1
|
Wang L, Hu Z, Guo Q, Yang L, Pang Y, Wang W. MiR-23b functions as an oncogenic miRNA by downregulating Mcl-1S in lung cancer cell line A549. J Biochem Mol Toxicol 2020; 34:e22494. [PMID: 32281274 DOI: 10.1002/jbt.22494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/24/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
It has been reported that microRNA-23b (miR-23b) plays a role in multiple cancers, while its impact on lung cancer has not been comprehensively known. Our study explored the probable impacts of miR-23b on lung cancer cells. Expression of miR-23b was assessed by reverse transcription quantitative polymerase chain reaction. After miR-23b mimic, inhibitor, and their own control were transfected into A549 cells, cell viability, migration, invasion, apoptosis, and epithelial-mesenchymal transition (EMT) were investigated through different experimental methods. The targeting contact between miR-23b and myeloid cell leukemia-1 (Mcl-1) was investigated applying dual-luciferase activity assay. In addition, the modulatory impacts of miR-23b on the splicing variants of Mcl-1 (Mcl-1S and Mcl-1L) were explored. MiR-23b was highly expressed in lung cancer cells compared with normal lung cells. Increased expression of miR-23b promoted A549 cell viability, migration, invasion, and EMT. However, miR-23b silencing produced the opposite results. Mcl-1 has been proven to be a specialized target of miR-23b. Compared with the reduction of Mcl-1S induced by miR-23b overexpression, Mcl-1L showed negligible interaction with miR-23b. Moreover, the antitumor activities of miR-23b silencing were alleviated by Mcl-1S silencing. The blockage of Janus kinase/signal transducer and activator of transcription protein (JAK/STAT) and Wnt/β-catenin induced by miR-23b silencing was reversed by Mcl-1S silencing. MiR-23b might be an up-and-coming biomarker of lung cancer. In addition, miR-23b was involved in the tumor-promoting effects and the mobilization of JAK/STAT and Wnt/β-catenin pathways through the reduction of Mcl-1S.
Collapse
Affiliation(s)
- Ling Wang
- Department of Clinical Laboratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Zhiyi Hu
- Department of Clinical Laboratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Qi Guo
- Department of Clinical Laboratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Litao Yang
- Department of Clinical Laboratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Yuling Pang
- Department of Clinical Laboratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Wei Wang
- Department of Clinical Laboratory, Henan Provincial Chest Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Gao ZY, Liu Z, Bi MH, Zhang JJ, Han ZQ, Han X, Wang HY, Sun GP, Liu H. Metformin induces apoptosis via a mitochondria-mediated pathway in human breast cancer cells in vitro. Exp Ther Med 2016; 11:1700-1706. [PMID: 27168791 PMCID: PMC4840526 DOI: 10.3892/etm.2016.3143] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 12/18/2015] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most commonly occurring cancer and second leading cause of mortality in women. Metformin is a widely prescribed anti-hyperglycemic drug, which is emerging as a potential cancer preventative and treatment agent. However, the mechanisms underlying the suppressive effects of metformin on cancer cell growth and the induction of cancer cell apoptosis are not fully elucidated. The present study aimed to identify the pathways regulated by metformin in two breast cancer cell lines, MDA-MB-231 and MDA-MB-435. Cells were treated with various concentrations of metformin and then evaluated with respect to viability, proliferation, adenosine triphosphate (ATP) and reactive oxygen species (ROS) levels, mitochondrial membrane potential (∆ψm), and the expression of anti- and pro-apoptotic proteins. Metformin caused apoptosis in a concentration- and time-dependent manner, and decreased cell viability and ATP production. Furthermore, metformin induced the generation of ROS and decreased the ∆ψm. Moreover, metformin downregulated the expression of the anti-apoptotic proteins B-cell lymphoma 2 (BCL-2) and myeloid cell leukemia-1, and upregulated the expression of the pro-apoptotic BCL-2-associated X protein in MDA-MB-231 cells. These results demonstrate that the apoptotic and cytotoxic effects of metformin on breast cancer cells are mediated by the intrinsic mitochondria-mediated apoptosis pathway.
