1
|
Qin H, Huang M, Liang W, Wu G, Tan M, Zhang J, Chen W. Allergic diseases and Meniere's disease: a bidirectional Mendelian randomization. Braz J Otorhinolaryngol 2024; 90:101472. [PMID: 39079456 PMCID: PMC11338938 DOI: 10.1016/j.bjorl.2024.101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/25/2024] Open
Abstract
OBJECTIVES Allergic diseases and Meniere's disease found to have a possible link in observational study. However, the potential causal relationship between the two is unclear. Therefore, we aimed to explore the causal relationship between allergic diseases and Meniere's disease using a new data analysis technique called bidirectional Mendelian randomization study. METHOD Summary-level statistics for Meniere's disease and three allergic diseases (asthma, allergic rhinitis, eczema/dermatitis) were obtained from large-scale genome-wide association studies. The inverse variance weighted method was used as the primary measure, supplemented by MR-Egger regression and the weighted median method. To ensure the reliability of the conclusions, Cochran's Q, MR-Egger intercept, MR-PRESSO test, leave-one-out test, and MR Steiger test were used. RESULTS Inverse-variance weighted method showed asthma (p = 0.008, OR = 3.908, 95% CI 1.424-10.724, adjust_p = 0.024), allergic rhinitis (p = 0.026, OR = 24.714, 95% CI 1.479-412.827, adjust_p = 0.026) and eczema/dermatitis (p = 0.019, OR = 3725.954, 95% CI 3.795 to 3,658,399.580, adjust_p = 0.029) all had a significant effect on Meniere's disease. Reverse Mendelian randomization studies have shown that Meniere's disease does not increase the risk of three allergic diseases. Sensitivity analysis showed no horizontal pleiotropy and heterogeneity for each trait. CONCLUSION Our Mendelian randomization analysis supports a positive causal relationship between three allergic diseases (asthma, allergic rhinitis, eczema/dermatitis) and Meniere's disease. This suggests that physicians should pay more attention to the Meniere's patient's allergy history and consider allergy avoidance as part of their treatment plan. LEVEL OF EVIDENCE Mendelian Randomized (MR) studies are second only to randomized controlled trials in terms of the level of evidence.
Collapse
Affiliation(s)
- Hongru Qin
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Department of Otolaryngology, Guangzhou, Guangdong, China
| | - Meng Huang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Department of Otolaryngology, Guangzhou, Guangdong, China
| | - Weiming Liang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Department of Otolaryngology, Guangzhou, Guangdong, China
| | - Guojing Wu
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Department of Otolaryngology, Guangzhou, Guangdong, China
| | - Mengjia Tan
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Department of Otolaryngology, Guangzhou, Guangdong, China
| | - Junli Zhang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Department of Otolaryngology, Guangzhou, Guangdong, China
| | - Wenyong Chen
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Department of Otolaryngology, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Islam R, Dash D, Singh R. An antioxidant ameliorates allergic airway inflammation by inhibiting HDAC 1 via HIF-1α/VEGF axis suppression in mice. Sci Rep 2023; 13:9637. [PMID: 37316684 DOI: 10.1038/s41598-023-36678-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
Histone deacetylase inhibitors (HDACi) are novel class of drugs as they are involved in post translational modification of several proteins involved in signaling pathways related to asthma. HDACi have been reported to elicit protective effects on asthma but the signaling pathways associated with it have not been investigated much. Recently, we have demonstrated that intranasal administrations of Pan-HDAC inhibitors, sodium butyrate and curcumin, which have effectively reduced asthma severity via HDAC1 inhibition in Ovalbumin induced mouse model. Present study aimed to investigate possible pathways by which curcumin and sodium butyrate may minimize asthma pathogenesis via HDAC 1 inhibition. Balb/c mice were exposed (sensitized and challenged) with Ovalbumin to establish allergic asthma model followed by pretreatment of curcumin (5 mg/kg) and sodium butyrate (50 mg/kg) through intranasal route. Effects of curcumin and sodium butyrate on HIF-1α/VEGF signaling through activation of PI3K/Akt axis has been investigated using protein expressions followed by chromatin immunoprecipitation of BCL2 and CCL2 against HDAC1. Molecular docking analysis was also performed to investigate effects of curcumin and butyrate on mucus hypersecretion, goblet cell hyperplasia and airway hyperresponsiveness. Augmented expressions of HDAC-1, HIF-1α, VEGF, p-Akt and p-PI3K were observed in asthmatic group which was suppressed in both the treatments. NRF-2 level was significantly restored by curcumin and butyrate treatments. Protein expressions of p-p38, IL-5 and mRNA expressions of GATA-3 were also reduced in curcumin and butyrate treatment groups. Our findings suggest that curcumin and sodium butyrate may attenuate airway inflammation via down regulation of p-Akt/p-PI3K/HIF-1α/VEGF axis.
Collapse
Affiliation(s)
- Ramiya Islam
- Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, India
| | - D Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Rashmi Singh
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Karseladze AI. Stromal Changes in Colon Blastomogenesis Associated with Development of Hypoxia in the Foci of Dysplasia. Bull Exp Biol Med 2023; 174:502-508. [PMID: 36899201 DOI: 10.1007/s10517-023-05737-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 03/12/2023]
Abstract
We studied the features of reaction of the colon stromal cells (lymphohistiocytic population, fibroblasts, and blood vessels) to the appearance and progression of dysplasia in the colon epithelium against the background of increasing ischemia in the colon mucosa. The morphological material from 92 patients treated for benign processes and colon cancer in 2002-2016 was examined. Common histological methods and a complex immunohistochemical staining were used. The stromal cells of the colon mucosa, mainly lymphohistiocytic cells, undergo certain quantitative changes specific for each type of cells during progression of dysplasia and aggravation of ischemia in the mucosa. Some cells, e.g. plasma cells, presumably contribute to tissue hypoxia in the stroma. Most stromal cells, except interdigitating S100+ dendritic cells and CD10+ fibroblasts, decreased at the stage of grave dysplasia and cancer in situ. Low effectiveness of the immune defense can be partly explained by impairment of the function of stromal cells as a result of hypoxia in the microenvironment.
Collapse
Affiliation(s)
- A I Karseladze
- Department of Morphological and Molecular Genetic Tumor Diagnostics, N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia.
- Department of Oncopathology, V. I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
4
|
Gonzalez-Uribe V, Martinez-Tenopala R, Osorio-Martínez A, Prieto-Gomez J, Kirsch AL, Alcocer-Arreguin CR, Mojica-Gonzalez ZS. Expression of HIF-1α in pediatric asthmatic patients. Multidiscip Respir Med 2023; 18:927. [PMID: 38155704 PMCID: PMC10715186 DOI: 10.4081/mrm.2023.927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/02/2023] [Indexed: 12/30/2023] Open
Abstract
Background Several studies have suggested that HIF-1α regulates eosinophil activity and induces epithelial inflammation via NF-κB activation in the pathophysiology of asthma. The purpose of this study was to examine the expression of the transcription factors HIF-1α and nuclear HIF in mononuclear cells obtained from peripheral blood samples of healthy pediatric patients, asthmatic patients, and asthmatic exacerbations, regardless of disease severity. Methods HIF-1 levels were measured using immunocytochemistry in 133 patients aged 6 to 17 years in this crosssectional and comparative study. A microscope was used to examine glass slides, and positive cells were counted in four fields per slide using an image analyzer. Results HIF-1α and nuclear HIF levels were significantly higher in asthma patients and even higher in patients experiencing asthma attacks (p<0.0001, 95% CI). There was no significant difference in the percentage of HIF-1α expression between groups with intermittent asthma and those with mild persistent asthma, nor between patients with asthma and those experiencing asthma exacerbations. Conclusions When compared to healthy individuals, the expression of nuclear HIF and HIF-1α is increased in peripheral mononuclear cells in asthma patients and even more so in asthma exacerbations. This suggests that HIF-1α is important in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Víctor Gonzalez-Uribe
- Pediatric Allergy and Clinical Immunology, Hospital Infantil de Mexico Federico Gomez, Mexico City
- Facultad Mexicana de Medicina, Universidad La Salle Mexico, Mexico City
| | | | | | | | | | | | | |
Collapse
|
5
|
Yi E, Cao W, Zhang J, Lin B, Wang Z, Wang X, Bai G, Mei X, Xie C, Jin J, Liu X, Li H, Wu F, Lin Z, Sun R, Li B, Zhou Y, Ran P. Genetic screening of MMP1 as a potential pathogenic gene in chronic obstructive pulmonary disease. Life Sci 2023; 313:121214. [PMID: 36442527 DOI: 10.1016/j.lfs.2022.121214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous syndrome. Airway inflammation and remodeling are the two key processes involved in COPD pathogenesis. However, the key pathogenic genes driving COPD development have not been revealed. This study aims to identify and validate hub gene(s) underlying COPD development through bioinformatics analysis and experimental validation. METHODS Three lung tissue sequencing datasets of the COPD (including GSE38974, GSE103174, and GSE106986) were analyzed. Further, differentially expressed genes (DEGs) were used to compare patients with COPD with non-COPD individuals, and the Robust Rank Aggregation (RRA) analysis was also performed. Results revealed a series of potential pathogenic genes of COPD. DEGs were subjected to KEGG, GO, and GSEA analyses. The scRNA dataset of human lung tissues (Human Lung Cell Atlas), and human primary airway epithelial cells (GSE134147) were used to identify the cell subtype localization. The qRT-PCR assay was performed in the human lung tissues, COPD mice model, and primary bronchial epithelial cells at the air-liquid interface (ALI) under cigarette smoke extract (CSE) stimulation to verify the expression of the hub genes. LASSO and GLM analysis with the hub genes were performed to identify the most critical gene. RNA-seq was performed after knocking down the critical gene using siRNA in HBECs at ALI. The potential role of the critical gene was confirmed through qRT-PCR, Western blot, and Immunofluorescence (IF) assays. RESULTS A total of 98 genes were significantly and differently expressed in 3 GEO datasets. The KEGG and GO analyses showed that most of these genes are responsible for inflammation, immunity, and cell proliferation. The core gene set including 15 genes was screened out and consequently, the MMP1 was the most likely responsible for the progression of COPD. Moreover, we confirmed that MMP1 is significantly related to inflammatory effects and cilia function in human bronchial epithelial cells cultured at the air-liquid interface (ALI). CONCLUSION In summary, we confirmed that inflammation and cell proliferation are potentially critical processes in COPD occurrence and development. A total of 15 potential hub genes were identified among which MMP1 was the most likely gene responsible for the development of COPD. Therefore, MMP1 is a potential molecular target of COPD therapy.
