1
|
Liu J, Li Y, Zhang Y, Cheng Q, Liu H, He L, Chen L, Zhao T, Liang P, Luo W. Single-Cell RNA-Seq Analysis Identifies Angiotensinogen and Galanin as Unique Molecular Markers of Acinar Cells in Murine Salivary Glands. Stem Cells Dev 2023; 32:758-767. [PMID: 37823745 DOI: 10.1089/scd.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
The submandibular gland (SMG) and sublingual gland (SLG) are two of three major salivary glands in mammals and comprise serous and mucous acinar cells. The two glands share some functional properties, which are largely dependent on the types of acinar cells. In recent years, while ScRNA-seq (single-cell sequencing) with a 10 × platform has been used to explore molecular markers in salivary glands, few studies have examined the acinar heterogeneity and unique molecular markers between SMG and SLG. This study aimed to identify the molecular markers of acinar cells in the SLG and SMG. We performed ScRNA-seq analyses in 4-week-old mice and verified the screened molecular markers using reverse transcription-quantitative real-time PCR, immunohistochemistry, and immunofluorescence. Our results showed prominently heterogeneous acinar cells, although there was great similarity in the cluster composition between the two glands at 4 weeks. Furthermore, we demonstrated that Agt is a specific marker of SMG serous acinar cells, whereas Gal is a specific marker of SLG mucous acinar cells. Trajectory inference revealed that Agt and Gal represent two types of differential acinar cell clusters during late development in adults. Thus, we reveal previously unknown specific markers for salivary acinar cell diversity, which has extensive implications for their further functional research.
Collapse
Affiliation(s)
- Jingming Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yanan Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxin Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qianyu Cheng
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Huikai Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Liwen He
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Liang Chen
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyu Zhao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Panpan Liang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Wenping Luo
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, and Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Laboratory Animal Ceter, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Borch WR, Monaco SE. Current Approach to Undifferentiated Neoplasms, With Focus on New Developments and Novel Immunohistochemical Stains. Arch Pathol Lab Med 2023; 147:1364-1373. [PMID: 36943241 DOI: 10.5858/arpa.2022-0459-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 03/23/2023]
Abstract
CONTEXT.— Workup of the poorly differentiated or undifferentiated tumor remains a significant and challenging entity in the practice of anatomic pathology. Particularly in the setting of small biopsies and limited material, these cases demand a balanced approach that considers the patient's clinical and radiologic presentation, a basic assessment of tumor morphology, a reasonably broad immunohistochemical panel, and diligent preservation of tissue for prognostic and therapeutic studies. OBJECTIVE.— To illustrate some of the new and emerging immunohistochemical markers in the evaluation of tumors with undifferentiated or poorly differentiated morphology, with a focus on the workup in limited tissue samples to raise awareness of the issues involved with the pathologic workup in these challenging tumors. DATA SOURCES.— A literature review of new ancillary studies that can be applied to cytologic specimens was performed. CONCLUSIONS.— Knowledge of the patient's history and communication with the patient's clinical team is essential in formulating a differential diagnosis that can appropriately limit the differential diagnosis based on morphology, especially in small specimens. This information, in conjunction with classifying the tumor morphology (eg, epithelioid, spindled, neuroendocrine, basaloid/biphasic, mixed) gives a logical approach to choosing an initial immunohistochemical panel. Fortunately, immunohistochemistry is evolving quickly in the wake of groundbreaking molecular studies to develop new and better markers to further classify these difficult tumors beyond where we traditionally have been able to go.
Collapse
Affiliation(s)
- William R Borch
- From the Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania
| | - Sara E Monaco
- From the Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania
| |
Collapse
|
3
|
Li N, Ye Y, Wu Y, Li L, Hu J, Luo D, Li Y, Yang J, Gao Y, Hai W, Xie Y, Jiang L. Alterations in histology of the aging salivary gland and correlation with the glandular inflammatory microenvironment. iScience 2023; 26:106571. [PMID: 37124415 PMCID: PMC10131127 DOI: 10.1016/j.isci.2023.106571] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/29/2022] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Aging-related salivary dysfunction typically causes reduced saliva volumes, which leads to debilitating consequences, even affecting patient quality of life. Understanding the respective clinicopathological characteristics and molecular mechanisms underlying salivary gland functioning during aging is vital for therapeutic purposes. Here, we provide a detailed atlas of the salivary gland microenvironment during aging, and we identified several phenotypes characteristic of aging salivary glands, including acini atrophy, increased inflammatory cells, altered immune responses, and accumulation of lysosomes and autophagosomes in aging cells, which may reflect progressive degeneration of salivary gland function. Furthermore, our analyses suggested significant enrichment of metabolic pathways in aging glands. Our results revealed complex cellular cross-talk among aging acinar cells, inflammatory factors, and immune responses. A natural aging animal model was established to verify these findings. This study provides mechanistic insights into age-related clinicopathogenesis, important implications for early diagnosis, and identification of new targets for improving salivary gland dysfunction.
