1
|
Liu JS, Cai YX, He YZ, Xu J, Tian SF, Li ZQ. Spatial and temporal heterogeneity of tumor immune microenvironment between primary tumor and brain metastases in NSCLC. BMC Cancer 2024; 24:123. [PMID: 38267913 PMCID: PMC10809508 DOI: 10.1186/s12885-024-11875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/13/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Brain metastasis is a common outcome in non-small cell lung cancer, and despite aggressive treatment, its clinical outcome is still frustrating. In recent years, immunotherapy has been developing rapidly, however, its therapeutic outcomes for primary lung cancer and brain metastases are not the same, suggesting that there may be differences in the immune microenvironment of primary lung cancer and brain metastases, however, we currently know little about these differences. METHODS Seventeen paired samples of NSCLC and their brain metastases and 45 other unpaired brain metastases samples were collected for the current study. Immunohistochemical staining was performed on all samples for the following markers: immune checkpoints CTLA-4, PD-1, PD-L1, B7-H3, B7-H4, IDO1, and EphA2; tumor-infiltrating lymphocytes (TILs) CD3, CD4, CD8, and CD20; tumor-associated microglia/macrophages (TAMs) CD68 and CD163; and tumor proliferation index Ki-67. The differences in expression of these markers were compared in 17 paired samples, and the effect of the expression level of these markers on the prognosis of patients was analyzed in lung adenocarcinoma brain metastases samples. Subsequently, multiplex immunofluorescence staining was performed in a typical lung-brain paired sample based on the aforementioned results. The multiplex immunofluorescence staining results revealed the difference in tumor immune microenvironment between primary NSCLC and brain metastases. RESULTS In 17 paired lesions, the infiltration of CTLA-4+ (P = 0.461), PD-1+ (P = 0.106), CD3+ (P = 0.045), CD4+ (P = 0.037), CD8+ (P = 0.008), and CD20+ (P = 0.029) TILs in brain metastases were significantly decreased compared with primary tumors. No statistically significant difference was observed in the CD68 (P = 0.954) and CD163 (P = 0.654) TAM infiltration between primary NSCLC and paired brain metastases. In all the brain metastases lesions, the expression of PD-L1 is related to the time interval of brain metastases in NSCLC. In addition, the Cox proportional hazards regression models showed high expression of B7-H4 (hazard ratio [HR] = 3.276, 95% confidence interval [CI] 1.335-8.041, P = 0.010) and CD68 TAM infiltration (HR = 3.775, 95% CI 1.419-10.044, P = 0.008) were independent prognosis factors for lung adenocarcinoma brain metastases patients. CONCLUSIONS Both temporal and spatial heterogeneity is present between the primary tumor and brain metastases of NCSLC. Brain metastases lesions exhibit a more immunosuppressive tumor immune microenvironment. B7-H4 and CD68+ TAMs may have potential therapeutic value for lung adenocarcinoma brain metastases patients.
Collapse
Affiliation(s)
- Jin-Sheng Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430062, Wuhan, China
| | - Yu-Xiang Cai
- Department of Pathology, Zhongnan Hospital of Wuhan University, 430062, Wuhan, China
| | - Yong-Ze He
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430062, Wuhan, China
| | - Jian Xu
- Department of Pathology, Zhongnan Hospital of Wuhan University, 430062, Wuhan, China
| | - Su-Fang Tian
- Department of Pathology, Zhongnan Hospital of Wuhan University, 430062, Wuhan, China.
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 430062, Wuhan, China.
| |
Collapse
|
2
|
Bessede A, Peyraud F, Le Moulec S, Cousin S, Cabart M, Chomy F, Rey C, Lara O, Odin O, Nafia I, Guegan JP, Italiano A. Upregulation of Indoleamine 2,3-Dioxygenase 1 in Tumor Cells and Tertiary Lymphoid Structures is a Hallmark of Inflamed Non-Small Cell Lung Cancer. Clin Cancer Res 2023; 29:4883-4893. [PMID: 37756581 PMCID: PMC10690088 DOI: 10.1158/1078-0432.ccr-23-1928] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/28/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE Overexpression of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) has been reported in several tumor types, including non-small cell lung cancer (NSCLC), and has been shown to promote tumor-immune evasion and inhibit T-cell activation through increased tryptophan degradation and the production of several immunosuppressive metabolites collectively known as kynurenines. However, it remains unclear whether IDO1 expression by tumor cells is detrimental specifically in the context of programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) axis blockade. EXPERIMENTAL DESIGN We analyzed the transcriptome of 891 NSCLC tumor samples from patients enrolled in two large randomized clinical trials investigating the safety and activity of atezolizumab, a humanized IgG1 mAb that targets PD-L1, versus docetaxel in patients with advanced NSCLC. We complemented these transcriptomics results at the protein level by using multiplex immunofluorescence and at the functional level with in vitro experiments. RESULTS The increased expression of the tryptophan-catabolizing enzyme IDO1 was significantly associated with improved objective response, progression-free survival, and overall survival in patients treated with PD-L1 inhibitors, but not in those treated with chemotherapy. Strikingly, inflamed tumors had higher levels of IDO1, and IDO1 was also expressed in tertiary lymphoid structures (TLS) by mature follicular dendritic cells. L-kynurenine impaired the differentiation of antibody-producing B cells induced by follicular helper T (Tfh)/B-cell interactions, a hallmark process within TLS. CONCLUSIONS IDO1 pathway in NSCLC is driven by the immune system rather than by tumor cells. Targeting IDO1 in combination with anti-PD-1/PD-L1 might be beneficial only in patients with inflamed tumors and particularly in those bearing TLS.
Collapse
Affiliation(s)
| | | | - Sylvestre Le Moulec
- Department of Medicine, Centre Hospitalier de Mont de Marsan, Mont de Marsan, France
| | | | | | | | | | | | | | | | | | - Antoine Italiano
- Department of Medicine, Institut Bergonié, Bordeaux, France
- DITEP, Gustave Roussy, Villejuif, France
- Faculty of Medicine, University of Bordeaux, Bordeaux, France
| |
Collapse
|
3
|
Mandarano M, Pelliccia C, Tomasello L, Caselli E, Floridi C, Loreti E, Barberini F, Rulli A, Gili A, Potenza R, Puma F, Rosati E, Donini A, Petrina A, Baccari P, Del Sordo R, Colella R, Bellezza G, Sidoni A. A New Medium (HistoCold) for Surgical Specimens Preserving to Improve the Preanalytic Issues in Histopathological Samples Handling: Morphologic and Antigenic Analysis. Biopreserv Biobank 2023; 21:610-623. [PMID: 37192479 DOI: 10.1089/bio.2022.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Introduction: The onset of precision medicine has led to the integration of traditional morphologic tissues evaluation with biochemical and molecular data for a more appropriate pathological diagnosis. The preanalytic phase and, particularly, timing of cold ischemia are crucial to guarantee high-quality biorepositories of formalin-fixed paraffin-embedded (FFPE) tissues for patients' needs and scientific research. However, delayed fixation using the gold-standard and carcinogenic fixative neutral-buffered formalin (NBF) can be a significant limitation to diagnosis and biopathological characterization. HistoCold (patented; Bio-Optica Milano S.p.A., Milano, Italy) is a nontoxic, stable, and refrigerated preservative solution for tissue handling. This study examined HistoCold's potential role in improving the preanalytic phase of the pathological diagnostic process. Materials and Methods: Breast, lung, or colorectal cancers (20, 25, and 10 cases, respectively) that were to be surgically resected were recruited between 2019 and 2021. Once specimens were surgically removed, three residual samples for each patient were first promptly immersed into HistoCold for 24, 48, and 72 hours and then FFPE. These were compared with routine specimens regarding morphologic features (hematoxylin and eosin) and tissue antigenicity (immunohistochemical stains). Results: Good concordance regarding both the morphologic characteristics of the neoplasms and their proteins expression between the routine and HistoCold handled tissues were found. The tissue handling with the solution never affected the histopathological diagnosis. Conclusions: The use of HistoCold for samples transporting is easy, allows for improving the management of cold ischemia time, and monitoring the fixation times in NBF, resulting in good quality tissue blocks for biobanking. Moreover, it could be a candidate to eliminate formalin from operating theaters. HistoCold looks very promising for the preanalytic phase of human tissues handling in the era of precision medicine, to provide the best service to patients, and to scientific research.