Collapse
Affiliation(s)
- Erkang Yi
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weitao Cao
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiahuan Zhang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Biting Lin
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zihui Wang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyu Wang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ge Bai
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinyue Mei
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - ChengShu Xie
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Jin
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinyuan Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiqing Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fan Wu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhiwei Lin
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruiting Sun
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Laboratory, Bioland, Guangzhou, China.
| |
Collapse
|
6
|
Karseladze AI. The Problem of Vascularization of Precancerous Lesions of the Colon and Development of Hypoxia at the Incipient Stages of Blastomogenesis. Bull Exp Biol Med 2022; 173:754-759. [DOI: 10.1007/s10517-022-05625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 11/05/2022]
|
7
|
Xu YR, Wang AL, Li YQ. Hypoxia-inducible factor 1-alpha is a driving mechanism linking chronic obstructive pulmonary disease to lung cancer. Front Oncol 2022; 12:984525. [PMID: 36338690 PMCID: PMC9634253 DOI: 10.3389/fonc.2022.984525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD), irrespective of their smoking history, are more likely to develop lung cancer than the general population. This is mainly because COPD is characterized by chronic persistent inflammation and hypoxia, which are the risk factors for lung cancer. However, the mechanisms underlying this observation are still unknown. Hypoxia-inducible factor 1-alpha (HIF-1α) plays an important role in the crosstalk that exists between inflammation and hypoxia. Furthermore, HIF-1α is the main regulator of somatic adaptation to hypoxia and is highly expressed in hypoxic environments. In this review, we discuss the molecular aspects of the crosstalk between hypoxia and inflammation, showing that HIF-1α is an important signaling pathway that drives COPD progression to lung cancer. Here, we also provide an overview of HIF-1α and its principal regulatory mechanisms, briefly describe HIF-1α-targeted therapy in lung cancer, and summarize substances that may be used to target HIF-1α at the level of COPD-induced inflammation.
Collapse
Affiliation(s)
- Yuan-rui Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - An-long Wang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Ya-qing Li
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
- *Correspondence: Ya-qing Li,
| |
Collapse
|
8
|
Ramirez-Moral I, Ferreira BL, Butler JM, van Weeghel M, Otto NA, de Vos AF, Yu X, de Jong MD, Houtkooper RH, van der Poll T. HIF-1α Stabilization in Flagellin-Stimulated Human Bronchial Cells Impairs Barrier Function. Cells 2022; 11:cells11030391. [PMID: 35159204 PMCID: PMC8834373 DOI: 10.3390/cells11030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
The respiratory epithelium provides a first line of defense against pathogens. Hypoxia-inducible factor (HIF)1α is a transcription factor which is stabilized in hypoxic conditions through the inhibition of prolyl-hydroxylase (PHD)2, the enzyme that marks HIF1α for degradation. Here, we studied the impact of HIF1α stabilization on the response of primary human bronchial epithelial (HBE) cells to the bacterial component, flagellin. The treatment of flagellin-stimulated HBE cells with the PHD2 inhibitor IOX2 resulted in strongly increased HIF1α expression. IOX2 enhanced the flagellin-induced expression of the genes encoding the enzymes involved in glycolysis, which was associated with the intracellular accumulation of pyruvate. An untargeted pathway analysis of RNA sequencing data demonstrated the strong inhibitory effects of IOX2 toward key innate immune pathways related to cytokine and mitogen-activated kinase signaling cascades in flagellin-stimulated HBE cells. Likewise, the cell-cell junction organization pathway was amongst the top pathways downregulated by IOX2 in flagellin-stimulated HBE cells, which included the genes encoding claudins and cadherins. This IOX2 effect was corroborated by an impaired barrier function, as measured by dextran permeability. These results provide a first insight into the effects associated with HIF1α stabilization in the respiratory epithelium, suggesting that HIF1α impacts properties that are key to maintaining homeostasis upon stimulation with a relevant bacterial agonist.
Collapse
Affiliation(s)
- Ivan Ramirez-Moral
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.L.F.); (J.M.B.); (N.A.O.); (A.F.d.V.); (T.v.d.P.)
- Correspondence: ; Tel.: +31-631080615
| | - Bianca L. Ferreira
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.L.F.); (J.M.B.); (N.A.O.); (A.F.d.V.); (T.v.d.P.)
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo 04023-062, Brazil
| | - Joe M. Butler
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.L.F.); (J.M.B.); (N.A.O.); (A.F.d.V.); (T.v.d.P.)
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.v.W.); (R.H.H.)
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Natasja A. Otto
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.L.F.); (J.M.B.); (N.A.O.); (A.F.d.V.); (T.v.d.P.)
| | - Alex F. de Vos
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.L.F.); (J.M.B.); (N.A.O.); (A.F.d.V.); (T.v.d.P.)
| | - Xiao Yu
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.Y.); (M.D.d.J.)
| | - Menno D. de Jong
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.Y.); (M.D.d.J.)
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.v.W.); (R.H.H.)
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.L.F.); (J.M.B.); (N.A.O.); (A.F.d.V.); (T.v.d.P.)
- Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
9
|
Tajbakhsh A, Gheibihayat SM, Mortazavi D, Medhati P, Rostami B, Savardashtaki A, Momtazi-Borojeni AA. The Effect of Cigarette Smoke Exposure on Efferocytosis in Chronic Obstructive Pulmonary Disease; Molecular Mechanisms and Treatment Opportunities. COPD 2021; 18:723-736. [PMID: 34865568 DOI: 10.1080/15412555.2021.1978419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cigarette smoking-related inflammation, cellular stresses, and tissue destruction play a key role in lung disease, such as chronic obstructive pulmonary disease (COPD). Notably, augmented apoptosis and impaired clearance of apoptotic cells, efferocytosis, contribute to the chronic inflammatory response and tissue destruction in patients with COPD. Of note, exposure to cigarette smoke can impair alveolar macrophages efferocytosis activity, which leads to secondary necrosis formation and tissue inflammation. A better understanding of the processes behind the effect of cigarette smoke on efferocytosis concerning lung disorders can help to design more efficient treatment approaches and also delay the development of lung disease, such as COPD. To this end, we aimed to seek mechanisms underlying the impairing effect of cigarette smoke on macrophages-mediated efferocytosis in COPD. Further, available therapeutic opportunities for restoring efferocytosis activity and ameliorating respiratory tract inflammation in smokers with COPD were also discussed.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Deniz Mortazavi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Pourya Medhati
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behrouz Rostami
- Health & Treatment Center of Rostam, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Iran's National Elites Foundation, Tehran, Iran
| |
Collapse
|
10
|
Cheng WH, Chen CL, Chen JY, Lin CH, Chen BC. Hypoxia-induced preadipocyte factor 1 expression in human lung fibroblasts through ERK/PEA3/c-Jun pathway. Mol Med 2021; 27:69. [PMID: 34229599 PMCID: PMC8259210 DOI: 10.1186/s10020-021-00336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Background Several studies have reported that hypoxia plays a pathological role in severe asthma and tissue fibrosis. Our previous study showed that hypoxia induces A disintegrin and metalloproteinase 17 (ADAM17) expression in human lung fibroblasts. Moreover, preadipocyte factor 1 (Pref-1) is cleaved by ADAM17, which participates in adipocyte differentiation. Furthermore, Pref1 overexpression is involved in tissue fibrosis including liver and heart. Extracellular signal-regulated kinase (ERK) could active downstram gene expression through polyoma enhancer activator 3 (PEA3) phosphorylation. Studies have demonstrated that PEA3 and activator protein 1 (AP-1) play crucial roles in lung fibrosis, and the Pref-1 promoter region contains PEA3 and AP-1 binding sites as predicted. However, the roles of ERK, PEA3, and AP-1 in hypoxia-stimulated Pref-1 expression in human lung fibroblasts remain unknown. Methods The protein expression in ovalbumin (OVA)-induced asthmatic mice was performed by immunohistochemistry and immunofluorescence. The protein expression or the mRNA level in human lung fibroblasts (WI-38) was detected by western blot or quantitative PCR. Small interfering (si) RNA was used to knockdown gene expression. The collaboration with PEA3 and c-Jun were determined by coimmunoprecipitation. Translocation of PEA3 from the cytosol to the nucleus was observed by immunocytochemistry. The binding ability of PEA3 and AP-1 to Pref-1 promoter was assessed by chromatin immunoprecipitation. Results Pref-1 and hypoxia-inducible factor 1α (HIF-1α) were expressed in the lung sections of OVA-treated mice. Colocalization of PEA3 and Fibronectin was detected in lung sections from OVA-treated mice. Futhermore, Hypoxia induced Pref1 protein upregulation and mRNA expression in human lung fibroblasts (WI38 cells). In 60 confluent WI-38 cells, hypoxia up-regulated HIF-1α and Pref-1 protein expression. Moreover, PEA3 small interfering (si) RNA decreased the expression of hypoxia-induced Pref1 in WI38 cells. Hypoxia induced PEA3 phosphorylation, translocation of PEA3 from the cytosol to the nucleus, PEA3 recruitment and AP-1 binding to the Pref1 promoter region, and PEA3-luciferase activity. Additionally, hypoxia induced c-Jun-PEA3 complex formation. U0126 (an ERK inhibitor), curcumin (an AP1 inhibitor) or c-Jun siRNA downregulated hypoxia-induced Pref-1 expression. Conclusions These results implied that ERK, PEA3, and AP1 participate in hypoxiainduced Pref1 expression in human lung fibroblasts.
