1
|
Liu Y, Hatano K, Nonomura N. Liquid Biomarkers in Prostate Cancer Diagnosis: Current Status and Emerging Prospects. World J Mens Health 2025; 43:8-27. [PMID: 38772530 PMCID: PMC11704174 DOI: 10.5534/wjmh.230386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 05/23/2024] Open
Abstract
Prostate cancer (PCa) is a major health concern that necessitates appropriate diagnostic approaches for timely intervention. This review critically evaluates the role of liquid biopsy techniques, focusing on blood- and urine-based biomarkers, in overcoming the limitations of conventional diagnostic methods. The 4Kscore test and Prostate Health Index have demonstrated efficacy in distinguishing PCa from benign conditions. Urinary biomarker tests such as PCa antigen 3, MyProstateScore, SelectMDx, and ExoDx Prostate IntelliScore test have revolutionized risk stratification and minimized unnecessary biopsies. Emerging biomarkers, including non-coding RNAs, circulating tumor DNA, and prostate-specific antigen (PSA) glycosylation, offer valuable insights into PCa biology, enabling personalized treatment strategies. Advancements in non-invasive liquid biomarkers for PCa diagnosis may facilitate the stratification of patients and avoid unnecessary biopsies, particularly when PSA is in the gray area of 4 to 10 ng/mL.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
2
|
Agbetuyi-Tayo P, Gbadebo M, Rotimi OA, Rotimi SO. Advancements in Biomarkers of Prostate Cancer: A Review. Technol Cancer Res Treat 2024; 23:15330338241290029. [PMID: 39440372 PMCID: PMC11497500 DOI: 10.1177/15330338241290029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent and deadly cancers among men, particularly affecting men of African descent and contributing significantly to cancer-related morbidity and mortality worldwide. The disease varies widely, from slow-developing forms to highly aggressive or potentially fatal variants. Accurate risk stratification is crucial for making therapeutic decisions and designing adequate clinical trials. This review assesses a broad spectrum of diagnostic and prognostic biomarkers, many of which are incorporated into clinical guidelines, including the Prostate Health Index (PHI), 4Kscore, STHLM3, PCA3, SelectMDx, ExoDx Prostate Intelliscore (EPI), and MiPS. It also highlights emerging biomarkers with preclinical support, such as urinary non-coding RNAs and DNA methylation patterns. Additionally, the review explores the role of tumor-associated microbiota in PCa, offering new insights into its potential contributions to disease understanding. By examining the latest advancements in PCa biomarkers, this review enhances understanding their roles in disease management.
Collapse
Affiliation(s)
- Praise Agbetuyi-Tayo
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Mary Gbadebo
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Oluwakemi A. Rotimi
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Solomon O. Rotimi
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| |
Collapse
|
3
|
Matulevičius A, Žukauskaitė K, Gineikaitė R, Dasevičius D, Trakymas M, Naruševičiūtė I, Ušinskienė J, Ulys A, Jankevičius F, Jarmalaitė S. Combination of DNA methylation biomarkers with multiparametric magnetic resonance and ultrasound imaging fusion biopsy to detect the local spread of prostate cancer. Prostate 2023; 83:1572-1583. [PMID: 37614027 DOI: 10.1002/pros.24615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/04/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND This study aimed to investigate the extent of field cancerization adjacent to index lesions in prostate cancer (PCa) by measuring DNA methylation of selected tumor suppressor genes in the perifocal tissue of PCa not visible on multiparametric magnetic resonanse imaging (mpMRI) for the safe zone of focal therapy identification. METHODS A total of 272 patients were enrolled in this study, 44 patients' tissue biosamples were included in the field cancerization research, and 272 urine samples were included in the urine-based test development. Targeted biopsies were performed using the mpMRI/ultrasoundimage fusion system. RESULTS Quantitative analysis revealed significantly higher DNA methylation levels of RARB, RASSF1, GSTP1 & APC genes in the index lesion compared with perifocal tissue samples 10 mm away from it (p < 0.0001). Notably, the RARB, GSTP1 & APC and RARB, RASSF1, GSTP1 & APC biomarker combinations exhibited the highest sensitivity and specificity comparing the extent of DNA methylation in index lesions and noncancerous prostate tissues 20 mm away (both area under the curve [AUC] = 0.98; p < 0.0001). The analysis of the potential urinary biomarkers showed that the combination of all four DNA methylation biomarkers with prostate-specific antigen (PSA) or PSA density (PSAD) in the blood significantly improves the detection of clinically significant PCa (csPCa). The combination of the four-biomarker test with PSAD allowed the identification of csPCa with ≥90% sensitivity and specificity. CONCLUSION Thus, this study suggests that for focal therapy by region target hemi-ablation, the safe distance from the index lesion is no less than 10 mm. Noninvasive urine DNA methylation tests in combination with PSAD could be used for further follow-up of the patients, but larger prospective studies with external validation are needed.