Collapse
Affiliation(s)
- Martina Mandarano
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cristina Pelliccia
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Laura Tomasello
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Emanuele Caselli
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudia Floridi
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elisabetta Loreti
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesco Barberini
- Breast Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Antonio Rulli
- Breast Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alessio Gili
- Section of Public Health, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rossella Potenza
- Thoracic Surgery Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesco Puma
- Thoracic Surgery Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Emanuele Rosati
- Section of General and Emergency Surgery, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Annibale Donini
- Section of General and Emergency Surgery, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Adolfo Petrina
- General Surgery Unit, S.M. Misericordia Hospital, Perugia, Italy
| | - Paolo Baccari
- General Surgery Unit, S.M. Misericordia Hospital, Perugia, Italy
| | - Rachele Del Sordo
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Renato Colella
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Guido Bellezza
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Angelo Sidoni
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Najjary S, Kros JM, de Koning W, Vadgama D, Lila K, Wolf J, Mustafa DAM. Tumor lineage-specific immune response in brain metastatic disease: opportunities for targeted immunotherapy regimen? Acta Neuropathol Commun 2023; 11:64. [PMID: 37061716 PMCID: PMC10105417 DOI: 10.1186/s40478-023-01542-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/05/2023] [Indexed: 04/17/2023] Open
Abstract
Metastases in the brain are the most severe and devastating complication of cancer. The incidence of brain metastasis is increasing. Therefore, the need of finding specific druggable targets for brain metastasis is demanding. The aim of this study was to compare the brain (immune) response to brain metastases of the most common tumor lineages, viz., lung adenocarcinoma and breast cancer. Targeted gene expression profiles of 11 brain metastasis of lung adenocarcinoma (BM-LUAD) were compared to 11 brain metastasis of breast cancer (BCBM) using NanoString nCounter PanCancer IO 360™ Panel. The most promising results were validated spatially using the novel GeoMx™ Digital Spatial Profiler (DSP) Technology. Additionally, Immune cell profiles and expression of drug targets were validated by multiplex immunohistochemistry. We found a more active immune response in BM-LUAD as compared to BCBM. In the BM-LUAD, 138 genes were upregulated as compared to BCBM (adj. p ≤ 0.05). Conversely, in BCBM 28 genes were upregulated (adj. p ≤ 0.05). Additionally, genes related to CD45 + cells, T cells, and cytotoxic T cells showed to be expressed higher in BM-LUAD compared to BCBM (adj. p = 0.01, adj. p = 0.023, adj. p = 0.023, respectively). The spatial quantification of the immune cells using the GeoMx DSP technique revealed the significantly higher quantification of CD14 and CD163 in tumor regions of BM-LUAD as compared to BCBM. Importantly, the immune checkpoint VISTA and IDO1 were identified as highly expressed in the BM-LUAD. Multiplex immunohistochemistry confirmed the finding and showed that VISTA is expressed mainly in BM-LUAD tumor cells, CD3 + cells, and to fewer levels in some microglial cells in BM-LUAD. This is the first report on differences in the brain immune response between metastatic tumors of different lineages. We found a far more extensive infiltration of immune cells in BM-LUAD as compared to BCBM. In addition, we found higher expression of VISTA and IDO1 in BM-LUAD. Taken together, targeted immune therapy should be considered to treat patients with BM-LUAD.
Collapse
Affiliation(s)
- Shiva Najjary
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Johan M Kros
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Willem de Koning
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Disha Vadgama
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Karishma Lila
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Janina Wolf
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute of Tissue Medicine and Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Dana A M Mustafa
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Ying H, Hang Q, Cheng G, Yang S, Lai X, Fang M. Impact of the immune molecular profile of the tumor microenvironment on the prognosis of NSCLC. Oncol Lett 2023; 25:131. [PMID: 36844625 PMCID: PMC9950347 DOI: 10.3892/ol.2023.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
The present study aimed to clarify the association between macrophages, tumor neo-vessels and programmed cell death-ligand 1 (PD-L1) in the tumor microenvironment and the clinicopathological features of patients with non-small cell lung cancer (NSCLC), and to explore the prognostic factors of stromal features in NSCLC. To determine this, tissue microarrays containing samples of 92 patients with NSCLC were studied using immunohistochemistry and immunofluorescence. The quantitative data demonstrated that in tumor islets, the number of CD68+ and CD206+ tumor-associated macrophages (TAMs) was 8-348 (median, 131) and 2-220 (median, 52), respectively (P<0.001). In tumor stroma, the number of CD68+ and CD206+ TAMs was 23-412 (median, 169) and 7-358 (median, 81), respectively (P<0.001). The number of CD68+ TAMs in each location of the tumor islets and tumor stroma was significantly higher than that of CD206+ TAMs, and they were significantly correlated (P<0.0001). The quantitative density of CD105 and PD-L1 in tumor tissues was 19-368 (median, 156) and 9-493 (median, 103), respectively. Survival analysis revealed that a high density of CD68+ TAMs in tumor stroma and islets and a high density of CD206+ TAMs and PD-L1 in tumor stroma were associated with worse prognosis (both P<0.05). Collectively, the survival analysis demonstrated that the high-density group was related to a worse prognosis regardless of combined neo-vessels and PD-L1 expression with the CD68+ TAMs in tumor islets and stroma, or CD206+ TAMs in tumor islets and stroma. To the best of our knowledge, the present study was the first to provide a multi-component combined prognostic survival analysis of different types of macrophages in different regions with tumor neo-vessels and PD-L1, which demonstrated the importance of macrophages in tumor stroma.