Collapse
Affiliation(s)
- Wun-Hao Cheng
- Gradual Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Respiratory Therapy, Wan Fang Hospital, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Chia-Ling Chen
- Division of Thoracic Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Yun Chen
- Gradual Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Chien-Huang Lin
- Gradual Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
| | - Bing-Chang Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Respiratory Therapy, Wan Fang Hospital, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan. .,Division of Thoracic Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Hasan F, Chiu Y, Shaw RM, Wang J, Yee C. Hypoxia acts as an environmental cue for the human tissue-resident memory T cell differentiation program. JCI Insight 2021; 6:138970. [PMID: 34027895 PMCID: PMC8262358 DOI: 10.1172/jci.insight.138970] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
Tissue-resident memory T cells (TRM) provide frontline defense against infectious diseases and contribute to antitumor immunity; however, aside from the necessity of TGF-β, knowledge regarding TRM-inductive cues remains incomplete, particularly for human cells. Oxygen tension is an environmental cue that distinguishes peripheral tissues from the circulation, and here, we demonstrate that differentiation of human CD8+ T cells in the presence of hypoxia and TGF-β1 led to the development of a TRM phenotype, characterized by a greater than 5-fold increase in CD69+CD103+ cells expressing human TRM hallmarks and enrichment for endogenous human TRM gene signatures, including increased adhesion molecule expression and decreased expression of genes involved in recirculation. Hypoxia and TGF-β1 synergized to produce a significantly larger population of TRM phenotype cells than either condition alone, and comparison of these cells from the individual and combination conditions revealed distinct phenotypic and transcriptional profiles, indicating a programming response to milieu rather than a mere expansion. Our findings identify a likely previously unreported cue for the TRM differentiation program and can enable facile generation of human TRM phenotype cells in vitro for basic studies and translational applications such as adoptive cellular therapy.
Collapse
Affiliation(s)
- Farah Hasan
- Department of Melanoma Medical Oncology, University of Texas (UT) MD Anderson Cancer Center, Houston, Texas, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Yulun Chiu
- Department of Melanoma Medical Oncology, University of Texas (UT) MD Anderson Cancer Center, Houston, Texas, USA
| | - Rebecca M Shaw
- Department of Melanoma Medical Oncology, University of Texas (UT) MD Anderson Cancer Center, Houston, Texas, USA
| | - Junmei Wang
- Department of Melanoma Medical Oncology, University of Texas (UT) MD Anderson Cancer Center, Houston, Texas, USA
| | - Cassian Yee
- Department of Melanoma Medical Oncology, University of Texas (UT) MD Anderson Cancer Center, Houston, Texas, USA.,Department of Immunology, UT MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
12
|
Page LK, Staples KJ, Spalluto CM, Watson A, Wilkinson TMA. Influence of Hypoxia on the Epithelial-Pathogen Interactions in the Lung: Implications for Respiratory Disease. Front Immunol 2021; 12:653969. [PMID: 33868294 PMCID: PMC8044850 DOI: 10.3389/fimmu.2021.653969] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Under normal physiological conditions, the lung remains an oxygen rich environment. However, prominent regions of hypoxia are a common feature of infected and inflamed tissues and many chronic inflammatory respiratory diseases are associated with mucosal and systemic hypoxia. The airway epithelium represents a key interface with the external environment and is the first line of defense against potentially harmful agents including respiratory pathogens. The protective arsenal of the airway epithelium is provided in the form of physical barriers, and the production of an array of antimicrobial host defense molecules, proinflammatory cytokines and chemokines, in response to activation by receptors. Dysregulation of the airway epithelial innate immune response is associated with a compromised immunity and chronic inflammation of the lung. An increasing body of evidence indicates a distinct role for hypoxia in the dysfunction of the airway epithelium and in the responses of both innate immunity and of respiratory pathogens. Here we review the current evidence around the role of tissue hypoxia in modulating the host-pathogen interaction at the airway epithelium. Furthermore, we highlight the work needed to delineate the role of tissue hypoxia in the pathophysiology of chronic inflammatory lung diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease in addition to novel respiratory diseases such as COVID-19. Elucidating the molecular mechanisms underlying the epithelial-pathogen interactions in the setting of hypoxia will enable better understanding of persistent infections and complex disease processes in chronic inflammatory lung diseases and may aid the identification of novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Lee K. Page
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - C. Mirella Spalluto
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
- Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
13
|
Lodge KM, Cowburn AS, Li W, Condliffe AM. The Impact of Hypoxia on Neutrophil Degranulation and Consequences for the Host. Int J Mol Sci 2020; 21:ijms21041183. [PMID: 32053993 PMCID: PMC7072819 DOI: 10.3390/ijms21041183] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/16/2022] Open
Abstract
Neutrophils are key effector cells of innate immunity, rapidly recruited to defend the host against invading pathogens. Neutrophils may kill pathogens intracellularly, following phagocytosis, or extracellularly, by degranulation and the release of neutrophil extracellular traps; all of these microbicidal strategies require the deployment of cytotoxic proteins and proteases, packaged during neutrophil development within cytoplasmic granules. Neutrophils operate in infected and inflamed tissues, which can be profoundly hypoxic. Neutrophilic infiltration of hypoxic tissues characterises a myriad of acute and chronic infectious and inflammatory diseases, and as well as potentially protecting the host from pathogens, neutrophil granule products have been implicated in causing collateral tissue damage in these scenarios. This review discusses the evidence for the enhanced secretion of destructive neutrophil granule contents observed in hypoxic environments and the potential mechanisms for this heightened granule exocytosis, highlighting implications for the host. Understanding the dichotomy of the beneficial and detrimental consequences of neutrophil degranulation in hypoxic environments is crucial to inform potential neutrophil-directed therapeutics in order to limit persistent, excessive, or inappropriate inflammation.
Collapse
Affiliation(s)
- Katharine M. Lodge
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK; (K.M.L.); (A.S.C.)
| | - Andrew S. Cowburn
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK; (K.M.L.); (A.S.C.)
| | - Wei Li
- Department of Medicine, University of Cambridge, Cambridge CB2 0SP, UK;
| | - Alison M. Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield S10 2RX, UK
- Correspondence:
| |
Collapse
|
14
|
Winther HB, Gutberlet M, Hundt C, Kaireit TF, Alsady TM, Schmidt B, Wacker F, Sun Y, Dettmer S, Maschke SK, Hinrichs JB, Jambawalikar S, Prince MR, Barr RG, Vogel-Claussen J. Deep semantic lung segmentation for tracking potential pulmonary perfusion biomarkers in chronic obstructive pulmonary disease (COPD): The multi-ethnic study of atherosclerosis COPD study. J Magn Reson Imaging 2020; 51:571-579. [PMID: 31276264 DOI: 10.1002/jmri.26853] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is associated with high morbidity and mortality. Identification of imaging biomarkers for phenotyping is necessary for future treatment and therapy monitoring. However, translation of visual analytic pipelines into clinics or their use in large-scale studies is significantly slowed by time-consuming postprocessing steps. PURPOSE To implement an automated tool chain for regional quantification of pulmonary microvascular blood flow in order to reduce analysis time and user variability. STUDY TYPE Prospective. POPULATION In all, 90 MRI scans of 63 patients, of which 31 had a COPD with a mean Global Initiative for Chronic Obstructive Lung Disease status of 1.9 ± 0.64 (μ ± σ). FIELD STRENGTH/SEQUENCE 1.5T dynamic gadolinium-enhanced MRI measurement using 4D dynamic contrast material-enhanced (DCE) time-resolved angiography acquired in a single breath-hold in inspiration. [Correction added on August 20, 2019, after first online publication: The field strength in the preceding sentence was corrected.] ASSESSMENT: We built a 3D convolutional neural network for semantic segmentation using 29 manually segmented perfusion maps. All five lobes of the lung are denoted, including the middle lobe. Evaluation was performed on 61 independent cases from two sites of the Multi-Ethnic Study of Arteriosclerosis (MESA)-COPD study. We publish our implementation of a model-free deconvolution filter according to Sourbron et al for 4D DCE MRI scans as open source. STATISTICAL TEST Cross-validation 29/61 (# training / # testing), intraclass correlation coefficient (ICC), Spearman ρ, Pearson r, Sørensen-Dice coefficient, and overlap. RESULTS Segmentations and derived clinical parameters were processed in ~90 seconds per case on a Xeon E5-2637v4 workstation with Tesla P40 GPUs. Clinical parameters and predicted segmentations exhibit high concordance with the ground truth regarding median perfusion for all lobes with an ICC of 0.99 and a Sørensen-Dice coefficient of 93.4 ± 2.8 (μ ± σ). DATA CONCLUSION We present a robust end-to-end pipeline that allows for the extraction of perfusion-based biomarkers for all lung lobes in 4D DCE MRI scans by combining model-free deconvolution with deep learning. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:571-579.