Collapse
Affiliation(s)
- Augustinas Matulevičius
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- National Cancer Institute, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Kristina Žukauskaitė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- National Cancer Institute, Vilnius, Lithuania
| | | | - Darius Dasevičius
- National Centre of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | | | | | | | | | - Feliksas Jankevičius
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Sonata Jarmalaitė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- National Cancer Institute, Vilnius, Lithuania
| |
Collapse
|
4
|
Roy P, Singh KP. Epigenetic mechanism of therapeutic resistance and potential of epigenetic therapeutics in chemorefractory prostate cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:173-210. [PMID: 37657858 DOI: 10.1016/bs.ircmb.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Prostate cancer is the second leading cause of cancer death among men in the United States. Depending upon the histopathological subtypes of prostate cancers, various therapeutic options, such as androgen deprivation therapy (ADT), androgen receptor signaling inhibitors (ARSI), immunotherapy, and chemotherapy, are available to treat prostate cancer. While these therapeutics are effective in the initial stages during treatments, the tumors subsequently develop resistance to these therapies. Despite all the progress made so far, therapeutic resistance remains a major challenge in the treatment of prostate cancer. Although various mechanisms have been reported for the resistance development in prostate cancer, altered expression of genes either directly or indirectly involved in drug response pathways is a common event. In addition to the genetic basis of gene regulation such as mutations and gene amplifications, epigenetic alterations involved in the aberrant expression of genes have frequently been shown to be associated not only with cancer initiation and progression but also with therapeutic resistance development. There are several review articles compiling reports on genetic mechanisms involved in therapeutic resistance in prostate cancer. However, epigenetic mechanisms for the therapeutic resistance development in prostate cancer have not yet been summarized in a review article. Therefore, the objective of this article is to compile various reports and provide a comprehensive review of the epigenetic aberrations, and aberrant expression of genes by epigenetic mechanisms involved in CRPCs and therapeutic resistance development in prostate cancer. Additionally, the potential of epigenetic-based therapeutics in the treatment of chemorefractory prostate cancer as evidenced by clinical trials has also been discussed.
Collapse
Affiliation(s)
- Priti Roy
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, United States
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
5
|
Analysis of Intrinsic Breast Cancer Subtypes: The Clinical Utility of Epigenetic Biomarkers and TP53 Mutation Status in Triple-Negative Cases. Int J Mol Sci 2022; 23:ijms232315429. [PMID: 36499753 PMCID: PMC9741387 DOI: 10.3390/ijms232315429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
This study aimed at analyzing the DNA methylation pattern and TP53 mutation status of intrinsic breast cancer (BC) subtypes for improved characterization and survival prediction. DNA methylation of 17 genes was tested by methylation-specific PCR in 116 non-familial BRCA mutation-negative BC and 29 control noncancerous cases. At least one gene methylation was detected in all BC specimens and a 10-gene panel statistically significantly separated tumors from noncancerous breast tissues. Methylation of FILIP1L and MT1E was predominant in triple-negative (TN) BC, while other BC subtypes were characterized by RASSF1, PRKCB, MT1G, APC, and RUNX3 hypermethylation. TP53 mutation (TP53-mut) was found in 38% of sequenced samples and mainly affected TN BC cases (87%). Cox analysis revealed that TN status, age at diagnosis, and RUNX3 methylation are independent prognostic factors for overall survival (OS) in BC. The combinations of methylated biomarkers, RUNX3 with MT1E or FILIP1L, were also predictive for shorter OS, whereas methylated FILIP1L was predictive of a poor outcome in the TP53-mut subgroup. Therefore, DNA methylation patterns of specific genes significantly separate BC from noncancerous breast tissues and distinguishes TN cases from non-TN BC, whereas the combination of two-to-three epigenetic biomarkers can be an informative tool for BC outcome predictions.
