1
|
Boyan G, Ehrhardt E. Early embryonic development of Johnston's organ in the antenna of the desert locust Schistocerca gregaria. Dev Genes Evol 2022; 232:103-113. [PMID: 36138225 PMCID: PMC9691482 DOI: 10.1007/s00427-022-00695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/13/2022] [Indexed: 01/30/2023]
Abstract
Johnston's organ has been shown to act as an antennal auditory organ across a spectrum of insect species. In the hemimetabolous desert locust Schistocerca gregaria, Johnston's organ must be functional on hatching and so develops in the pedicellar segment of the antenna during embryogenesis. Here, we employ the epithelial cell marker Lachesin to identify the pedicellar domain of the early embryonic antenna and then triple-label against Lachesin, the mitosis marker phosphohistone-3, and neuron-specific horseradish peroxidase to reveal the sense-organ precursors for Johnston's organ and their lineages. Beginning with a single progenitor at approximately a third of embryogenesis, additional precursors subsequently appear in both the ventral and dorsal pedicellar domains, each generating a lineage or clone. Lineage locations are remarkably conserved across preparations and ages, consistent with the epithelium possessing an underlying topographic coordinate system that determines the cellular organization of Johnston's organ. By mid-embryogenesis, twelve lineages are arranged circumferentially in the pedicel as in the adult structure. Each sense-organ precursor is associated with a smaller mitotically active cell from which the neuronal complement of each clone may derive. Neuron numbers within a clone increase in discrete steps with age and are invariant between clones and across preparations of a given age. At mid-embryogenesis, each clone comprises five cells consolidated into a tightly bound cartridge. A long scolopale extends apically from each cartridge to an insertion point in the epithelium, and bundled axons project basally toward the brain. Comparative data suggest mechanisms that might also regulate the developmental program of Johnston's organ in the locust.
Collapse
Affiliation(s)
- George Boyan
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152, Munich, Planegg-Martinsried, Germany.
| | - Erica Ehrhardt
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152, Munich, Planegg-Martinsried, Germany
- Institute of Zoology, Universität Zu Köln, Zülpicher Str. 47b, 50674, Cologne, Germany
| |
Collapse
|
2
|
Motahari Z, Maynard TM, Popratiloff A, Moody SA, LaMantia AS. Aberrant early growth of individual trigeminal sensory and motor axons in a series of mouse genetic models of 22q11.2 deletion syndrome. Hum Mol Genet 2021; 29:3081-3093. [PMID: 32901287 PMCID: PMC7645708 DOI: 10.1093/hmg/ddaa199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/29/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
We identified divergent modes of initial axon growth that prefigure disrupted differentiation of the trigeminal nerve (CN V), a cranial nerve essential for suckling, feeding and swallowing (S/F/S), a key innate behavior compromised in multiple genetic developmental disorders including DiGeorge/22q11.2 Deletion Syndrome (22q11.2 DS). We combined rapid in vivo labeling of single CN V axons in LgDel+/− mouse embryos, a genomically accurate 22q11.2DS model, and 3D imaging to identify and quantify phenotypes that could not be resolved using existing methods. We assessed these phenotypes in three 22q11.2-related genotypes to determine whether individual CN V motor and sensory axons wander, branch and sprout aberrantly in register with altered anterior–posterior hindbrain patterning and gross morphological disruption of CN V seen in LgDel+/−. In the additional 22q11.2-related genotypes: Tbx1+/−, Ranbp1−/−, Ranbp1+/− and LgDel+/−:Raldh2+/−; axon phenotypes are seen when hindbrain patterning and CN V gross morphology is altered, but not when it is normal or restored toward WT. This disordered growth of CN V sensory and motor axons, whose appropriate targeting is critical for optimal S/F/S, may be an early, critical determinant of imprecise innervation leading to inefficient oropharyngeal function associated with 22q11.2 deletion from birth onward.