Collapse
Affiliation(s)
- Hinrich B Winther
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Marcel Gutberlet
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | | | - Till F Kaireit
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Tawfik Moher Alsady
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Bertil Schmidt
- Institute for Computer Science, Johannes Gutenberg University, Mainz, Germany
| | - Frank Wacker
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Yanping Sun
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Sabine Dettmer
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Sabine K Maschke
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Jan B Hinrichs
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Medical Center, New York, New York, USA
| | - Martin R Prince
- Cornell Cardiovascular Magnetic Resonance Imaging Laboratory, Radiology Department, Weill Medical College of Cornell University, New York, New York, USA
| | - R Graham Barr
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jens Vogel-Claussen
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
15
|
Shukla SD, Walters EH, Simpson JL, Keely S, Wark PA, O'Toole RF, Hansbro PM. Hypoxia‐inducible factor and bacterial infections in chronic obstructive pulmonary disease. Respirology 2019; 25:53-63. [DOI: 10.1111/resp.13722] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Shakti D. Shukla
- School of Biomedical Sciences and Pharmacy, Faculty of Health and MedicineUniversity of Newcastle Newcastle NSW Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
| | - E. Haydn Walters
- School of Medicine, College of Health and MedicineUniversity of Tasmania Hobart TAS Australia
| | - Jodie L. Simpson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
- Respiratory and Sleep Medicine, Priority Research Centre for Healthy LungsUniversity of Newcastle Newcastle NSW Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, Faculty of Health and MedicineUniversity of Newcastle Newcastle NSW Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
| | - Peter A.B. Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
- Respiratory and Sleep Medicine, Priority Research Centre for Healthy LungsUniversity of Newcastle Newcastle NSW Australia
| | - Ronan F. O'Toole
- School of Molecular Sciences, College of Science, Health and EngineeringLa Trobe University Melbourne VIC Australia
| | - Philip M. Hansbro
- School of Biomedical Sciences and Pharmacy, Faculty of Health and MedicineUniversity of Newcastle Newcastle NSW Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
- Centenary Institute and School of Life Sciences, Faculty of Science, University of Technology Sydney Sydney NSW Australia
| |
Collapse
|
16
|
Premalignant lesions of squamous cell carcinoma of the lung: The molecular make-up and factors affecting their progression. Lung Cancer 2019; 135:21-28. [PMID: 31446997 DOI: 10.1016/j.lungcan.2019.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/23/2019] [Accepted: 07/01/2019] [Indexed: 01/06/2023]
Abstract
Squamous cell carcinoma (SCC), one of the most common forms of lung cancer, shows accelerated progression and aggressive growth and usually is observed at advanced stages. SCC originates from morphological changes in the bronchial epithelium that occur during chronic inflammation: basal cell hyperplasia, squamous metaplasia, and dysplasia I-III. However, the process is not inevitable; it can be stopped at any stage, remain in the stable state indefinitely and either progress or regress. The reasons and mechanisms of different scenarios of the evolution of premalignant lesions in the respiratory epithelium are not fully understood. In this review, we summarized the literature data (including our own data) regarding genetic, epigenetic, transcriptomic and proteomic profiles of the premalignant lesions and highlighted factors (environmental causes, inflammation, and gene polymorphism) that may govern their progression or regression. In conclusion, we reviewed strategies for lung cancer prevention and proposed new models and research directions for studying premalignant lesions and developing new tools to predict the risk of their malignant transformation.
Collapse
|
17
|
Thornell IM, Li X, Tang XX, Brommel CM, Karp PH, Welsh MJ, Zabner J. Nominal carbonic anhydrase activity minimizes airway-surface liquid pH changes during breathing. Physiol Rep 2019; 6. [PMID: 29380953 PMCID: PMC5789725 DOI: 10.14814/phy2.13569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022] Open
Abstract
The airway-surface liquid pH (pHASL ) is slightly acidic relative to the plasma and becomes more acidic in airway diseases, leading to impaired host defense. CO2 in the large airways decreases during inspiration (0.04% CO2 ) and increases during expiration (5% CO2 ). Thus, we hypothesized that pHASL would fluctuate during the respiratory cycle. We measured pHASL on cultures of airway epithelia while changing apical CO2 concentrations. Changing apical CO2 produced only very slow pHASL changes, occurring in minutes, inconsistent with respiratory phases that occur in a few seconds. We hypothesized that pH changes were slow because airway-surface liquid has little carbonic anhydrase activity. To test this hypothesis, we applied the carbonic anhydrase inhibitor acetazolamide and found minimal effects on CO2 -induced pHASL changes. In contrast, adding carbonic anhydrase significantly increased the rate of change in pHASL . Using pH-dependent rates obtained from these experiments, we modeled the pHASL during respiration to further understand how pH changes with physiologic and pathophysiologic respiratory cycles. Modeled pHASL oscillations were small and affected by the respiration rate, but not the inspiratory:expiratory ratio. Modeled equilibrium pHASL was affected by the inspiratory:expiratory ratio, but not the respiration rate. The airway epithelium is the only tissue that is exposed to large and rapid CO2 fluctuations. We speculate that the airways may have evolved minimal carbonic anhydrase activity to mitigate large changes in the pHASL during breathing that could potentially affect pH-sensitive components of ASL.
Collapse
Affiliation(s)
- Ian M Thornell
- Department of Internal Medicine, University of Iowa, Iowa City, IA.,Howard Hughes Medical Institute, University of Iowa, Iowa City, IA
| | - Xiaopeng Li
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Xiao Xiao Tang
- Department of Internal Medicine, University of Iowa, Iowa City, IA.,Howard Hughes Medical Institute, University of Iowa, Iowa City, IA
| | | | - Philip H Karp
- Department of Internal Medicine, University of Iowa, Iowa City, IA.,Howard Hughes Medical Institute, University of Iowa, Iowa City, IA
| | - Michael J Welsh
- Department of Internal Medicine, University of Iowa, Iowa City, IA.,Howard Hughes Medical Institute, University of Iowa, Iowa City, IA.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Joseph Zabner
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
18
|
Kaireit TF, Voskrebenzev A, Gutberlet M, Freise J, Jobst B, Kauczor H, Welte T, Wacker F, Vogel‐Claussen J. Comparison of quantitative regional perfusion‐weighted phase resolved functional lung (PREFUL) MRI with dynamic gadolinium‐enhanced regional pulmonary perfusion MRI in COPD patients. J Magn Reson Imaging 2018; 49:1122-1132. [DOI: 10.1002/jmri.26342] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Till F. Kaireit
- Department of Diagnostic and Interventional RadiologyHannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Lung Research Center (DZL) Hannover Germany
| | - Andreas Voskrebenzev
- Department of Diagnostic and Interventional RadiologyHannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Lung Research Center (DZL) Hannover Germany
| | - Marcel Gutberlet
- Department of Diagnostic and Interventional RadiologyHannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Lung Research Center (DZL) Hannover Germany
| | - Julia Freise
- Clinic of Pneumology, Hannover Medical School Hannover Germany
| | - Bertram Jobst
- Department of Diagnostic and Interventional RadiologyUniversity Hospital of Heidelberg Heidelberg Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL) Heidelberg Germany
| | - Hans‐Ulrich Kauczor
- Department of Diagnostic and Interventional RadiologyUniversity Hospital of Heidelberg Heidelberg Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL) Heidelberg Germany
| | - Tobias Welte
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Lung Research Center (DZL) Hannover Germany
- Clinic of Pneumology, Hannover Medical School Hannover Germany
| | - Frank Wacker
- Department of Diagnostic and Interventional RadiologyHannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Lung Research Center (DZL) Hannover Germany
| | - Jens Vogel‐Claussen
- Department of Diagnostic and Interventional RadiologyHannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Lung Research Center (DZL) Hannover Germany
| |
Collapse
|
19
|
De la Garza MM, Cumpian AM, Daliri S, Castro-Pando S, Umer M, Gong L, Khosravi N, Caetano MS, Ramos-Castañeda M, Flores AG, Beltran EC, Tran HT, Tuvim MJ, Ostrin EJ, Dickey BF, Evans CM, Moghaddam SJ. COPD-Type lung inflammation promotes K-ras mutant lung cancer through epithelial HIF-1α mediated tumor angiogenesis and proliferation. Oncotarget 2018; 9:32972-32983. [PMID: 30250643 PMCID: PMC6152479 DOI: 10.18632/oncotarget.26030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), an inflammatory disease of the lung, is an independent risk factor for lung cancer. Lung tissues obtained from human smokers with COPD and lung cancer demonstrate hypoxia and up-regulated hypoxia inducible factor-1 (HIF-1). HIF-1 activation is the central mechanism for controlling the cellular response to hypoxia during inflammation and tumor development. These facts suggest a link between COPD-related airway inflammation, HIF-1, and lung cancer. We have previously established a mouse model of COPD-like airway inflammation that promotes lung cancer in a K-ras mutant mouse model (CC-LR). Here we show that tumors in the CC-LR model have significantly elevated levels of HIF-1α and HIF-1 activity. To determine the tumor-promoting functions of HIF-1 in CC-LR mice, the gene Hif1a which encodes HIF-1α and is required for HIF-1 activity, was disrupted in the lung epithelium of CC-LR animals. Airway epithelial specific HIF-1α deficient mice demonstrated significant reductions in lung surface tumor numbers, tumor angiogenesis, and tumor cell proliferation in the absence or presence of COPD-like airway inflammation. In addition, when CC-LR mice were bred with transgenic animals that overexpress a constitutively active mutant form of human HIF-1α in the airway epithelium, both COPD- and adenocarcinoma-like phenotypes were observed. HIF-1α overexpressing CC-LR mice had significant emphysema, and they also showed potentiated tumorigenesis, angiogenesis, and cell proliferation accompanied by an invasive metastatic phenotype. Our gain and loss of function studies support a key role for HIF-1α in the promotion of lung cancer by COPD-like inflammation.
