. Zebrafish lbx genes are expressed in distinct but overlapping regions within the developing neural tube, with strong expression within the hindbrain and spinal cord. The Hox family of transcription factors, in cooperation with cofactors such as Pbx and Meis, regulate hindbrain segmentation during embryogenesis. We have identified a novel regulatory interaction in which lbx1 genes are strongly downregulated in Pbx-depleted embryos. Further, we have produced a transgenic zebrafish line expressing dTomato and EGFP under the control of an lbx1b enhancer--a useful tool to acertain neuron location, migration, and morphology. Using this transgenic strain, we have identified a minimal neural lbx1b enhancer that contains key regulatory elements for expression of this transcription factor.
Collapse
Affiliation(s)
- Chris M Lukowski
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, AB T6G2E9, Canada
| | | | | |
Collapse
|
18
|
Mazza ME, Pang K, Reitzel AM, Martindale MQ, Finnerty JR. A conserved cluster of three PRD-class homeobox genes (homeobrain, rx and orthopedia) in the Cnidaria and Protostomia. EvoDevo 2010; 1:3. [PMID: 20849646 PMCID: PMC2938728 DOI: 10.1186/2041-9139-1-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 07/05/2010] [Indexed: 01/25/2023] Open
Abstract
Background Homeobox genes are a superclass of transcription factors with diverse developmental regulatory functions, which are found in plants, fungi and animals. In animals, several Antennapedia (ANTP)-class homeobox genes reside in extremely ancient gene clusters (for example, the Hox, ParaHox, and NKL clusters) and the evolution of these clusters has been implicated in the morphological diversification of animal bodyplans. By contrast, similarly ancient gene clusters have not been reported among the other classes of homeobox genes (that is, the LIM, POU, PRD and SIX classes). Results Using a combination of in silico queries and phylogenetic analyses, we found that a cluster of three PRD-class homeobox genes (Homeobrain (hbn), Rax (rx) and Orthopedia (otp)) is present in cnidarians, insects and mollusks (a partial cluster comprising hbn and rx is present in the placozoan Trichoplax adhaerens). We failed to identify this 'HRO' cluster in deuterostomes; in fact, the Homeobrain gene appears to be missing from the chordate genomes we examined, although it is present in hemichordates and echinoderms. To illuminate the ancestral organization and function of this ancient cluster, we mapped the constituent genes against the assembled genome of a model cnidarian, the sea anemone Nematostella vectensis, and characterized their spatiotemporal expression using in situ hybridization. In N. vectensis, these genes reside in a span of 33 kb with the same gene order as previously reported in insects. Comparisons of genomic sequences and expressed sequence tags revealed the presence of alternative transcripts of Nv-otp and two highly unusual protein-coding polymorphisms in the terminal helix of the Nv-rx homeodomain. A population genetic survey revealed the Rx polymorphisms to be widespread in natural populations. During larval development, all three genes are expressed in the ectoderm, in non-overlapping territories along the oral-aboral axis, with distinct temporal expression. Conclusion We report the first evidence for a PRD-class homeobox cluster that appears to have been conserved since the time of the cnidarian-bilaterian ancestor, and possibly even earlier, given the presence of a partial cluster in the placozoan Trichoplax. Very similar clusters comprising these three genes exist in Nematostella and diverse protostomes. Interestingly, in chordates, one member of the ancestral cluster (homeobrain) has apparently been lost, and there is no linkage between rx and orthopedia in any of the vertebrates. In Nematostella, the spatial expression of these three genes along the body column is not colinear with their physical order in the cluster but the temporal expression is, therefore, using the terminology that has been applied to the Hox cluster genes, the HRO cluster would appear to exhibit temporal but not spatial colinearity. It remains to be seen whether the mechanisms responsible for the evolutionary conservation of the HRO cluster are the same mechanisms responsible for cohesion of the Hox cluster and other ANTP-class homeobox clusters that have been widely conserved throughout animal evolution.
Collapse
Affiliation(s)
- Maureen E Mazza
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | - Kevin Pang
- Kewalo Marine Lab, Pacific Biosciences Research Center, University of Hawaii, 41 Ahui St., Honolulu, HI 96813, USA
| | - Adam M Reitzel
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.,Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Mark Q Martindale
- Kewalo Marine Lab, Pacific Biosciences Research Center, University of Hawaii, 41 Ahui St., Honolulu, HI 96813, USA
| | - John R Finnerty
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| |
Collapse
|