Collapse
Affiliation(s)
- Zahra Motahari
- Institute for Neuroscience, Washington, DC 20037, USA.,Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Thomas M Maynard
- The Fralin Biomedical Research Institute at Virginia Tech-Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Anastas Popratiloff
- Institute for Neuroscience, Washington, DC 20037, USA.,Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Sally A Moody
- Institute for Neuroscience, Washington, DC 20037, USA.,Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Anthony-S LaMantia
- The Fralin Biomedical Research Institute at Virginia Tech-Carilion School of Medicine, Roanoke, VA 24016, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
3
|
Ehrhardt E, Boyan G. Evidence for the cholinergic markers ChAT and vAChT in sensory cells of the developing antennal nervous system of the desert locust Schistocerca gregaria. INVERTEBRATE NEUROSCIENCE 2020; 20:19. [PMID: 33090291 PMCID: PMC7581592 DOI: 10.1007/s10158-020-00252-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/15/2020] [Indexed: 11/29/2022]
Abstract
Sensory and motor systems in insects with hemimetabolous development must be ready to mediate adaptive behavior directly on hatching from the egg. For the desert locust S. gregaria, cholinergic transmission from antennal sensillae to olfactory or mechanosensory centers in the brain requires that choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (vAChT) already be present in sensory cells in the first instar. In this study, we used immunolabeling to demonstrate that ChAT and vAChT are both expressed in sensory cells from identifiable sensilla types in the immature antennal nervous system. We observed ChAT expression in dendrites, neurites and somata of putative basiconic-type sensillae at the first instar stage. We also detected vAChT in the sensory axons of these sensillae in a major antennal nerve tract. We then examined whether evidence for cholinergic transmission is present during embryogenesis. Immunolabeling confirms that vAChT is expressed in somata typical of campaniform sensillae, as well as in small sensory cell clusters typically associated with either a large basiconic or coeloconic sensilla, at 99% of embryogenesis. The vAChT is also expressed in the somata of these sensilla types in multiple antennal regions at 90% of embryogenesis, but not at earlier (70%) embryonic stages. Neuromodulators are known to appear late in embryogenesis in neurons of the locust central complex, and the cholinergic system of the antenna may also only reach maturity shortly before hatching.
Collapse
Affiliation(s)
- Erica Ehrhardt
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152, Planegg, Martinsried, Germany.,Institute of Zoology, Universität Köln, Zülpicher Str 47b, 50674, Cologne, Germany
| | - George Boyan
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152, Planegg, Martinsried, Germany.
| |
Collapse
|
4
|
Boyan G, Ehrhardt E. Epithelial domains and the primordial antennal nervous system of the embryonic grasshopper Schistocerca gregaria. INVERTEBRATE NEUROSCIENCE 2020; 20:6. [PMID: 32215732 DOI: 10.1007/s10158-020-0240-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/11/2020] [Indexed: 12/26/2022]
Abstract
The antenna is a key sensory organ in insects. Factors which pattern its epithelium and the spacing of sensillae will play an important role in shaping its contribution to adaptive behavior. The antenna of the grasshopper S. gregaria has three major articulations: scape, pedicel, and flagellum. During postembryonic development, the flagellum lengthens as segments (so-called meristal annuli) are added at each molt. However, the five most apical annuli do not subdivide; thus, their epithelial domains must already be defined during embryogenesis. We investigated epithelial compartmentalization and its relationship to the developing primordial nervous system of the antenna by simultaneous immunolabeling against the epithelial cell surface molecule Lachesin, against neuron-specific horseradish peroxidase, and against the mitosis marker phospho-histone 3. We found that Lachesin is initially expressed in a highly ordered pattern of "rings" and a "sock" in the apical antennal epithelium of the early embryo. These expression domains appear in a stereotypic order and prefigure later articulations. Proliferative cells segregate into these developing domains and pioneer- and sensory-cell precursors were molecularly identified. Our study allows pioneer neurons, guidepost cells, and the earliest sensory cell clusters of the primordial nervous system to be allocated to their respective epithelial domain. As the apical-most five domains remain stable through subsequent development, lengthening of the flagellum must originate from more basal regions and is likely to be under the control of factors homologous to those which regulate boundary and joint formation in the antenna of Drosophila.