Collapse
Affiliation(s)
- Maria Miguelina De la Garza
- Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| | - Amber M Cumpian
- Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Soudabeh Daliri
- Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Susana Castro-Pando
- Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Misha Umer
- Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Lei Gong
- Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,Tianjin Lung Cancer Institute, Tianjin Medical University, Tianjin, China
| | - Nasim Khosravi
- Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Mauricio S Caetano
- Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Marco Ramos-Castañeda
- Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| | - Alejandra Garza Flores
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| | - Evelyn C Beltran
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| | - Hai T Tran
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Michael J Tuvim
- Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Edwin J Ostrin
- Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,Department of General Internal Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Burton F Dickey
- Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Christopher M Evans
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.,The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
20
|
Wu Y, Xu B, He X, Wu B, Li Y, Yu G, Tan C, Wang H. Correlation between autophagy levels in peripheral blood mononuclear cells and clinical parameters in patients with chronic obstructive pulmonary disease. Mol Med Rep 2018; 17:8003-8009. [PMID: 29620199 DOI: 10.3892/mmr.2018.8831] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 03/02/2018] [Indexed: 11/05/2022] Open
Abstract
Autophagy serves a role in the pathogenesis of chronic inflammatory diseases. The aim of the present study was to compare the autophagy levels in the peripheral blood mononuclear cells (PBMCs) of patients with chronic obstructive pulmonary disease (COPD) and healthy individuals and to assess the association between autophagy and the clinical parameters of COPD. Samples of peripheral blood from 20 patients with stable COPD and 20 healthy controls were collected. PBMCs were harvested using Ficoll density gradient centrifugation. Levels of the autophagy‑associated proteins ubiquitin‑binding protein p62 (p62), microtubule‑associated proteins 1A/1B light chain 3A (LC3I/II) and beclin‑1 in PBMCs were detected by western blotting. Enzyme‑linked immunosorbent assay kits were used to detect the serum concentrations of interleukin (IL)‑6, IL‑8 and tumor necrosis factor (TNF)‑α. Associations between the levels of autophagy and forced expiratory volume in 1 sec % predicted (FEV1%) and pro‑inflammatory factors were assessed. Western blotting demonstrated that the protein expression of p62 was decreased, but LC3II/I and beclin‑1 levels increased in patients with COPD compared with healthy controls. Serum levels of IL‑6, IL‑8 and TNF‑α were increased in patients with COPD. The extent of PBMC autophagy was negatively correlated with FEV1% predicted, but positively correlated with levels of pro‑inflammatory cytokines. The levels of autophagy in PBMCs in patients with COPD were increased and were negatively correlated with FEV1% predicted and positively correlated with circulating levels of pro‑inflammatory cytokines. Autophagy may serve a role as a biomarker of the severity of COPD or as a therapeutic target for treatment of COPD.
Collapse
Affiliation(s)
- Yanjun Wu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Bo Xu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xin He
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Bo Wu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yunxiao Li
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Ganggang Yu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Chunting Tan
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Haoyan Wang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
21
|
Popov TA, Kralimarkova TZ, Labor M, Plavec D. The added value of exhaled breath temperature in respiratory medicine. J Breath Res 2017; 11:034001. [PMID: 28592704 DOI: 10.1088/1752-7163/aa7801] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recognition of the huge economic burden chronic respiratory diseases pose for society motivated fundamental and clinical research leading to insight into the role of airway inflammation in various disease entities and their phenotypes. However, no easy, cheap and patient-friendly methods to assess it have found a place in routine clinical practice. Measurement of exhaled breath temperature (EBT) has been suggested as a non-invasive method to detect inflammatory processes in the airways as a result of increased blood flow within the airway walls. As EBT values are within a narrow range, the thermometers designed for the purpose of assessing it need to be precise and very sensitive. EBT increases linearly over the pediatric age range and seems to be influenced by gender, but not by height and body weight. In non-smoking individuals with no history of respiratory disease EBT has a natural circadian peak about noon and increases with food intake and physical exercise. When interpreting EBT in subjects with alleged airway pathology, the possibilities of tissue destruction (chronic obstructive pulmonary disease, cystic fibrosis) or excessive bronchial obstruction and air trapping (severe asthma) need to be considered, as these conditions drive (force) EBT down. A prominent advantage of the method is to assess EBT when patients are in a steady state of their disease and to use this 'personal best' to monitor them and guide their treatment. Individual devices outfitted with microprocessors and memory have been created, which can be used for personalized monitoring and disease management by telemedicine.
Collapse
Affiliation(s)
- Todor A Popov
- Clinic of Allergy and Asthma, Medical University Sofia, Bulgaria
| | | | | | | |
Collapse
|
22
|
Porter LM, Cowburn AS, Farahi N, Deighton J, Farrow SN, Fiddler CA, Juss JK, Condliffe AM, Chilvers ER. Hypoxia causes IL-8 secretion, Charcot Leyden crystal formation, and suppression of corticosteroid-induced apoptosis in human eosinophils. Clin Exp Allergy 2017; 47:770-784. [PMID: 28000962 DOI: 10.1111/cea.12877] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/18/2016] [Accepted: 11/27/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Inflamed environments are typically hypercellular, rich in pro-inflammatory cytokines, and profoundly hypoxic. While the effects of hypoxia on neutrophil longevity and function have been widely studied, little is known about the consequences of this stimulus on eosinophils. OBJECTIVE We sought to investigate the effects of hypoxia on several key aspects of eosinophil biology, namely secretion, survival, and their sensitivity to glucocorticosteroids (GCS), agents that normally induce eosinophil apoptosis. METHODS Eosinophils derived from patients with asthma/atopy or healthy controls were incubated under normoxia and hypoxia, with or without glucocorticoids. Activation was measured by flow cytometry, ELISA of cultured supernatants, and F-actin staining; apoptosis and efferocytosis by morphology and flow cytometry; and GCS efficacy by apoptosis assays and qPCR. RESULTS Hypoxic incubation (3 kPa) caused (i) stabilization of HIF-2α and up-regulation of hypoxia-regulated genes including BNIP3 (BCL2/adenovirus E1B 19-kDa protein-interacting protein 3) and GLUT1 (glucose transporter 1); (ii) secretion of pre-formed IL-8, and Charcot Leyden crystal (CLC) formation, which was most evident in eosinophils derived from atopic and asthmatic donors; (iii) enhanced F-actin formation; (iv) marked prolongation of eosinophil lifespan (via a NF-κB and Class I PI3-kinase-dependent mechanism); and (v) complete abrogation of the normal pro-apoptotic effect of dexamethasone and fluticasone furoate. This latter effect was evident despite preservation of GCS-mediated gene transactivation under hypoxia. CONCLUSION AND CLINICAL RELEVANCE These data indicate that hypoxia promotes an eosinophil pro-inflammatory phenotype by enhancing eosinophil secretory function, delaying constitutive apoptosis, and importantly, antagonizing the normal pro-apoptotic effect of GCS. As eosinophils typically accumulate at sites that are relatively hypoxic, particularly during periods of inflammation, these findings may have important implications to understanding the behaviour of these cells in vivo.
Collapse
Affiliation(s)
- L M Porter
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, UK
| | - A S Cowburn
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, UK
| | - N Farahi
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, UK
| | - J Deighton
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, UK
| | - S N Farrow
- Faculty of Life Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - C A Fiddler
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, UK
| | - J K Juss
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, UK
| | - A M Condliffe
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, UK
| | - E R Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, UK
| |
Collapse
|
23
|
Lodge KM, Thompson AAR, Chilvers ER, Condliffe AM. Hypoxic regulation of neutrophil function and consequences for Staphylococcus aureus infection. Microbes Infect 2016; 19:166-176. [PMID: 27789256 DOI: 10.1016/j.micinf.2016.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 01/22/2023]
Abstract
Staphylococcal infection and neutrophilic inflammation can act in concert to establish a profoundly hypoxic environment. In this review we summarise how neutrophils and Staphylococcus aureus are adapted to function under hypoxic conditions, with a particular focus on the impaired ability of hypoxic neutrophils to effect Staphylococcus aureus killing.
Collapse
Affiliation(s)
- Katharine M Lodge
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge University Hospitals, Hills Road, Cambridge, CB2 0QQ, UK
| | - A A Roger Thompson
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Edwin R Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge University Hospitals, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| |
Collapse
|
24
|
Intraepithelial ischemia is a principal factor promoting cancerization of the covering epithelial tissues. Med Hypotheses 2016; 94:154-60. [PMID: 27515223 DOI: 10.1016/j.mehy.2016.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/05/2016] [Accepted: 07/24/2016] [Indexed: 11/21/2022]
Abstract
Prominent angiogenesis, which is a hallmark of invasive cancer is preceded at the precancerous stage by marked ischemia. Our hypothesis proposes a structural mechanism responsible for altering blood flow in the covering epithelium and leading to marked reduction of vascularization in the foci of dysplasia. This mechanism varies from one type of epithelium to another. In squamous epithelium only basal cells are in direct contact with stromal vessels. To supply nutrients to the rest of the cells located at different levels, the subjacent stroma forms excrescences which penetrate upward together with blood capillaries. As soon as precancerous dysplastic alterations start and progress the number of intraepithelial blood vessels simultaneously decreases, thus leading to ischemia which precedes or promotes malignization of the covering squamous epithelium. To compensate for the deficit in blood supply, the dysplastic cells penetrate deeper into the underlying stroma, commencing invasion. Thus, the cells destroy the subjacent stroma not because they are initially "malignant", but due to ischemia which provokes the search for nutrients. Comparing squamous epithelium with glandular respiratory epithelium shows that the latter contains no blood capillaries at all. However, unlike squamous epithelial coverings, in respiratory epithelial covering, each cell is attached directly to the basal membrane and has ample access to the blood supply. Covering respiratory epithelium itself seldom gives rise directly to malignant growth. Cancerization of this type of epithelium occurs in the foci of squamous metaplasia. The latter are not supplied by a sufficient amount of blood vessels and in the majority of cases remain fragile and vulnerable structures, easily prone to malignization. Further study of these phenomenon should include the clarification of the influence of carcinogenic agents on the mechanism of adequate vascularization at the precancerous stage.
Collapse
|
25
|
Kuzubova NA, Lebedeva ES, Dvorakovskaya IV, Surkova EA, Platonova IS, Titova ON. Modulating Effect of Peptide Therapy on the Morphofunctional State of Bronchial Epithelium in Rats with Obstructive Lung Pathology. Bull Exp Biol Med 2015; 159:685-8. [PMID: 26468022 DOI: 10.1007/s10517-015-3047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Indexed: 11/26/2022]
Abstract
On the model of chronic obstructive pulmonary disease, the effect of therapy with low-molecular-weight peptides on restructuring and functional activity of bronchial epithelium for restoring the immune and barrier function of the lungs and prevention of inflammatory process progression was studied. Chronic obstructive pulmonary disease was modeled in rats by 60-day intermittent exposure to NO2. Administration of tetrapeptide Bronchogen for 1 month eliminates symptoms of remodeling of the bronchial epithelium and lung tissue typical of chronic obstructive pulmonary disease (goblet cell hyperplasia, squamous metaplasia, lymphocytic infiltration and emphysema, and restoration of ciliated cells). Enhanced production of secretory IgA, a local immunity marker, attested to normalization of functional activity of bronchial epithelium, while normalization of cell composition and profile of proinflammatory cytokines in the bronchoalveolar space reflected reduction of neutrophilic inflammation.