Collapse
Affiliation(s)
- Hangjie Ying
- Zhejiang Cancer Institute, The Cancer Hospital of The University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China,Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Qingqing Hang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Guoping Cheng
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China,Department of Pathology, The Cancer Hospital of The University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Shifeng Yang
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China,Department of Pathology, The Cancer Hospital of The University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China
| | - Xiaojing Lai
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China,Key Laboratory of Radiation Oncology of Zhejiang Province, Department of Thoracic Radiotherapy, The Cancer Hospital of The University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China,Correspondence to: Dr Min Fang or Dr Xiaojing Lai, Key Laboratory of Radiation Oncology of Zhejiang Province, Department of Thoracic Radiotherapy, The Cancer Hospital of The University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 1 Banshan East Road, Gongshu, Hangzhou, Zhejiang 310022, P.R. China, E-mail:
| | - Min Fang
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China,Key Laboratory of Radiation Oncology of Zhejiang Province, Department of Thoracic Radiotherapy, The Cancer Hospital of The University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P.R. China,Correspondence to: Dr Min Fang or Dr Xiaojing Lai, Key Laboratory of Radiation Oncology of Zhejiang Province, Department of Thoracic Radiotherapy, The Cancer Hospital of The University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 1 Banshan East Road, Gongshu, Hangzhou, Zhejiang 310022, P.R. China, E-mail:
| |
Collapse
|
6
|
Liang F, Wang GZ, Wang Y, Yang YN, Wen ZS, Chen DN, Fang WF, Zhang B, Yang L, Zhang C, Han SC, Yang FY, Wang D, Liang LJ, Wang Z, Zhao Y, Wang CL, Zhang L, Zhou GB. Tobacco carcinogen induces tryptophan metabolism and immune suppression via induction of indoleamine 2,3-dioxygenase 1. Signal Transduct Target Ther 2022; 7:311. [PMID: 36068203 PMCID: PMC9448807 DOI: 10.1038/s41392-022-01127-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), the enzyme that catabolizes tryptophan (Trp) metabolism to promote regulatory T cells (Tregs) and suppress CD8+ T cells, is regulated by several intrinsic signaling pathways. Here, we found that tobacco smoke, a major public health concern that kills 8 million people each year worldwide, induced IDO1 in normal and malignant lung epithelial cells in vitro and in vivo. The carcinogen nicotine-derived nitrosaminoketone (NNK) was the tobacco compound that upregulated IDO1 via activation of the transcription factor c-Jun, which has a binding site for the IDO1 promoter. The NNK receptor α7 nicotinic acetylcholine receptor (α7nAChR) was required for NNK-induced c-Jun activation and IDO1 upregulation. In A/J mice, NNK reduced CD8+ T cells and increased Tregs. Clinically, smoker patients with non-small-cell lung cancer (NSCLC) exhibited high IDO1 levels and low Trp/kynurenine (Kyn) ratios. In NSCLC patients, smokers with lower IDO1 responded better to anti-PD1 antibody treatment than those with higher IDO1. These data indicate that tobacco smoke induces IDO1 to catabolize Trp metabolism and immune suppression to promote carcinogenesis, and lower IDO1 might be a potential biomarker for anti-PD1 antibodies in smoker patients, whereas IDO1-high smoker patients might benefit from IDO1 inhibitors in combination with anti-PD1 antibodies.
Collapse
Affiliation(s)
- Fan Liang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gui-Zhen Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-Ning Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe-Sheng Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Medical Oncology Department, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dong-Ni Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Medical Oncology Department, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wen-Feng Fang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Medical Oncology Department, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lu Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China
| | - Chen Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Si-Chong Han
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fu-Ying Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Jun Liang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chang-Li Wang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Medical Oncology Department, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
T Lymphocyte Infiltration in Association with IDO1 Expression in Resected Lung Adenocarcinoma and Normal Adjacent Lung Tissues. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2381018. [PMID: 35187162 PMCID: PMC8853784 DOI: 10.1155/2022/2381018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
Abstract
Background Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the first step of tryptophan catabolism in the kynurenine (Kyn) pathway. IDO1 downregulates natural killer cell receptors, and by mechanism, tumor cells escape immune surveillance. Methods IDO1 protein and mRNA were assessed by immunohistochemistry, immunoblotting, and PCR in the 68 resected lung adenocarcinomas at stages I–III as well as adjacent normal lung tissues. Infiltration of CD3, CD8, and CD4 lymphocytes in the tumor and adjacent normal lung tissues was assessed by immunohistochemical staining. Results IDO1 protein and mRNA were detected in various stages of lung adenocarcinoma with highest expression at stage III. In contrast, biomarkers of T cell subset, CD3, CD4, and CD8, were highly expressed in the normal lung tissues and stage I adenocarcinoma tissues but significantly reduced in the stage II and III tumor tissues. Conclusions The current study demonstrated that the higher level of IDO1 expression in the lung adenocarcinoma was, the less infiltration of T lymphocytes was found in the tumors. Findings of this study indicated that IDO1 may contribute to the reduction of T lymphocyte infiltration into the lung adenocarcinoma.
Collapse
|
8
|
Rozenberg JM, Filkov GI, Trofimenko AV, Karpulevich EA, Parshin VD, Royuk VV, Sekacheva MI, Durymanov MO. Biomedical Applications of Non-Small Cell Lung Cancer Spheroids. Front Oncol 2021; 11:791069. [PMID: 34950592 PMCID: PMC8688758 DOI: 10.3389/fonc.2021.791069] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Lung malignancies accounted for 11% of cancers worldwide in 2020 and remained the leading cause of cancer deaths. About 80% of lung cancers belong to non-small cell lung cancer (NSCLC), which is characterized by extremely high clonal and morphological heterogeneity of tumors and development of multidrug resistance. The improvement of current therapeutic strategies includes several directions. First, increasing knowledge in cancer biology results in better understanding of the mechanisms underlying malignant transformation, alterations in signal transduction, and crosstalk between cancer cells and the tumor microenvironment, including immune cells. In turn, it leads to the discovery of important molecular targets in cancer development, which might be affected pharmaceutically. The second direction focuses on the screening of novel drug candidates, synthetic or from natural sources. Finally, "personalization" of a therapeutic strategy enables maximal damage to the tumor of a patient. The personalization of treatment can be based on the drug screening performed using patient-derived tumor xenografts or in vitro patient-derived cell models. 3D multicellular cancer spheroids, generated from cancer cell lines or tumor-isolated cells, seem to be a helpful tool for the improvement of current NSCLC therapies. Spheroids are used as a tumor-mimicking in vitro model for screening of novel drugs, analysis of intercellular interactions, and oncogenic cell signaling. Moreover, several studies with tumor-derived spheroids suggest this model for the choice of "personalized" therapy. Here we aim to give an overview of the different applications of NSCLC spheroids and discuss the potential contribution of the spheroid model to the development of anticancer strategies.