Collapse
Affiliation(s)
- Zhen-Yuan Gao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032. P.R. China
| | - Zhe Liu
- Faculty of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu, Anhui 233030, P.R. China
| | - Ming-Hong Bi
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233022, P.R. China
| | - Jing-Jing Zhang
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233022, P.R. China
| | - Zheng-Quan Han
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233022, P.R. China
| | - Xiao Han
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233022, P.R. China
| | - Hong-Ya Wang
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233022, P.R. China
| | - Guo-Ping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032. P.R. China
| | - Hao Liu
- Faculty of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
3
|
JIN GONGSHENG, LAN YADONG, HAN FUSHENG, SUN YIMING, LIU ZHE, ZHANG MINGLIANG, LIU XIANFU, ZHANG XIAOJING, HU JIANGUO, LIU HAO, WANG BENZHONG. Smac mimetic-induced caspase-independent necroptosis requires RIP1 in breast cancer. Mol Med Rep 2016; 13:359-66. [DOI: 10.3892/mmr.2015.4542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022] Open
|
4
|
Sachita K, Kim Y, Yu HJ, Cho SD, Lee JS. In Vitro Assessment of the Anticancer Potential of Evodiamine in Human Oral Cancer Cell Lines. Phytother Res 2015; 29:1145-51. [PMID: 25903972 DOI: 10.1002/ptr.5359] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 11/10/2022]
Abstract
Evodiamine, a bioactive alkaloid, has been regarded as having antioxidant, antiinflammatory, and anticancer properties. In the present study, we explored the effects of evodiamine on cell growth and apoptosis in human oral cancer cell lines. Our data revealed that evodiamine significantly inhibited the proliferation of human oral cancer cells and resulted in the cleavages of PARP (poly (ADP-ribose) polymerase) and caspase-3, in addition to causing the typical characteristics of apoptosis. Evodiamine also increased Bax protein levels and caused translocation of Bax into mitochondria and Bax oligomerization. In addition, evodiamine decreased expression of myeloid cell leukemia (Mcl-1) at the transcriptional modification, and knockdown of Mcl-1 clearly resulted in an increase in expression of Bax and active Bax, resulting in induction of apoptosis. Evodiamine reduced expression of phosphorylated AKT, and LY294002 potentiated evodiamine-induced apoptosis by regulating Mcl-1 protein. Our results suggest that evodiamine induces apoptosis in human oral cancer cells through the AKT pathway. These findings provide a rationale for its clinical application in the treatment of oral cancer.
Collapse
Affiliation(s)
- Khadka Sachita
- Department of Oral Pathology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National University, Jeonju, 561-756, Korea
| | - Yongsoo Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonbuk National University, Jeonju, 561-756, Korea
| | - Hyun-Ju Yu
- Department of Oral Pathology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National University, Jeonju, 561-756, Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry, and Institute of Oral Bioscience, Chonbuk National University, Jeonju, 561-756, Korea
| | - Jeong-Sang Lee
- Food Industry Research Institute, Department of Health and Functional Food, College of Medical Science, Jeonju University, Jeonju, 560-759, Korea
| |
Collapse
|
5
|
3-Bromopyruvate induces apoptosis in breast cancer cells by downregulating Mcl-1 through the PI3K/Akt signaling pathway. Anticancer Drugs 2014; 25:447-55. [PMID: 24492287 DOI: 10.1097/cad.0000000000000081] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hexokinase inhibitor 3-bromopyruvate (3-BrPA) can inhibit glycolysis in tumor cells to reduce ATP production, resulting in apoptosis. However, as 3-BrPA is an alkylating agent, its cytotoxic action may be induced by other molecular mechanisms. The results presented here reveal that 3-BrPA-induced apoptosis is caspase independent. Further, 3-BrPA induces the generation of reactive oxygen species in MDA-MB-231 cells, leading to mitochondria-mediated apoptosis. These results suggest that caspase-independent apoptosis may be induced by the generation of reactive oxygen species. In this study, we also demonstrated that 3-BrPA induces apoptosis through the downregulation of myeloid cell leukemia-1 (Mcl-1) in MDA-MB-231 breast cancer cells. The results of Mcl-1 knockdown indicate that Mcl-1 plays an important role in 3-BrPA-induced apoptosis. Further, the upregulation of Mcl-1 expression in 3-BrPA-treated MDA-MB-231 cells significantly increases cell viability. In addition, 3-BrPA treatment resulted in the downregulation of p-Akt, suggesting that 3-BrPA may downregulate Mcl-1 through the phosphoinositide-3-kinase/Akt pathway. These findings indicate that 3-BrPA induces apoptosis in breast cancer cells by downregulating Mcl-1 through the phosphoinositide-3-kinase/Akt signaling pathway.
Collapse
|