Collapse
Affiliation(s)
- N A Kuzubova
- Research Institute of Pulmonology, I. P. Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - E S Lebedeva
- Research Institute of Pulmonology, I. P. Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia.
| | - I V Dvorakovskaya
- Research Institute of Pulmonology, I. P. Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - E A Surkova
- Research Institute of Pulmonology, I. P. Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - I S Platonova
- Research Institute of Pulmonology, I. P. Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - O N Titova
- Research Institute of Pulmonology, I. P. Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| |
Collapse
|
26
|
Hueper K, Vogel-Claussen J, Parikh MA, Austin JHM, Bluemke DA, Carr J, Choi J, Goldstein TA, Gomes AS, Hoffman EA, Kawut SM, Lima J, Michos ED, Post WS, Po MJ, Prince MR, Liu K, Rabinowitz D, Skrok J, Smith BM, Watson K, Yin Y, Zambeli-Ljepovic AM, Barr RG. Pulmonary Microvascular Blood Flow in Mild Chronic Obstructive Pulmonary Disease and Emphysema. The MESA COPD Study. Am J Respir Crit Care Med 2015; 192:570-580. [PMID: 26067761 PMCID: PMC4595687 DOI: 10.1164/rccm.201411-2120oc] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 05/15/2015] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Smoking-related microvascular loss causes end-organ damage in the kidneys, heart, and brain. Basic research suggests a similar process in the lungs, but no large studies have assessed pulmonary microvascular blood flow (PMBF) in early chronic lung disease. OBJECTIVES To investigate whether PMBF is reduced in mild as well as more severe chronic obstructive pulmonary disease (COPD) and emphysema. METHODS PMBF was measured using gadolinium-enhanced magnetic resonance imaging (MRI) among smokers with COPD and control subjects age 50 to 79 years without clinical cardiovascular disease. COPD severity was defined by standard criteria. Emphysema on computed tomography (CT) was defined by the percentage of lung regions below -950 Hounsfield units (-950 HU) and by radiologists using a standard protocol. We adjusted for potential confounders, including smoking, oxygenation, and left ventricular cardiac output. MEASUREMENTS AND MAIN RESULTS Among 144 participants, PMBF was reduced by 30% in mild COPD, by 29% in moderate COPD, and by 52% in severe COPD (all P < 0.01 vs. control subjects). PMBF was reduced with greater percentage emphysema-950HU and radiologist-defined emphysema, particularly panlobular and centrilobular emphysema (all P ≤ 0.01). Registration of MRI and CT images revealed that PMBF was reduced in mild COPD in both nonemphysematous and emphysematous lung regions. Associations for PMBF were independent of measures of small airways disease on CT and gas trapping largely because emphysema and small airways disease occurred in different smokers. CONCLUSIONS PMBF was reduced in mild COPD, including in regions of lung without frank emphysema, and may represent a distinct pathological process from small airways disease. PMBF may provide an imaging biomarker for therapeutic strategies targeting the pulmonary microvasculature.
Collapse
Affiliation(s)
- Katja Hueper
- Department of Radiology and
- Department of Radiology and Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Jens Vogel-Claussen
- Department of Radiology and
- Department of Radiology and Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | | | | | - David A. Bluemke
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Maryland
| | | | - Jiwoong Choi
- Department of Radiology
- IIHR–Hydroscience & Engineering
| | - Thomas A. Goldstein
- Department of Biomedical Engineering, Stanford University, Stanford, California
| | | | - Eric A. Hoffman
- Department of Radiology
- Department of Medicine, and
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Steven M. Kawut
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joao Lima
- Department of Radiology and
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Erin D. Michos
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Wendy S. Post
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | | | | | - Kiang Liu
- Department of Biostatistics, Northwestern University, Chicago, Illinois
| | - Dan Rabinowitz
- Department of Statistics, Columbia University, New York, New York; and
| | | | | | - Karol Watson
- Department of Medicine, University of California at Los Angeles, Los Angeles, California
| | | | | | - R. Graham Barr
- Department of Medicine
- Department of Epidemiology, Columbia University Medical Center, New York, New York
| |
Collapse
|
27
|
Eurlings IMJ, Reynaert NL, van den Beucken T, Gosker HR, de Theije CC, Verhamme FM, Bracke KR, Wouters EFM, Dentener MA. Cigarette smoke extract induces a phenotypic shift in epithelial cells; involvement of HIF1α in mesenchymal transition. PLoS One 2014; 9:e107757. [PMID: 25329389 PMCID: PMC4199572 DOI: 10.1371/journal.pone.0107757] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/11/2014] [Indexed: 12/22/2022] Open
Abstract
In COPD, matrix remodeling contributes to airflow limitation. Recent evidence suggests that next to fibroblasts, the process of epithelial-mesenchymal transition can contribute to matrix remodeling. CSE has been shown to induce EMT in lung epithelial cells, but the signaling mechanisms involved are largely unknown and subject of this study. EMT was assessed in A549 and BEAS2B cells stimulated with CSE by qPCR, Western blotting and immunofluorescence for epithelial and mesenchymal markers, as were collagen production, cell adhesion and barrier integrity as functional endpoints. Involvement of TGF-β and HIF1α signaling pathways were investigated. In addition, mouse models were used to examine the effects of CS on hypoxia signaling and of hypoxia per se on mesenchymal expression. CSE induced EMT characteristics in A549 and BEAS2B cells, evidenced by decreased expression of epithelial markers and a concomitant increase in mesenchymal marker expression after CSE exposure. Furthermore cells that underwent EMT showed increased production of collagen, decreased adhesion and disrupted barrier integrity. The induction of EMT was found to be independent of TGF-β signaling. On the contrary, CS was able to induce hypoxic signaling in A549 and BEAS2B cells as well as in mice lung tissue. Importantly, HIF1α knock-down prevented induction of mesenchymal markers, increased collagen production and decreased adhesion after CSE exposure, data that are in line with the observed induction of mesenchymal marker expression by hypoxia in vitro and in vivo. Together these data provide evidence that both bronchial and alveolar epithelial cells undergo a functional phenotypic shift in response to CSE exposure which can contribute to increased collagen deposition in COPD lungs. Moreover, HIF1α signaling appears to play an important role in this process.
Collapse
Affiliation(s)
- Irene M. J. Eurlings
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Niki L. Reynaert
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Twan van den Beucken
- Department of Radiation Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Harry R. Gosker
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - C. C. de Theije
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Fien M. Verhamme
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ken R. Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Emiel F. M. Wouters
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Mieke A. Dentener
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
28
|
A comprehensive analysis of oxidative stress in the ozone-induced lung inflammation mouse model. Clin Sci (Lond) 2014; 126:425-40. [PMID: 24040961 DOI: 10.1042/cs20130039] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ozone is an oxidizing environmental pollutant that contributes significantly to respiratory health. Exposure to increased levels of ozone has been associated with worsening of symptoms of patients with asthma and COPD (chronic obstructive pulmonary disease). In the present study, we investigated the acute and chronic effects of ozone exposure-induced oxidative stress-related inflammation mechanics in mouse lung. In particular, we investigated the oxidative stress-induced effects on HDAC2 (histone deacetylase 2) modification and activation of the Nrf2 (nuclear factor erythroid-related factor 2) and HIF-1α (hypoxia-inducible factor-1α) signalling pathways. Male C57BL/6 mice were exposed to ozone (3 p.p.m.) for 3 h a day, twice a week for a period of 1, 3 or 6 weeks. Control mice were exposed to normal air. After the last exposure, mice were killed for BAL (bronchoalveolar lavage) fluid and lung tissue collection. BAL total cell counts were elevated at all of the time points studied. This was associated with increased levels of chemokines and cytokines in all ozone-exposed groups, indicating the presence of a persistent inflammatory environment in the lung. Increased inflammation and Lm (mean linear intercept) scores were observed in chronic exposed mice, indicating emphysematous changes were present in lungs of chronic exposed mice. The antioxidative stress response was active (indicated by increased Nrf2 activity and protein) after 1 week of ozone exposure, but this ability was lost after 3 and 6 weeks of ozone exposure. The transcription factor HIF-1α was elevated in 3- and 6-week ozone-exposed mice and this was associated with increased gene expression levels of several HIF-1α target genes including Hdac2 (histone deacetylase 2), Vegf (vascular endothelial growth factor), Keap1 (kelch-like ECH-associated protein 1) and Mif (macrophage migration inhibitory factor). HDAC2 protein was found to be phosphorylated and carbonylated in nuclear and cytoplasm fractions, respectively, and was associated with a decrease in DNA-binding activity and protein expression of HDAC2. Decreased HDAC2 activity, most likely a direct result of protein modification, in combination with the loss of the antioxidative stress response and activation of the HIF-1α pathway, contribute to the inflammatory response and emphysema observed in ozone-exposed mice.