Collapse
Affiliation(s)
- Julian M Rozenberg
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia.,Laboratory of Medical Informatics, Yaroslav-the-Wise Novgorod State University, Veliky Novgorod, Russia
| | - Gleb I Filkov
- Laboratory of Medical Informatics, Yaroslav-the-Wise Novgorod State University, Veliky Novgorod, Russia.,Special Cell Technology Laboratory, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Alexander V Trofimenko
- Special Cell Technology Laboratory, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Evgeny A Karpulevich
- Department of Information Systems, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir D Parshin
- Clinical Center, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Valery V Royuk
- Clinical Center, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marina I Sekacheva
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mikhail O Durymanov
- Laboratory of Medical Informatics, Yaroslav-the-Wise Novgorod State University, Veliky Novgorod, Russia.,Special Cell Technology Laboratory, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| |
Collapse
|
9
|
Garg G, Prasad KT, Singh N, Gupta P, Muthu V, Das A, Bal A. Programmed death-ligand 1 expression and tumor-infiltrating lymphocytes in non-small cell lung cancer: association with clinicopathologic parameters. J Pathol Transl Med 2021; 55:398-405. [PMID: 34610234 PMCID: PMC8601953 DOI: 10.4132/jptm.2021.08.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 07/13/2021] [Accepted: 08/08/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Data on the prevalence of programmed death-ligand 1 (PD-L1) expression and tumor-infiltrating lymphocytes (TILs) in non-small cell lung cancer (NSCLC) and their clinical significance in Indian patients are limited. METHODS Newly diagnosed NSCLC cases (adenocarcinoma or squamous cell carcinoma [SqCC] histology) were included in the present study. The TILs were evaluated based on morphology on hematoxylin and eosin-stained slides. PD-L1 expression in tumors was assessed using immunohistochemistry with rabbit monoclonal antibody (SP263) on the Ventana automated immunostainer. Tumors with PD-L1 expression > 50% on tumor cells were considered PD-L1-positive. Tumors in which TILs occupy > 25% of stroma were considered to have high TILs. The association of PD-L1 expression and TILs with various clinical parameters including overall survival (OS) was investigated. RESULTS The present study included 128 cases of NSCLC (67 adenocarcinoma, 61 SqCC). PD-L1 positivity was observed in 17.2% of the patients with NSCLC. Baseline characteristics of PD-L1-positive subjects were similar to PD-L1-negative subjects except for a higher prevalence of liver metastasis (18.2% vs. 2.8%; p = .018) and a higher probability of diagnosis from extrapulmonary biopsies. High TILs were observed in 26.6% of the subjects. However, PD-L1 expression and high TIL did not affect OS. CONCLUSIONS PD-L1 positivity and high TILs were observed in 20% and 25% of the patients with NSCLC, respectively, however, neither were predictors of survival in SqCC.
Collapse
Affiliation(s)
- Gaurav Garg
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh,
India
| | - Kuruswamy Thurai Prasad
- Department of Pulmonary and Critical Care Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh,
India
| | - Navneet Singh
- Department of Pulmonary and Critical Care Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh,
India
| | - Parul Gupta
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh,
India
| | - Valliappan Muthu
- Department of Pulmonary and Critical Care Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh,
India
| | - Ashim Das
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh,
India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh,
India
| |
Collapse
|
10
|
Baldelli E, Hodge KA, Bellezza G, Shah NJ, Gambara G, Sidoni A, Mandarano M, Ruhunusiri C, Dunetz B, Abu-Khalaf M, Wulfkuhle J, Gallagher RI, Liotta L, de Bono J, Mehra N, Riisnaes R, Ravaggi A, Odicino F, Sereni MI, Blackburn M, Zupa A, Improta G, Demsko P, Crino' L, Ludovini V, Giaccone G, Petricoin EF, Pierobon M. PD-L1 quantification across tumor types using the reverse phase protein microarray: implications for precision medicine. J Immunother Cancer 2021; 9:e002179. [PMID: 34620701 PMCID: PMC8499669 DOI: 10.1136/jitc-2020-002179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Anti-programmed cell death protein 1 and programmed cell death ligand 1 (PD-L1) agents are broadly used in first-line and second-line treatment across different tumor types. While immunohistochemistry-based assays are routinely used to assess PD-L1 expression, their clinical utility remains controversial due to the partial predictive value and lack of standardized cut-offs across antibody clones. Using a high throughput immunoassay, the reverse phase protein microarray (RPPA), coupled with a fluorescence-based detection system, this study compared the performance of six anti-PD-L1 antibody clones on 666 tumor samples. METHODS PD-L1 expression was measured using five antibody clones (22C3, 28-8, CAL10, E1L3N and SP142) and the therapeutic antibody atezolizumab on 222 lung, 71 ovarian, 52 prostate and 267 breast cancers, and 54 metastatic lesions. To capture clinically relevant variables, our cohort included frozen and formalin-fixed paraffin-embedded samples, surgical specimens and core needle biopsies. Pure tumor epithelia were isolated using laser capture microdissection from 602 samples. Correlation coefficients were calculated to assess concordance between antibody clones. For two independent cohorts of patients with lung cancer treated with nivolumab, RPPA-based PD-L1 measurements were examined along with response to treatment. RESULTS Median-center PD-L1 dynamic ranged from 0.01 to 39.37 across antibody clones. Correlation coefficients between the six antibody clones were heterogeneous (range: -0.48 to 0.95) and below 0.50 in 61% of the comparisons. In nivolumab-treated patients, RPPA-based measurement identified a subgroup of tumors, where low PD-L1 expression equated to lack of response. CONCLUSIONS Continuous RPPA-based measurements capture a broad dynamic range of PD-L1 expression in human specimens and heterogeneous concordance levels between antibody clones. This high throughput immunoassay can potentially identify subgroups of tumors in which low expression of PD-L1 equates to lack of response to treatment.