Collapse
Affiliation(s)
- George Boyan
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany.
| | - Erica Ehrhardt
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany
- Institute of Zoology, Universität Köln, Zülpicher Str 47b, 50674, Cologne, Germany
| |
Collapse
|
5
|
Boyan GS, Williams L, Müller T, Bacon JP. Ontogeny and development of the tritocerebral commissure giant (TCG): an identified neuron in the brain of the grasshopper Schistocerca gregaria. Dev Genes Evol 2018; 228:149-162. [PMID: 29666910 DOI: 10.1007/s00427-018-0612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/03/2018] [Indexed: 11/26/2022]
Abstract
The tritocerebral commissure giant (TCG) of the grasshopper Schistocerca gregaria is one of the best anatomically and physiologically described arthropod brain neurons. A member of the so-called Ventral Giant cluster of cells, it integrates sensory information from visual, antennal and hair receptors, and synapses with thoracic motor neurons in order to initiate and regulate flight behavior. Its ontogeny, however, remains unclear. In this study, we use bromodeoxyuridine incorporation and cyclin labeling to reveal proliferative neuroblasts in the region of the embryonic brain where the ventral giant cluster is located. Engrailed labeling confirms the deutocerebral identity of this cluster. Comparison of soma locations and initial neurite projections into tracts of the striate deutocerebrum help identify the cells of the ventral cluster in both the embryonic and adult brain. Reconstructions of embryonic cell lineages suggest deutocerebral NB1 as being the putative neuroblast of origin. Intracellular dye injection coupled with immunolabeling against neuron-specific horseradish peroxidase is used to identify the VG1 (TCG) and VG3 neurons from the ventral cluster in embryonic brain slices. Dye injection and backfilling are used to document axogenesis and the progressive expansion of the dendritic arbor of the TCG from mid-embryogenesis up to hatching. Comparative maps of embryonic neuroblasts from several orthopteroid insects suggest equivalent deutocerebral neuroblasts from which the homologous TCG neurons already identified in the adult brain could originate. Our data offer the prospect of identifying further lineage-related neurons from the cluster and so understand a brain connectome from both a developmental and evolutionary perspective.
Collapse
Affiliation(s)
- George Stephen Boyan
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, Planegg-Martinsried, 82152, Germany.
| | - Leslie Williams
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, Planegg-Martinsried, 82152, Germany
| | - Tobias Müller
- Faculty of Biology, University of Konstanz, 78457, Constance, Germany
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Jonathan P Bacon
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| |
Collapse
|
6
|
Boyan G, Graf P, Ehrhardt E. Patterns of cell death in the embryonic antenna of the grasshopper Schistocerca gregaria. Dev Genes Evol 2018; 228:105-118. [PMID: 29511851 DOI: 10.1007/s00427-018-0607-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/22/2018] [Indexed: 12/27/2022]
Abstract
We have investigated the pattern of apoptosis in the antennal epithelium during embryonic development of the grasshopper Schistocerca gregaria. The molecular labels lachesin and annulin reveal that the antennal epithelium becomes subdivided into segment-like meristal annuli within which sensory cell clusters later differentiate. To determine whether apoptosis is involved in the development of such sensory cell clusters, we examined the expression pattern of the cell death labels acridine orange and TUNEL in the epithelium. We found stereotypic, age-dependent, wave-like patterns of cell death in the antenna. Early in embryogenesis, apoptosis is restricted to the most basal meristal annuli but subsequently spreads to encompass almost the entire antenna. Cell death then declines in more basal annuli and is only found in the tip region later in embryogenesis. Apoptosis is restricted throughout to the midregion of a given annulus and away from its border with neighboring annuli, arguing against a causal role in annular formation. Double-labeling for cell death and sensory cell differentiation reveals apoptosis occurring within bands of differentiating sensory cell clusters, matching the meristal organization of the apical antenna. Examination of the individual epithelial lineages which generate sensory cells reveals that apoptosis begins peripherally within a lineage and with age expands to encompass the differentiated sensory cell at the base. We conclude that complete lineages can undergo apoptosis and that the youngest cells in these lineages appear to die first, with the sensory neuron dying last. Lineage-based death in combination with cell death patterns in different regions of the antenna may contribute to odor-mediated behaviors in the grasshopper.