Collapse
|
29
|
Hoenderdos K, Condliffe A. The Neutrophil in Chronic Obstructive Pulmonary Disease. Too Little, Too Late or Too Much, Too Soon? Am J Respir Cell Mol Biol 2013; 48:531-9. [DOI: 10.1165/rcmb.2012-0492tr] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
30
|
Paulus P, Ockelmann P, Tacke S, Karnowski N, Ellinghaus P, Scheller B, Holfeld J, Urbschat A, Zacharowski K. Deguelin attenuates reperfusion injury and improves outcome after orthotopic lung transplantation in the rat. PLoS One 2012; 7:e39265. [PMID: 22745725 PMCID: PMC3380011 DOI: 10.1371/journal.pone.0039265] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/22/2012] [Indexed: 12/21/2022] Open
Abstract
The main goal of adequate organ preservation is to avoid further cellular metabolism during the phase of ischemia. However, modern preservation solutions do rarely achieve this target. In donor organs hypoxia and ischemia induce a broad spectrum of pathologic molecular mechanisms favoring primary graft dysfunction (PGD) after transplantation. Increased hypoxia-induced transcriptional activity leads to increased vascular permeability which in turn is the soil of a reperfusion edema and the enhancement of a pro-inflammatory response in the graft after reperfusion. We hypothesize that inhibition of the respiration chain in mitochondria and thus inhibition of the hypoxia induced mechanisms might reduce reperfusion edema and consecutively improve survival in vivo. In this study we demonstrate that the rotenoid Deguelin reduces the expression of hypoxia induced target genes, and especially VEGF-A, dose-dependently in hypoxic human lung derived cells. Furthermore, Deguelin significantly suppresses the mRNA expression of the HIF target genes VEGF-A, the pro-inflammatory CXCR4 and ICAM-1 in ischemic lungs vs. control lungs. After lung transplantation, the VEGF-A induced reperfusion-edema is significantly lower in Deguelin-treated animals than in controls. Deguelin-treated rats exhibit a significantly increased survival-rate after transplantation. Additionally, a downregulation of the pro-inflammatory molecules ICAM-1 and CXCR4 and an increase in the recruitment of immunomodulatory monocytes (CD163+ and CD68+) to the transplanted organ involving the IL4 pathway was observed. Therefore, we conclude that ischemic periods preceding reperfusion are mainly responsible for the increased vascular permeability via upregulation of VEGF. Together with this, the resulting endothelial dysfunction also enhances inflammation and consequently lung dysfunction. Deguelin significantly decreases a VEGF-A induced reperfusion edema, induces the recruitment of immunomodulatory monocytes and thus improves organ function and survival after lung transplantation by interfering with hypoxia induced signaling.
Collapse
Affiliation(s)
- Patrick Paulus
- Clinic of Anesthesiology, Intensive Care Medicine and Pain Therapy, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
van der Leest C, Amelink A, van Klaveren RJ, Hoogsteden HC, Sterenborg HJCM, Aerts JGJV. Optical detection of preneoplastic lesions of the central airways. ISRN ONCOLOGY 2012; 2012:957835. [PMID: 22550600 PMCID: PMC3324886 DOI: 10.5402/2012/957835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 01/16/2012] [Indexed: 01/01/2023]
Abstract
Current routine diagnosis of premalignant lesions of the central airways is hampered due to a limited sensitivity (white light bronchoscopy) and resolution (computer tomography (CT), positron emission tomography (PET)) of currently used techniques. To improve the detection of these subtle mucosal abnormalities, novel optical imaging bronchoscopic techniques have been developed over the past decade. In this review we highlight the technological developments in the field of endoscopic imaging, and describe their advantages and disadvantages in clinical use.
Collapse
Affiliation(s)
- C van der Leest
- Department of Respiratory Diseases, Erasmus Medical Center, Postbus 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Ahmad T, Kumar M, Mabalirajan U, Pattnaik B, Aggarwal S, Singh R, Singh S, Mukerji M, Ghosh B, Agrawal A. Hypoxia response in asthma: differential modulation on inflammation and epithelial injury. Am J Respir Cell Mol Biol 2012; 47:1-10. [PMID: 22312019 DOI: 10.1165/rcmb.2011-0203oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oxygen-sensing prolyl-hydroxylase (PHD)-2 negatively regulates hypoxia-inducible factor (HIF)1-α and suppresses the hypoxic response. Hypoxia signaling is thought to be proinflammatory but also attenuates cellular injury and apoptosis. Although increased hypoxic response has been noted in asthma, its functional relevance is unknown. The objectives of this study were to dissect the mechanisms and role of the hypoxic response in asthma pathophysiology. Experimental studies were conducted in mice using acute and chronic allergic models of asthma. The hypoxic response in allergically inflamed lungs was modulated by using pharmacologic PHD inhibitors (ethyl-3-4-dihydroxybenzoic acid [DHB], 1-10 mg/kg) or siRNA-mediated genetic knockdowns. Increased hypoxia response led to exacerbation of the asthma phenotype, with HIF-1α knockdown being beneficial. Chronically inflamed lungs from mice treated with 10 mg/kg DHB showed diffuse up-regulation of the hypoxia response, severe airway remodeling, and inflammation. Fatal asphyxiation during methacholine challenge was noted. However, bronchial epithelium restricted up-regulation of the hypoxia response seen with low-dose DHB (1 mg/kg) reduced epithelial injury and attenuated the asthmatic phenotype. Up-regulation of the hypoxia response was associated with increased expression of CX3CR1, a lymphocyte survival factor, and increased inflammatory cell infiltrate. This study shows that an exaggerated hypoxia response may contribute to airway inflammation, remodeling, and the development of asthma. However, the hypoxia response may also be protective of epithelial apoptosis at lower levels, and the net effects of modulating the hypoxia response may vary based on the context.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Centre for Excellence in Asthma & Lung disease, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Olson N, van der Vliet A. Interactions between nitric oxide and hypoxia-inducible factor signaling pathways in inflammatory disease. Nitric Oxide 2011; 25:125-37. [PMID: 21199675 PMCID: PMC3090692 DOI: 10.1016/j.niox.2010.12.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/22/2010] [Accepted: 12/29/2010] [Indexed: 02/06/2023]
Abstract
Induction and activation of nitric oxide (NO) synthases (NOS) and excessive production of NO are common features of almost all diseases associated with infection and acute or chronic inflammation, although the contribution of NO to the pathophysiology of these diseases is highly multifactorial and often still a matter of controversy. Because of its direct impact on tissue oxygenation and cellular oxygen (O(2)) consumption and re-distribution, the ability of NO to regulate various aspects of hypoxia-induced signaling has received widespread attention. Conditions of tissue hypoxia and the activation of hypoxia-inducible factors (HIF) have been implicated in hypoxia or in cancer biology, but are also being increasingly recognized as important features of acute and chronic inflammation. Thus, the activation of HIF transcription factors has been increasingly implicated in inflammatory diseases, and recent studies have indicated its critical importance in regulating phagocyte function, inflammatory mediator production, and regulation of epithelial integrity and repair processes. Finally, HIF also appears to contribute to important features of tissue fibrosis and epithelial-to-mesenchymal transition, processes that are associated with tissue remodeling in various non-malignant chronic inflammatory disorders. In this review, we briefly summarize the current state of knowledge with respect to the general mechanisms involved in HIF regulation and the impact of NO on HIF activation. Secondly, we will summarize the major recent findings demonstrating a role for HIF signaling in infection, inflammation, and tissue repair and remodeling, and will address the involvement of NO. The growing interest in hypoxia-induced signaling and its relation with NO biology is expected to lead to further insights into the complex roles of NO in acute or chronic inflammatory diseases and may point to the importance of HIF signaling as key feature of NO-mediated events during these disorders.
Collapse
Affiliation(s)
- Nels Olson
- Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, U.S.A
| | - Albert van der Vliet
- Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, U.S.A
| |
Collapse
|
34
|
Polosukhin VV, Cates JM, Lawson WE, Milstone AP, Matafonov AG, Massion PP, Lee JW, Randell SH, Blackwell TS. Hypoxia-inducible factor-1 signalling promotes goblet cell hyperplasia in airway epithelium. J Pathol 2011; 224:203-11. [PMID: 21557221 DOI: 10.1002/path.2863] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Goblet cell hyperplasia is a common feature of chronic obstructive pulmonary disease (COPD) airways, but the mechanisms that underlie this epithelial remodelling in COPD are not understood. Based on our previous finding of hypoxia-inducible factor-1α (HIF-1α) nuclear localization in large airways from patients with COPD, we investigated whether hypoxia-inducible signalling could influence the development of goblet cell hyperplasia. We evaluated large airway samples obtained from 18 lifelong non-smokers and 13 former smokers without COPD, and 45 former smokers with COPD. In these specimens, HIF-1α nuclear staining occurred almost exclusively in COPD patients in areas of airway remodelling. In COPD patients, 93.2 ± 3.9% (range 65-100%) of goblet cells were HIF-1α positive in areas of goblet cell hyperplasia, whereas nuclear HIF-1α was not detected in individuals without COPD or in normal-appearing pseudostratified epithelium from COPD patients. To determine the direct effects of hypoxia-inducible signalling on epithelial cell differentiation in vitro, human bronchial epithelial cells (HBECs) were grown in air-liquid interface cultures under hypoxia (1% O(2)) or following treatment with a selective HIF-1α stabilizer, (2R)-[(4-biphenylylsulphonyl)amino]-N-hydroxy-3-phenyl-propionamide (BiPS). HBECs grown in hypoxia or with BiPS treatment were characterized by HIF-1α activation, carbonic anhydrase IX expression, mucus-producing cell hyperplasia and increased expression of MUC5AC. Analysis of signal transduction pathways in cells with HIF-1α activation showed increased ERK1/2 phosphorylation without activation of epidermal growth factor receptor, Ras, PI3K-Akt or STAT6. These data indicate an important effect of hypoxia-inducible signalling on airway epithelial cell differentiation and identify a new potential target to limit mucus production in COPD.
Collapse
Affiliation(s)
- Vasiliy V Polosukhin
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Lung tissue remodeling in chronic obstructive pulmonary disease (COPD) involves diverse processes characterized by epithelial disruption, smooth muscle hypertrophy/hyperplasia, airway wall fibrosis, and alveolar destruction. According to the accepted current theory of COPD pathogenesis, tissue remodeling in COPD is predominantly a consequence of an imbalance between proteolytic and antiproteolytic activities. However, most of the studies carried out during the last few years have focused on mechanisms related to degradation of extracellular matrix (ECM) structural proteins, neglecting those involved in ECM protein deposition. This review revisits some of the latest findings related to fibrotic changes that occur in the airway wall of COPD patients, as well as the main cellular phenotypes relevant to these processes.