Collapse
Affiliation(s)
- Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - K Alex Hodge
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Guido Bellezza
- Department of Experimental Medicine, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Neil J Shah
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Guido Gambara
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Angelo Sidoni
- Department of Experimental Medicine, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Martina Mandarano
- Department of Experimental Medicine, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Chamodya Ruhunusiri
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
- School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | | | - Maysa Abu-Khalaf
- Department of Medical Oncology, Sidney Kimmel Cancer Center at Jefferson Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | | | - Niven Mehra
- The Institute of Cancer Research, London, UK
| | | | - Antonella Ravaggi
- Angelo Nocivelli Institute of Molecular Medicine, Division of Gynecologic Oncology, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Franco Odicino
- Angelo Nocivelli Institute of Molecular Medicine, Division of Gynecologic Oncology, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Maria Isabella Sereni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
- Angelo Nocivelli Institute of Molecular Medicine, Division of Gynecologic Oncology, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Matthew Blackburn
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Angela Zupa
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
- Unita' Operativa di Anatomia Patologica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) CROB, Rionero In Vulture, Italy
| | - Giuseppina Improta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
- Unita' Operativa di Anatomia Patologica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) CROB, Rionero In Vulture, Italy
| | - Perry Demsko
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Lucio Crino'
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Vienna Ludovini
- Division of Medical Oncology, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Giuseppe Giaccone
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
- School of Systems Biology, George Mason University, Manassas, Virginia, USA
| |
Collapse
|
11
|
Hang Q, Ying H, Cheng G, Yang S, Jin J, Chen Y, Chen Q, Jiang Y, Zhao Q, Fang M, Chen M, Lai X. [Prognostic Analysis of NSCLC Based on the Tumor-associated Macrophages, Tumor Neo-vessels and PD-L1 Expression in Tumor Microenvironment]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 23:837-844. [PMID: 33070512 PMCID: PMC7583870 DOI: 10.3779/j.issn.1009-3419.2020.103.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
背景与目的 肿瘤微环境是肿瘤细胞赖以生存的复杂环境。其中肿瘤相关巨噬细胞(tumor-associated macrophages, TAMs)、肿瘤新生血管及程序性死亡受体1/程序性死亡受体-配体1(programmed cell death protein 1/programmed cell death ligand 1, PD-1/PD-L1)作为关键部分,在肿瘤发生、发展过程中起重要作用,影响患者预后。本研究旨在阐明TAMs、肿瘤新生血管和PD-L1的表达与非小细胞肺癌(non-small cell lung cancer, NSCLC)临床病理特征的相关性,并探讨它们对NSCLC预后的影响。 方法 收集92例NSCLC患者的临床病理资料及手术标本,采用免疫组化法检测癌组织和癌旁组织中TAMs、肿瘤新生血管和PD-L1的表达,采用配备有Olympus-DP72图像采集系统的Olympus-BX51正置显微镜进行拍照并用Image-pro Plus 6.0软件进行半定量分析。 结果 癌组织与癌旁组织中TAMs、肿瘤新生血管和PD-L1的表达差异无统计学意义(P > 0.05)。根据肿瘤微环境中各组分的定量表达,可将其分为低、中、高表达组。癌组织中TAMs的低、中和高密度组的中位总生存(overall survival, OS)分别是36个月(95%CI: 25.3-46.7)、26个月(95%CI: 12.2-39.8)和16个月(95%CI: 9.4-22.6),差异具有统计学意义(P=0.016);肿瘤新生血管的低、中和高密度组的中位OS分别为30个月(95%CI: 22.5-37.5)、28个月(95%CI: 18.1-37.9)和25个月(95%CI: 14.6-35.4),差异无统计学意义(P=0.626);PD-L1的低、中和高表达组的中位OS分别为35个月(95%CI: 29.4-40.6),28个月(95%CI: 13.6-42.4)和17个月(95%CI: 10.5-23.5),差异具有统计学意义(P=0.002)。联合低、中和高表达组的中位OS分别为36个月(95%CI: 30.6-41.4)、26个月(95%CI: 19.2-32.8)和9个月(95%CI: 4.4-13.6),差异具有统计学意义(P=0.001)。Cox回归分析结果显示,病理分型、TAMs和PD-L1均为肺癌患者的独立预后因素。 结论 肿瘤微环境关键成分PD-L1及TAMs的表达与NSCLC患者的预后密切相关。
Collapse
Affiliation(s)
- Qingqing Hang
- The Second Clinical Medical College Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hangjie Ying
- Zhejiang Key Laboratory of Radiation Oncology, Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Guoping Cheng
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shifeng Yang
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jianan Jin
- The Second Clinical Medical College Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yamei Chen
- Zhejiang Key Laboratory of Radiation Oncology, Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Qixun Chen
- Department of Thoracic Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Youhua Jiang
- Department of Thoracic Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Qiang Zhao
- Department of Thoracic Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Min Fang
- Zhejiang Key Laboratory of Radiation Oncology, Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ming Chen
- Zhejiang Key Laboratory of Radiation Oncology, Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xiaojing Lai
- Zhejiang Key Laboratory of Radiation Oncology, Department of Thoracic Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
12
|
Mandarano M, Orecchini E, Bellezza G, Vannucci J, Ludovini V, Baglivo S, Tofanetti FR, Chiari R, Loreti E, Puma F, Sidoni A, Belladonna ML. Kynurenine/Tryptophan Ratio as a Potential Blood-Based Biomarker in Non-Small Cell Lung Cancer. Int J Mol Sci 2021; 22:ijms22094403. [PMID: 33922388 PMCID: PMC8122814 DOI: 10.3390/ijms22094403] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The enzyme indoleamine 2,3-dioxygenase 1 (IDO1) degrade tryptophan (Trp) into kynurenine (Kyn) at the initial step of an enzymatic pathway affecting T cell proliferation. IDO1 is highly expressed in various cancer types and associated with poor prognosis. Nevertheless, the serum Kyn/Trp concentration ratio has been suggested as a marker of cancer-associated immune suppression. We measured Kyn and Trp in blood samples of a wide cohort of non-small-cell lung cancer (NSCLC) patients, before they underwent surgery, and analyzed possible correlations of the Kyn/Trp ratio with either IDO1 expression or clinical–pathological parameters. Low Kyn/Trp significantly correlated with low IDO1 expression and never-smoker patients; while high Kyn/Trp was significantly associated with older (≥68 years) patients, advanced tumor stage, and squamous cell carcinoma (Sqcc), rather than the adenocarcinoma (Adc) histotype. Moreover, high Kyn/Trp was associated, among the Adc group, with higher tumor stages (II and III), and, among the Sqcc group, with a high density of tumor-infiltrating lymphocytes. A trend correlating the high Kyn/Trp ratio with the probability of recurrences from NSCLC was also found. In conclusion, high serum Kyn/Trp ratio, associated with clinical and histopathological parameters, may serve as a serum biomarker to optimize risk stratification and therapy of NSCLC patients.
Collapse
MESH Headings
- Adenocarcinoma of Lung/blood
- Adenocarcinoma of Lung/pathology
- Adenocarcinoma of Lung/surgery
- Adult
- Aged
- Aged, 80 and over
- B7-H1 Antigen/metabolism
- Biomarkers, Tumor/blood
- Carcinoma, Non-Small-Cell Lung/blood
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/surgery
- Carcinoma, Squamous Cell/blood
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/surgery
- Female
- Follow-Up Studies
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Kynurenine/blood
- Lung Neoplasms/blood
- Lung Neoplasms/pathology
- Lung Neoplasms/surgery
- Lymphocytes, Tumor-Infiltrating/immunology
- Male
- Middle Aged
- Neoplasm Recurrence, Local/blood
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/surgery
- Prognosis
- Survival Rate
- Tryptophan/blood
Collapse
Affiliation(s)
- Martina Mandarano
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (M.M.); (G.B.); (E.L.); (A.S.)
| | - Elena Orecchini
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Guido Bellezza
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (M.M.); (G.B.); (E.L.); (A.S.)
| | - Jacopo Vannucci
- Section of Thoracic Surgery, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (J.V.); (F.P.)
| | - Vienna Ludovini
- Medical Oncology Division, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (V.L.); (S.B.); (F.R.T.)
| | - Sara Baglivo
- Medical Oncology Division, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (V.L.); (S.B.); (F.R.T.)
| | - Francesca Romana Tofanetti
- Medical Oncology Division, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (V.L.); (S.B.); (F.R.T.)
| | - Rita Chiari
- Division of Medical Oncology, Ospedali Riuniti Padova Sud, 35043 Monselice, Italy;
| | - Elisabetta Loreti
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (M.M.); (G.B.); (E.L.); (A.S.)
| | - Francesco Puma
- Section of Thoracic Surgery, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (J.V.); (F.P.)
| | - Angelo Sidoni
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (M.M.); (G.B.); (E.L.); (A.S.)
| | - Maria Laura Belladonna
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
- Correspondence:
| |
Collapse
|
13
|
Bulutay P, Firat P, Zeren EH, Erus S, Tanju S, Dilege MŞ. The importance of histological patterns on PD-L1 staining heterogeneity: Should we use pattern-based approach for selecting tumor samples for PD-L1 testing in lung adenocarcinomas? Turk J Med Sci 2021; 51:204-213. [PMID: 33155793 PMCID: PMC7991888 DOI: 10.3906/sag-2004-61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
Background/aim Programmed death ligand-1 (PD-L1) is a predictive marker for immunotherapeutic agents. However, heterogeneous staining of PD-L1 can cause false-negative results. The aim of this study is to evaluate the importance of histological patterns on PD-L1 staining heterogeneity in lung adenocarcinomas (LAC).