Collapse
|
6
|
Ge Q, Lu M, Ju L, Qian K, Wang G, Wu CL, Liu X, Xiao Y, Wang X. miR-4324-RACGAP1-STAT3-ESR1 feedback loop inhibits proliferation and metastasis of bladder cancer. Int J Cancer 2019; 144:3043-3055. [PMID: 30511377 DOI: 10.1002/ijc.32036] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Considering the importance of microRNAs (miRNAs) in regulating cellular processes, we performed microarray analysis and revealed miR-4324 as one of the most differentially expressed miRNAs in bladder cancer (BCa). Then, we discovered that miR-4324 was a negative regulator of Rac GTPase activating protein 1 (RACGAP1) and that RACGAP1 functioned as an oncogenic protein in BCa. Our studies indicated that ectopic overexpression of miR-4324 in BCa cells significantly suppressed cell proliferation and metastasis and enhanced chemotherapy sensitivity to doxorubicin by repressing RACGAP1 expression. Further studies showed that estrogen receptor 1 (ESR1) increased the expression of miR-4324 by binding to its promoter, while the downregulation of ESR1 in BCa was caused by hypermethylation of its promoter. p-STAT3 induced the enrichment of DNMT3B by binding to the ESR1 promoter and then induced methylation of the ESR1 promoter. In turn, RACGAP1 induced STAT3 phosphorylation, increasing p-STAT3 expression and promoting its translocation to the nucleus. Therefore, the miR-4324-RACGAP1-STAT3-ESR1 feedback loop could be a critical regulator of BCa progression.
Collapse
Affiliation(s)
- Qiangqiang Ge
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxin Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, D.C., USA
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Research Institute, Wuhan University, Wuhan, China.,Urological Clinical Research Center of Laparoscopy in Hubei Province, Wuhan, China
| |
Collapse
|
7
|
Nowacka-Zawisza M, Wiśnik E. DNA methylation and histone modifications as epigenetic regulation in prostate cancer (Review). Oncol Rep 2017; 38:2587-2596. [PMID: 29048620 DOI: 10.3892/or.2017.5972] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/24/2017] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer is the second most commonly diagnosed cancer in men in Poland after lung cancer and the third leading cause of cancer-related mortality after lung and colon cancer. The etiology of most cases of prostate cancer are not fully known, and therefore it is essential to search for the molecular basis of prostate cancer and markers for the early diagnosis of this type of cancer. Epigenetics deals with changes in gene expression that are not determined by changes in the DNA sequence. Epigenetic changes refer to changes in the structure of DNA, which are the result of DNA modification after replication and/or post-translational modification of proteins associated with DNA. In contrast to mutations, epigenetic changes are reversible and occur very rapidly. The major epigenetic mechanisms include DNA methylation, modification of histone proteins, chemical modification and chromatin remodeling changes in gene expression caused by microRNAs (miRNAs). Epigenetic changes play an important role in malignant transformation and can be specific to types of cancers including prostate cancer.