Collapse
|
36
|
Evans MJ, Fanucchi MV, Plopper CG, Hyde DM. Postnatal development of the lamina reticularis in primate airways. Anat Rec (Hoboken) 2010; 293:947-54. [PMID: 20503389 DOI: 10.1002/ar.20824] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The basement membrane zone (BMZ) appears as three component layers: the lamina lucida, lamina densa, and lamina reticularis. The laminas lucida and densa are present during all stages of development. The lamina reticularis appears during postnatal development. Collagens I, III, and V form heterogeneous fibers that account for the thickness of the lamina reticularis. Additionally, there are three proteoglycans considered as integral components of the BMZ: perlecan, collagen XVIII, and bamacan. Perlecan is the predominant heparan sulfate proteoglycan in the airway BMZ. It is responsible for many of the functions attributed to the BMZ, in particular, trafficking of growth factors and cytokines between epithelial and mesenchymal cells. Growth factor binding sites on perlecan include FGF-1, FGF-2, FGF-7, FGF-10, PDGF, HGF, HB-EGF, VEGF, and TGF-beta. Growth factors pass through the BMZ when moving between the epithelial and mesenchymal cell layers. They move by rapid reversible binding with sites on both the heparan sulfate chains and core protein of perlecan. In this manner, perlecan regulates movement of growth factors between tissues. Another function of the BMZ is storage and regulation of FGF-2. FGF-2 has been shown to be involved with normal growth and thickening of the BMZ. Thickening of the BMZ is a feature of airway remodeling in asthma. It may have a positive effect by protecting against airway narrowing and air trapping. Conversely, it may have a negative effect by influencing trafficking of growth factors in the epithelial mesenchymal trophic unit. However, currently the significance of BMZ thickening is not known.
Collapse
Affiliation(s)
- Michael J Evans
- California National Primate Research Center, University of California, Davis, California, USA.
| | | | | | | |
Collapse
|
37
|
Zanini A, Chetta A, Imperatori AS, Spanevello A, Olivieri D. The role of the bronchial microvasculature in the airway remodelling in asthma and COPD. Respir Res 2010; 11:132. [PMID: 20920222 PMCID: PMC2955663 DOI: 10.1186/1465-9921-11-132] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 09/29/2010] [Indexed: 11/10/2022] Open
Abstract
In recent years, there has been increased interest in the vascular component of airway remodelling in chronic bronchial inflammation, such as asthma and COPD, and in its role in the progression of disease. In particular, the bronchial mucosa in asthmatics is more vascularised, showing a higher number and dimension of vessels and vascular area. Recently, insight has been obtained regarding the pivotal role of vascular endothelial growth factor (VEGF) in promoting vascular remodelling and angiogenesis. Many studies, conducted on biopsies, induced sputum or BAL, have shown the involvement of VEGF and its receptors in the vascular remodelling processes. Presumably, the vascular component of airway remodelling is a complex multi-step phenomenon involving several mediators. Among the common asthma and COPD medications, only inhaled corticosteroids have demonstrated a real ability to reverse all aspects of vascular remodelling. The aim of this review was to analyze the morphological aspects of the vascular component of airway remodelling and the possible mechanisms involved in asthma and COPD. We also focused on the functional and therapeutic implications of the bronchial microvascular changes in asthma and COPD.
Collapse
Affiliation(s)
- Andrea Zanini
- Salvatore Maugeri Foundation, Department of Pneumology, IRCCS Rehabilitation Institute of Tradate, Italy
| | - Alfredo Chetta
- Department of Clinical Sciences, Section of Respiratory Diseases, University of Parma, Italy
| | | | - Antonio Spanevello
- Salvatore Maugeri Foundation, Department of Pneumology, IRCCS Rehabilitation Institute of Tradate, Italy
- Department of Respiratory Disease, University of Insubria, Varese, Italy
| | - Dario Olivieri
- Department of Clinical Sciences, Section of Respiratory Diseases, University of Parma, Italy
| |
Collapse
|
38
|
Jiang H, Zhu YS, Xu H, Sun Y, Li QF. Inflammatory stimulation and hypoxia cooperatively activate HIF-1α in bronchial epithelial cells: involvement of PI3K and NF-κB. Am J Physiol Lung Cell Mol Physiol 2010; 298:L660-9. [PMID: 20139176 DOI: 10.1152/ajplung.00394.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The transcription factor hypoxia-inducible factor (HIF)-1 plays a central physiological role in oxygen and energy homeostasis, and is activated during hypoxia by stabilization of the subunit HIF-1α. Recent studies have demonstrated that non-hypoxic stimuli can also activate HIF-1α in a cell-specific manner. Here, we demonstrate that stimulation of BEAS-2B cells and primary human bronchial epithelial cells by proinflammatory cytokines TNFα/IL-4 strongly induced expression and transcriptional activity of HIF-1α under normoxic conditions and amplified hypoxic HIF-1α activation. TNFα/IL-4 stimulated de novo HIF-1α gene transcription and translation rather than affected HIF-1α protein degradation and mRNA decay process. The activation of HIF-1α by TNFα/IL-4 was countered by the phosphoinositol 3-kinase (PI3K) inhibitor LY-294002 and rapamycin, an antagonist of mammalian target of rapamycin (mTOR), but not by inhibition of the MAPK pathway. In line, TNFα/IL-4 also activated NF-κB, whereas blocking of NF-κB by an inhibitor or silencing NF-κB subunit p65 attenuated HIF-1α activation by TNFα/IL-4. We also found the collaborative induction of VEGF, a potent angiogenic factor required for airway remodeling, by TNFα/IL-4 and hypoxia partially via HIF-1α pathway in BEAS-2B cells. This study reports the previously unsuspected collaborative regulation of HIF-1α by TNFα/IL-4 and hypoxia in bronchial epithelial cells partially via PI3K-mTOR and NF-κB pathway, and thereby will lead to the elucidation of the importance of HIF-1 in integrating inflammatory and hypoxic response in the pathogenesis of airway diseases.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Sen Zhu
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xu
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Sun
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Fang Li
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Lawless MW, O'Byrne KJ, Gray SG. Oxidative stress induced lung cancer and COPD: opportunities for epigenetic therapy. J Cell Mol Med 2009; 13:2800-21. [PMID: 19602054 PMCID: PMC4498937 DOI: 10.1111/j.1582-4934.2009.00845.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) form as a natural by-product of the normal metabolism of oxygen and play important roles within the cell. Under normal circumstances the cell is able to maintain an adequate homeostasis between the formation of ROS and its removal through particular enzymatic pathways or via antioxidants. If however, this balance is disturbed a situation called oxidative stress occurs. Critically, oxidative stress plays important roles in the pathogenesis of many diseases, including cancer. Epigenetics is a process where gene expression is regulated by heritable mechanisms that do not cause any direct changes to the DNA sequence itself, and disruption of epigenetic mechanisms has important implications in disease. Evidence is emerging that histone deacetylases (HDACs) play decisive roles in regulating important cellular oxidative stress pathways including those involved with sensing oxidative stress and those involved with regulating the cellular response to oxidative stress. In particular aberrant regulation of these pathways by HDACs may play critical roles in cancer progression. In this review we discuss the current evidence linking epigenetics and oxidative stress and cancer, using chronic obstructive pulmonary disease and non-small cell lung cancer to illustrate the importance of epigenetics on these pathways within these disease settings.
Collapse
Affiliation(s)
- Matthew W Lawless
- Centre for Liver Disease, School of Medicine and Medical Science, Mater Misericordiae University Hospital, University College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
40
|
Bove PF, Hristova M, Wesley UV, Olson N, Lounsbury KM, van der Vliet A. Inflammatory levels of nitric oxide inhibit airway epithelial cell migration by inhibition of the kinase ERK1/2 and activation of hypoxia-inducible factor-1 alpha. J Biol Chem 2008; 283:17919-28. [PMID: 18424783 DOI: 10.1074/jbc.m709914200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Increased synthesis of NO during airway inflammation, caused by induction of nitric-oxide synthase 2 in several lung cell types, may contribute to epithelial injury and permeability. To investigate the consequence of elevated NO production on epithelial function, we exposed cultured monolayers of human bronchial epithelial cells to the NO donor diethylenetriaamine NONOate. At concentrations generating high nanomolar levels of NO, representative of inflammatory conditions, diethylenetriaamine NONOate markedly reduced wound closure in an in vitro scratch injury model, primarily by inhibiting epithelial cell migration. Analysis of signaling pathways and gene expression profiles indicated a rapid induction of the mitogen-activated protein kinase phosphatase (MPK)-1 and decrease in extracellular signal-regulated kinase (ERK)1/2 activation, as well as marked stabilization of hypoxia-inducible factor (HIF)-1alpha and activation of hypoxia-responsive genes, under these conditions. Inhibition of ERK1/2 signaling using U0126 enhanced HIF-1alpha stabilization, implicating ERK1/2 dephosphorylation as a contributing mechanism in NO-mediated HIF-1alpha activation. Activation of HIF-1alpha by the hypoxia mimic cobalt chloride, or cell transfection with a degradation-resistant HIF-1alpha mutant construct inhibited epithelial wound repair, implicating HIF-1alpha in NO-mediated inhibition of cell migration. Conversely, NO-mediated inhibition of epithelial wound closure was largely prevented after small interfering RNA suppression of HIF-1alpha. Finally, NO-mediated inhibition of cell migration was associated with HIF-1alpha-dependent induction of PAI-1 and activation of p53, both negative regulators of epithelial cell migration. Collectively, our results demonstrate that inflammatory levels of NO inhibit epithelial cell migration, because of suppression of ERK1/2 signaling, and activation of HIF-1alpha and p53, with potential consequences for epithelial repair and remodeling during airway inflammation.
Collapse
Affiliation(s)
- Peter F Bove
- Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|