Materials and methods:
PD-L1 immunohistochemistry (IHC) stain was performed to two different tissue cores of 128 LAC cases, and cut-off values are given for grouping the cases according to the percentage of staining (1%-10%, 11%-49%, 50%-100%). Staining rates between cores were compared and analyzed by their histological patterns. Also, the relation of the PD-L1 expression with the clinicopathological characteristics of the cases was analyzed. Results Overall, PD-L1 expression was observed in 53 of 128 cases (41.4%, 1% cut-off), 23.5% of them were positive at 10% cut-off and 14.1% at 50% cut-off. PD-L1 expression was significantly related to the high grade micropapillary and solid patterns of adenocarcinomas (p:0.01). Staining cut-offs were mostly similar between cores (43/50, 86%) (k:0.843). However, 14% of them were positive only in one core (7 of 50). This false negativity was mostly related to the histological patterns. Conclusion Our data reveal the heterogeneous staining of PD-L1 expression, also micropapillary and solid patterns show higher rates of PDL expression. Therewithal, these findings also highlight the importance of taking into consideration of histological patterns, when choosing a paraffin block for the PDL1.
Collapse
Affiliation(s)
- Pinar Bulutay
- Department of Pathology, Medical Faculty, Koç University, İstanbul, Turkey
| | - Pinar Firat
- Department of Pathology, Medical Faculty, Koç University, İstanbul, Turkey
| | - Emine Handan Zeren
- Department of Pathology, Medical Faculty, Acıbadem University, İstanbul, Turkey
| | - Suat Erus
- Department of Thoracic Surgery, Medical Faculty, Koç University, İstanbul, Turkey
| | - Serhan Tanju
- Department of Thoracic Surgery, Medical Faculty, Koç University, İstanbul, Turkey
| | - Mustafa Şükrü Dilege
- Department of Thoracic Surgery, Medical Faculty, Koç University, İstanbul, Turkey
| |
Collapse
|
14
|
High PD-L1/IDO-2 and PD-L2/IDO-1 Co-Expression Levels Are Associated with Worse Overall Survival in Resected Non-Small Cell Lung Cancer Patients. Genes (Basel) 2021; 12:genes12020273. [PMID: 33671892 PMCID: PMC7918978 DOI: 10.3390/genes12020273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) expression is a predictive biomarker of the success of PD-1/PD-L1 inhibitor therapy for patients with advanced non-small cell lung cancer (NSCLC) but its role as a prognostic marker for early-stage resectable NSCLC remains unclear. We studied gene expression levels of immune-related genes PD-1, PD-L1, PD-L2, IDO-1, IDO-2 and INFγ in tumor tissue of surgically resected NSCLC and correlated the finding with clinicopathological features and patient outcomes. A total of 191 consecutive early-stage NSCLC patients who underwent curative pulmonary resection were studied. The mRNA expression levels of immune-related genes were evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) using RT2 Profiler PCR Arrays (Qiagen). PD-1, PD-L2 and IDO-2 gene expression levels were significantly higher in patients with squamous histology (p = 0.001, p = 0.021 and p < 0.001; respectively). PD-1, PD-L1 and IDO-2 gene expression levels were significantly higher in patients with higher stage (p = 0.005, p = 0.048 and p = 0.002, respectively). The univariate analysis for recurrence-free survival (RFS) and overall survival (OS) showed that patients with higher levels of three-genes (PD-L1/PD-L2/INFγ) (hazard ratio (HR)) 1.90 (95% confidence interval (CI), 1.13–3.21), p = 0.015) were associated with a worse RFS, while patients with higher levels of both genes (PD-L1/IDO-2) or (PD-L2/IDO-1) were associated with a worse OS (HR 1.63 95% CI, 1.06–2.51, p = 0.024; HR 1.54 95% CI, 1.02–2.33, p = 0.04; respectively). The multivariate interaction model adjusted for histology and stage confirmed that higher levels of three genes (PD-L1/PD-L2/INFγ) were significantly associated with worse RFS (HR 1.98, p = 0.031) and higher levels of both genes (PD-L1/IDO-2) and (PD-L2/IDO-1) with worse OS (HR 1.98, p = 0.042, HR 1.92, p = 0.022). PD-L1/IDO-2 and PD-L2/IDO-1 co-expression high levels are independent negative prognostic factors for survival in early NSCLC. These features may have important implications for future immune-checkpoint therapeutic approaches.