Collapse
Affiliation(s)
- George Boyan
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2 Martinsried, 82152, Planegg, Germany.
| | - Philip Graf
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20147, USA
| | - Erica Ehrhardt
- Section of Neurobiology, Department of Biology II, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2 Martinsried, 82152, Planegg, Germany
| |
Collapse
|
7
|
Boyan G, Ehrhardt E. Ontogeny of pioneer neurons in the antennal nervous system of the grasshopper Schistocerca gregaria. Dev Genes Evol 2017; 227:11-23. [PMID: 27833997 DOI: 10.1007/s00427-016-0565-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
The nervous system of the antenna of the grasshopper Schistocerca gregaria consists of two nerve tracts in which sensory cells project their axons to the brain. Each tract is pioneered early in embryogenesis by a pair of identified cells located apically in the antennal lumen. The pioneers are thought to originate in the epithelium of the antenna and then delaminate into the lumen where they commence axogenesis. However, unambiguous molecular identification of these cells in the epithelium, of an identifiable precursor, and of their mode of generation has been lacking. In this study, we have used immunolabeling against neuron-specific horseradish peroxidase and against Lachesin, a marker for differentiating epithelial cells, in combination with the nuclear stain DAPI, to identify the pioneers within the epithelium of the early embryonic antenna. We then track their delamination into the lumen as differentiated neurons. The pioneers are not labeled by the mesodermal/mesectodermal marker Mes3, consistent with an epithelial (ectodermal) origin. Intracellular dye injection, as well as labeling against the mitosis marker phospho-histone 3, identifies precursor cells in the epithelium, each associated with a column of cells. Culturing with the S-phase label 5-ethynyl-2'-deoxyuridine (EdU) shows that both a precursor and its column have incorporated the label, confirming a lineage relationship. Each set of pioneers can be shown to belong to a separate lineage of such epithelial cells, and the precursors remain and are proliferative after generating the pioneers. Analyses of mitotic spindle orientation then enable us to propose a model in which a precursor generates its pioneers asymmetrically via self-renewal.
Collapse
Affiliation(s)
- George Boyan
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, Martinsried, 82152, Planegg, Germany.
| | - Erica Ehrhardt
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2, Martinsried, 82152, Planegg, Germany
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, 20147,, USA
| |
Collapse
|
8
|
Ehrhardt E, Graf P, Kleele T, Liu Y, Boyan G. Fates of identified pioneer cells in the developing antennal nervous system of the grasshopper Schistocerca gregaria. ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:23-30. [PMID: 26597904 DOI: 10.1016/j.asd.2015.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/06/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
In the early embryonic grasshopper, two pairs of sibling cells near the apex of the antenna pioneer its dorsal and ventral nerve tracts to the brain. En route, the growth cones of these pioneers contact a so-called base pioneer associated with each tract and which acts as a guidepost cell. Both apical and basal pioneers express stereotypic molecular labels allowing them to be uniquely identified. Although their developmental origins are largely understood, the fates of the respective pioneers remain unclear. We therefore employed the established cell death markers acridine orange and TUNEL to determine whether the apical and basal pioneers undergo apoptosis during embryogenesis. Our data reveal that the apical pioneers maintain a consistent molecular profile from their birth up to mid-embryogenesis, at which point the initial antennal nerve tracts to the brain have been established. Shortly after this the apical pioneers undergo apoptosis. Death occurs at a developmental stage similar to that reported elsewhere for pioneers in a leg - an homologous appendage. Base pioneers, by contrast, progressively change their molecular profile and can no longer be unequivocally identified after mid-embryogenesis. At no stage up to then do they exhibit death labels. If they persist, the base pioneers must be assumed to adopt a new role in the developing antennal nervous system.
Collapse
Affiliation(s)
- Erica Ehrhardt
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany
| | - Philip Graf
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany
| | - Tatjana Kleele
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany; Institute of Neuronal Cell Biology, Technische Universität München, Biedersteinerstr. 29, 80801, Munich, Germany
| | - Yu Liu
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany
| | - George Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
9
|
Boyan G, Ehrhardt E. Pioneer neurons of the antennal nervous system project to protocerebral pioneers in the grasshopper Schistocerca gregaria. Dev Genes Evol 2015; 225:377-82. [DOI: 10.1007/s00427-015-0519-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
|