Collapse
Affiliation(s)
- Maria Nowacka-Zawisza
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Ewelina Wiśnik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
8
|
Bhat S, Kabekkodu SP, Jayaprakash C, Radhakrishnan R, Ray S, Satyamoorthy K. Gene promoter-associated CpG island hypermethylation in squamous cell carcinoma of the tongue. Virchows Arch 2017; 470:445-454. [PMID: 28255813 DOI: 10.1007/s00428-017-2094-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/28/2016] [Accepted: 02/15/2017] [Indexed: 01/10/2023]
Abstract
The present study was undertaken to explore and validate novel hypermethylated DNA regions in squamous cell carcinoma of the tongue (SCCT). Genome-wide methylation changes were identified by differential methylation hybridization (DMH) microarray and validated by bisulfite genome sequencing (BGS). The results were compared against datasets from The Cancer Genome Atlas head and neck squamous cell carcinoma (TCGA-HNSCC), Gene Expression Omnibus (GSE26549), and ArrayExpress (E-MTAB-1328). DMH identified 116 hypomethylated and 241 hypermethylated regions. Of the latter, 24 were localized to promoter or 5'-UTR regions. By BGS, promoter sequences of DAPK1, LRPPRC, RAB6C, and ZNF471 were significantly hypermethylated in tumors when compared with matched normal tissues (P < 0.0001). A TCGA-HNSCC dataset (516 cases of cancer and 50 normal tissue samples) further confirmed hypermethylation of DAPK1, RAB6C, and ZNF471. Sensitivity and specificity of methylation markers for a diagnosis of cancer were in the range of 70-100% in our study and from TCGA-HNSCC datasets, with an area under curve (AUC) of 0.83 and above. Kaplan-Meier survival analysis of TCGA-HNSCC expression data revealed that patients with low expressions of DAPK1, RAB6C, and ZNF471 showed poorer survival than patients with high expression (P = 0.02). Human papillomavirus (HPV) was found in 55% of cases, HPV16 being the predominant genotype. DAPK1 immunohistochemical staining was lower in SCCT than in normal buccal epithelial cells. This is the first study to report hypermethylation of LRPPRC, RAB6C, and ZNF471 in SCCT and its diagnostic and prognostic potentials in a specific head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Samatha Bhat
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Chinchu Jayaprakash
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal University, Manipal, 576104, India
| | - Satadru Ray
- Department of Surgical Oncology, Kasturba Medical College, Manipal University, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, Karnataka, 576104, India.
| |
Collapse
|
9
|
Abstract
Nuclear receptors (NR) act as an integrated conduit for environmental and hormonal signals to govern genomic responses, which relate to cell fate decisions. We review how their integrated actions with each other, shared co-factors and other transcription factors are disrupted in cancer. Steroid hormone nuclear receptors are oncogenic drivers in breast and prostate cancer and blockade of signaling is a major therapeutic goal. By contrast to blockade of receptors, in other cancers enhanced receptor function is attractive, as illustrated initially with targeting of retinoic acid receptors in leukemia. In the post-genomic era large consortia, such as The Cancer Genome Atlas, have developed a remarkable volume of genomic data with which to examine multiple aspects of nuclear receptor status in a pan-cancer manner. Therefore to extend the review of NR function we have also undertaken bioinformatics analyses of NR expression in over 3000 tumors, spread across six different tumor types (bladder, breast, colon, head and neck, liver and prostate). Specifically, to ask how the NR expression was distorted (altered expression, mutation and CNV) we have applied bootstrapping approaches to simulate data for comparison, and also compared these NR findings to 12 other transcription factor families. Nuclear receptors were uniquely and uniformly downregulated across all six tumor types, more than predicted by chance. These approaches also revealed that each tumor type had a specific NR expression profile but these were most similar between breast and prostate cancer. Some NRs were down-regulated in at least five tumor types (e.g. NR3C2/MR and NR5A2/LRH-1)) whereas others were uniquely down-regulated in one tumor (e.g. NR1B3/RARG). The downregulation was not driven by copy number variation or mutation and epigenetic mechanisms maybe responsible for the altered nuclear receptor expression.
Collapse
Affiliation(s)
- Mark D Long
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Moray J Campbell
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| |
Collapse
|
10
|
In this issue. Virchows Arch 2015. [DOI: 10.1007/s00428-014-1708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|