Collapse
|
15
|
Ala M. The footprint of kynurenine pathway in every cancer: a new target for chemotherapy. Eur J Pharmacol 2021; 896:173921. [PMID: 33529725 DOI: 10.1016/j.ejphar.2021.173921] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/08/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Treatment of cancers has always been a challenge for physicians. Typically, several groups of anti-cancer medications are needed for effective management of an invasive and metastatic cancer. Recently, therapeutic potentiation of immune system markedly improved treatment of cancers. Kynurenine pathway has an interwoven correlation with immune system. Kynurenine promotes T Reg (regulatory) differentiation, which leads to increased production of anti-inflammatory cytokines and suppression of cytotoxic activity of T cells. Overactivation of kynurenine pathway in cancers provides an immunologically susceptible microenvironment for mutant cells to survive and invade surrounding tissues. Interestingly, kynurenine pathway vigorously interacts with other molecular pathways involved in tumorigenesis. For instance, kynurenine pathway interacts with phospoinosisitide-3 kinase (PI3K), extracellular signal-regulated kinase (ERK), Wnt/β-catenin, P53, bridging integrator 1 (BIN-1), cyclooxygenase 2 (COX-2), cyclin-dependent kinase (CDK) and collagen type XII α1 chain (COL12A1). Overactivation of kynurenine pathway, particularly overactivation of indoleamine 2,3-dioxygenase (IDO) predicts poor prognosis of several cancers such as gastrointestinal cancers, gynecological cancers, hematologic malignancies, breast cancer, lung cancer, glioma, melanoma, prostate cancer and pancreatic cancer. Furthermore, kynurenine increases the invasion, metastasis and chemoresistance of cancer cells. Recently, IDO inhibitors entered clinical trials and successfully passed their safety tests and showed promising therapeutic efficacy for cancers such as melanoma, brain cancer, renal cell carcinoma, prostate cancer and pancreatic cancer. However, a phase III trial of epacadostat, an IDO inhibitor, could not increase the efficacy of treatment with pembrolizumab for melanoma. In this review the expanding knowledge towards kynurenine pathway and its application in each cancer is discussed separately.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
16
|
Tian Y, Zhai X, Yan W, Zhu H, Yu J. Clinical outcomes of immune checkpoint blockades and the underlying immune escape mechanisms in squamous and adenocarcinoma NSCLC. Cancer Med 2020; 10:3-14. [PMID: 33230935 PMCID: PMC7826453 DOI: 10.1002/cam4.3590] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint blockades (ICBs) have changed the standard of care of squamous and adenocarcinoma non‐small cell lung cancer (NSCLC). Whereas detailed researches regarding ICBs in the two major histological subtypes are rare. In order to uncover the clinical efficacy differences between squamous and adenocarcinoma NSCLC and better understand the underlying immune‐regulatory mechanisms, we compared the survival benefits of ICBs between the two subtypes by revealing phase 3 randomized trials and attempted to uncover the immune‐regulatory discrepancy. Generally, compared with nonsquamous NSCLC, squamous NSCLC benefited more from ICBs in Keynote 024, CheckMate 026, CheckMate 227 and CheckMate 017 and similar in OAK, but less in Keynote 010 and PACIFIC. We revealed that the tumor mutation burden (TMB) level, the programmed cell death ligand 1 (PD‐L1) expression, tumor infiltrating lymphocytes (TILs) in the tumor microenvironment (TME), chemokines, and oncogenic driver alterations within the two subtypes may contributed to the clinical outcomes of ICBs. We prospected that the combinations of ICBs with chemotherapy, radiation therapy, and antiangiogenic therapy could be promising strategies to re‐immunize the less immunogenic tumors and further enhance the efficacy of ICBs.
Collapse
Affiliation(s)
- Yaru Tian
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Xiaoyang Zhai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Weiwei Yan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| |
Collapse
|
17
|
Vrankar M, Kern I, Stanic K. Prognostic value of PD-L1 expression in patients with unresectable stage III non-small cell lung cancer treated with chemoradiotherapy. Radiat Oncol 2020; 15:247. [PMID: 33121520 PMCID: PMC7594267 DOI: 10.1186/s13014-020-01696-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/21/2020] [Indexed: 12/25/2022] Open
Abstract
Background Expression of PD-L1 is the most investigated predictor of benefit from immune checkpoint blockade in advanced NSCLC but little is known about the association of PD-L1 expression and clinicopathological parameters of patients with unresectable stage III NSCLC. Methods National registry data was searched for medical records of consecutive inoperable stage III NSCLC patients treated with ChT and RT from January 2012 to December 2017. Totally 249 patients were identified that met inclusion criteria and of those 117 patients had sufficient tissue for PD-L1 immunohistochemical staining. Results Eighty patients (68.4%) expressed PD-L1 of ≥ 1% and 29.9% of more than 50%. Median PFS was 15.9 months in PD-L1 negative patients and 16.1 months in patients with PD-L1 expression ≥ 1% (p = 0.696). Median OS in PD-L1 negative patients was 29.9 months compared to 28.5 months in patients with PD-L1 expression ≥ % (p = 0.888). There was no difference in median OS in patients with high PD-L1 expression (≥ 50%) with 29.8 months compared to 29.9 months in those with low (1–49%) or no PD-L1 expression (p = 0.694). We found that patients who received a total dose of 60 Gy or more had significantly better median OS (32 months vs. 17.5 months, p < 0.001) as well as patients with PS 0 (33.2 vs. 20.3 months, p = 0.005). Conclusions In our patients PD-L1 expression had no prognostic value regarding PFS and OS. Patients with good performance status and those who received a total radiation dose of more than 60 Gy had significantly better mOS.
Collapse
Affiliation(s)
- Martina Vrankar
- Department of Radiotherapy, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Izidor Kern
- Department of Pathology, University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, 4202, Golnik, Slovenia
| | - Karmen Stanic
- Department of Radiotherapy, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia. .,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
18
|
Meireson A, Devos M, Brochez L. IDO Expression in Cancer: Different Compartment, Different Functionality? Front Immunol 2020; 11:531491. [PMID: 33072086 PMCID: PMC7541907 DOI: 10.3389/fimmu.2020.531491] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a cytosolic haem-containing enzyme involved in the degradation of tryptophan to kynurenine. Although initially thought to be solely implicated in the modulation of innate immune responses during infection, subsequent discoveries demonstrated IDO1 as a mechanism of acquired immune tolerance. In cancer, IDO1 expression/activity has been observed in tumor cells as well as in the tumor-surrounding stroma, which is composed of endothelial cells, immune cells, fibroblasts, and mesenchymal cells. IDO1 expression/activity has also been reported in the peripheral blood. This manuscript reviews available data on IDO1 expression, mechanisms of its induction, and its function in cancer for each of these compartments. In-depth study of the biological function of IDO1 according to the expressing (tumor) cell can help to understand if and when IDO1 inhibition can play a role in cancer therapy.
Collapse
Affiliation(s)
- Annabel Meireson
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Michael Devos
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Lieve Brochez
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
19
|
Zhang X, Yang J, Du L, Zhou Y, Li K. The prognostic value of Immunoscore in patients with cancer: A pooled analysis of 10,328 patients. Int J Biol Markers 2020; 35:3-13. [PMID: 32538254 DOI: 10.1177/1724600820927409] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Over the past decade, some publications have reported that Immunoscore was associated with the prognosis of several cancers. To better understand this issue, we conducted this pooled analysis. METHODS We systematically searched PubMed, Embase, Web of Science, and the Cochrane Library from their inceptions to 15 May 2019 to identify relevant articles. The pooled hazard ratio (HR) and 95% confidence interval (CI) was estimated for overall survival, disease-free survival, and disease-specific survival. RESULTS A total of 26 cohort studies with 10,328 patients involving eight cancer specialties were evaluated mainly by the consensus Immunoscore. The pooled analysis indicated that a lower Immunoscore was associated with a poor overall survival (HR 2.23, 95% CI 1.58, 2.70), disease-free survival (HR 2.40, 95% CI 1.96, 2.49), and disease-specific survival (HR 2.81, 95% CI 2.10, 3.77) for all cancers. The same convincing results were found in colorectal cancer, gastric cancer, and non-small cell lung cancer (especially the consensus Immunoscore for colon cancer). In five other types of cancer the results were similar, but the sample sizes were limited. CONCLUSIONS These findings support that Immunoscore is significantly associated with the prognosis of patients with cancer. It provides a reliable estimate of the risk of recurrence in patients with colon cancer. However, more high-quality studies are necessary to assess the prognostic value of Immunoscore in non-colon cancers.
Collapse
Affiliation(s)
- Xingxia Zhang
- West China School of Nursing / West China Hospital Gastrointestinal Surgery Department, Sichuan University
| | - Jie Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Liang Du
- Chinese Evidence-based Medicine/Cochrane Center, Chengdu, China
| | - Yong Zhou
- West China School of Nursing / West China Hospital Gastrointestinal Surgery Department, Sichuan University
| | - Ka Li
- West China School of Nursing / West China Hospital Gastrointestinal Surgery Department, Sichuan University
| |
Collapse
|
20
|
Mandarano M, Bellezza G, Belladonna ML, Vannucci J, Gili A, Ferri I, Lupi C, Ludovini V, Falabella G, Metro G, Mondanelli G, Chiari R, Cagini L, Stracci F, Roila F, Puma F, Volpi C, Sidoni A. Indoleamine 2,3-Dioxygenase 2 Immunohistochemical Expression in Resected Human Non-small Cell Lung Cancer: A Potential New Prognostic Tool. Front Immunol 2020; 11:839. [PMID: 32536910 PMCID: PMC7267213 DOI: 10.3389/fimmu.2020.00839] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 2 (IDO2) is an analog of the tryptophan degrading and immunomodulating enzyme indoleamine 2,3-dioxygenase 1 (IDO1). Although the role of IDO1 is largely understood, the function of IDO2 is not yet well-elucidated. IDO2 overexpression was documented in some human tumors, but the linkage between IDO2 expression and cancer progression is still unclear, in particular in non-small cell lung cancer (NSCLC). Immunohistochemical expression and cellular localization of IDO2 was evaluated on 191 formalin-fixed and paraffin-embedded resected NSCLC. Correlations between IDO2 expression, clinical-pathological data, tumor-infiltrating lymphocytes (TILs), immunosuppressive tumor molecules (IDO1 and programmed cell death ligand-1 - PD-L1 -) and patients' prognosis were evaluated. IDO2 high expression is strictly related to high PD-L1 level among squamous cell carcinomas group (p = 0.012), to either intratumoral or mixed localization of TILs (p < 0.001) and to adenocarcinoma histotype (p < 0.001). Furthermore, a significant correlation between IDO2 high expression and poor non-small cell lung cancer prognosis was detected (p = 0.011). The current study reaches interesting knowledge about IDO2 in non-small cell lung cancer. The close relationship between IDO2 expression, PD-L1 increased levels, TILs localization and NSCLC poor prognosis, assumed IDO2 as a potential prognostic biomarker to be exploited for optimizing innovative combined therapies with immune checkpoint inhibitors.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adenocarcinoma/surgery
- Adult
- Aged
- Aged, 80 and over
- B7-H1 Antigen/metabolism
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/surgery
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/surgery
- Disease Progression
- Female
- Follow-Up Studies
- Humans
- Immunohistochemistry/methods
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/surgery
- Lymphocytes, Tumor-Infiltrating/immunology
- Male
- Middle Aged
- Prognosis
Collapse
Affiliation(s)
- Martina Mandarano
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Guido Bellezza
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Maria Laura Belladonna
- Section of Pharmacology, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Jacopo Vannucci
- Department of Thoracic Surgery, Medical School, University of Perugia, Perugia, Italy
| | - Alessio Gili
- Section of Public Health, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Ivana Ferri
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, Medical School, University of Perugia, Perugia, Italy
| | | | - Vienna Ludovini
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Giulia Falabella
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Giulio Metro
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Giada Mondanelli
- Section of Pharmacology, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Rita Chiari
- Medical Oncology, Ospedali Riuniti Padova sud, Padova, Italy
| | - Lucio Cagini
- Department of Thoracic Surgery, Medical School, University of Perugia, Perugia, Italy
| | - Fabrizio Stracci
- Section of Public Health, Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Umbria Cancer Registry, Perugia, Italy
| | - Fausto Roila
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Francesco Puma
- Department of Thoracic Surgery, Medical School, University of Perugia, Perugia, Italy
| | - Claudia Volpi
- Section of Pharmacology, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Angelo Sidoni
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, Medical School, University of Perugia, Perugia, Italy
| |
Collapse
|
21
|
Agulló-Ortuño MT, Gómez-Martín Ó, Ponce S, Iglesias L, Ojeda L, Ferrer I, García-Ruiz I, Paz-Ares L, Pardo-Marqués V. Blood Predictive Biomarkers for Patients With Non–small-cell Lung Cancer Associated With Clinical Response to Nivolumab. Clin Lung Cancer 2020; 21:75-85. [DOI: 10.1016/j.cllc.2019.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/15/2019] [Accepted: 08/24/2019] [Indexed: 12/25/2022]
|
22
|
Liu P, Xiao Q, Zhou B, Dai Z, Kang Y. Prognostic Significance of Programmed Death Ligand 1 Expression and Tumor-Infiltrating Lymphocytes in Axial Osteosarcoma. World Neurosurg 2019; 129:e240-e254. [PMID: 31128313 DOI: 10.1016/j.wneu.2019.05.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To characterize the intratumoral immune microenvironment and evaluate its clinical implications in patients with primary axial osteosarcoma. METHODS Immunohistochemistry was used to interpret tumor programmed death ligand 1 (PD-L1) expression and tumor-infiltrating lymphocytes (TILs) profile of cluster of differentiation 8 (CD8), PD-L1, and programmed death 1 (PD-1) within 69 tumor specimens. RESULTS Overall, all tumor specimens presented lymphocytic infiltrates, with PD-L1+ TILs being the most common subset (mean, 215.1 per slide mm2). Positive tumor PD-L1 expression was presented in 43.5% of tumors. Moderate to strong relationships were detected among TILs subsets and tumor PD-L1 expression. In addition, the density of PD-L1+ TILs was significantly correlated with favorable clinicopathologic features, including earlier Enneking stage. The positivity of tumor PD-L1 expression was associated with the tumor site and pathologic grade (P = 0.021 and 0.037, respectively). In univariate survival analysis, the high density of PD-L1+ TILs or CD8+ TILs was significantly correlated with both prolonged event-free survival and overall survival (OS), whereas the high infiltration of PD-1+ TILs was significantly associated with reduced OS, as was the positive tumor PD-L1 expression. Furthermore, multivariate analysis showed that CD8+ TILs and PD-L1+ TILs remained their significance for both event-free survival (P = 0.012 and 0.004, respectively) and OS (P = 0.033 and 0.002, respectively). However, both PD-1+ TILs and tumor PD-L1 expression failed to reach significance for OS. CONCLUSIONS Our results suggested that the immune microenvironment is of clinically relevant significance in patients with axial osteosarcoma. Specifically, we identified both PD-L1+ TILs and CD8+ TILs as independent favorable prognostic markers.
Collapse
Affiliation(s)
- Ping Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha City, China
| | - Qing Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, China
| | - Bing Zhou
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha City, China
| | - Zhehao Dai
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha City, China
| | - Yijun Kang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha City, China.
| |
Collapse
|
23
|
Cui G, Li Z, Ren J, Yuan A. IL-33 in the tumor microenvironment is associated with the accumulation of FoxP3-positive regulatory T cells in human esophageal carcinomas. Virchows Arch 2019; 475:579-586. [DOI: 10.1007/s00428-019-02579-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/07/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
|