Collapse
Affiliation(s)
- Ning Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yulin Ye
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yicheng Wu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lei Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawei Hu
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Danyang Luo
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yusi Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Yang
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Corresponding author
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Corresponding author
| | - Liting Jiang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Corresponding author
| |
Collapse
|
4
|
Kim YJ. Xerostomia and Its Cellular Targets. Int J Mol Sci 2023; 24:ijms24065358. [PMID: 36982432 PMCID: PMC10049126 DOI: 10.3390/ijms24065358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Xerostomia, the subjective feeling of a dry mouth associated with dysfunction of the salivary glands, is mainly caused by radiation and chemotherapy, various systemic and autoimmune diseases, and drugs. As saliva plays numerous essential roles in oral and systemic health, xerostomia significantly reduces quality of life, but its prevalence is increasing. Salivation mainly depends on parasympathetic and sympathetic nerves, and the salivary glands responsible for this secretion move fluid unidirectionally through structural features such as the polarity of acinar cells. Saliva secretion is initiated by the binding of released neurotransmitters from nerves to specific G-protein-coupled receptors (GPCRs) on acinar cells. This signal induces two intracellular calcium (Ca2+) pathways (Ca2+ release from the endoplasmic reticulum and Ca2+ influx across the plasma membrane), and this increased intracellular Ca2+ concentration ([Ca2+]i) causes the translocation of the water channel aquaporin 5 (AQP5) to the apical membrane. Consequently, the GPCR-mediated increased [Ca2+]i in acinar cells promotes saliva secretion, and this saliva moves into the oral cavity through the ducts. In this review, we seek to elucidate the potential of GPCRs, the inositol 1,4,5-trisphosphate receptor (IP3R), store-operated Ca2+ entry (SOCE), and AQP5, which are essential for salivation, as cellular targets in the etiology of xerostomia.
Collapse
Affiliation(s)
- Yoon-Jung Kim
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| |
Collapse
|
5
|
Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiol Rev 2022; 102:1495-1552. [PMID: 35343828 PMCID: PMC9126227 DOI: 10.1152/physrev.00015.2021] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/27/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salivary glands produce and secrete saliva, which is essential for maintaining oral health and overall health. Understanding both the unique structure and physiological function of salivary glands, as well as how they are affected by disease and injury, will direct the development of therapy to repair and regenerate them. Significant recent advances, particularly in the OMICS field, increase our understanding of how salivary glands develop at the cellular, molecular, and genetic levels: the signaling pathways involved, the dynamics of progenitor cell lineages in development, homeostasis, and regeneration, and the role of the extracellular matrix microenvironment. These provide a template for cell and gene therapies as well as bioengineering approaches to repair or regenerate salivary function.
Collapse
Affiliation(s)
- Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Dai J, Reyimu A, Sun A, Duoji Z, Zhou W, Liang S, Hu S, Dai W, Xu X. Establishment of prognostic risk model and drug sensitivity based on prognostic related genes of esophageal cancer. Sci Rep 2022; 12:8008. [PMID: 35568702 PMCID: PMC9107481 DOI: 10.1038/s41598-022-11760-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
At present, the treatment of esophageal cancer (EC) is mainly surgical and drug treatment. However, due to drug resistance, these therapies can not effectively improve the prognosis of patients with the EC. Therefore, a multigene prognostic risk scoring system was constructed by bioinformatics analysis method to provide a theoretical basis for the prognosis and treatment decision of EC. The gene expression profiles and clinical data of esophageal cancer patients were gathered from the Cancer Genome Atlas TCGA database, and the differentially expressed genes (DEGs) were screened by R software. Genes with prognostic value were screened by Kaplan Meier analysis, followed by functional enrichment analysis. A cox regression model was used to construct the prognostic risk score model of DEGs. ROC curve and survival curve were utilized to evaluate the performance of the model. Univariate and multivariate Cox regression analysis was used to evaluate whether the model has an independent prognostic value. Network tool mirdip was used to find miRNAs that may regulate risk genes, and Cytoscape software was used to construct gene miRNA regulatory network. GSCA platform is used to analyze the relationship between gene expression and drug sensitivity. 41 DEGs related to prognosis were pre-liminarily screened by survival analysis. A prognostic risk scoring model composed of 8 DEGs (APOA2, COX6A2, CLCNKB, BHLHA15, HIST1H1E, FABP3, UBE2C and ERO1B) was built by Cox regression analysis. In this model, the prognosis of the high-risk score group was poor (P < 0.001). The ROC curve showed that (AUC = 0.862) the model had a good performance in predicting prognosis. In Cox regression analysis, the comprehensive risk score can be employed as an independent prognostic factor of the EC. HIST1H1E, UBE2C and ERO1B interacted with differentially expressed miRNAs. High expression of HIST1H1E was resistant to trametinib, selumetinib, RDEA119, docetaxel and 17-AAG, High expression of UBE2C was resistant to masitinib, and Low expression of ERO1B made the EC more sensitive to FK866. We constructed an EC risk score model composed of 8 DEGs and gene resistance analysis, which can provide reference for prognosis prediction, diagnosis and treatment of the EC patients.
Collapse
Affiliation(s)
- Jingjing Dai
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Abdusemer Reyimu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, People's Republic of China.,Medical College, Anhui University of Science and Technology, Huainan, 232001, Anhui, People's Republic of China
| | - Ao Sun
- Class 11, grade 2018, Clinical Medicine, Nanjing Medical University, Nanjing, 223300, Jiangsu, People's Republic of China
| | - Zaxi Duoji
- Research Center of High Altitude Medicine, Naqu, Tibet, China, People's Hospital of Naqu Affiliated to Dalian Medical University, Tibet, 852000, People's Republic of China
| | - Wubi Zhou
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, People's Republic of China.
| | - Song Liang
- Department of Medical Laboratory, Second branch, The Affiliated Huaian No, People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Suxia Hu
- Department of Medical Laboratory, Huainan First People's Hospital, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui, People's Republic of China.
| | - Weijie Dai
- Department of Endoscopy Center, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, People's Republic of China.
| | - Xiaoguang Xu
- Research Center of High Altitude Medicine, Naqu, Tibet, China, People's Hospital of Naqu Affiliated to Dalian Medical University, Tibet, 852000, People's Republic of China.
| |
Collapse
|
7
|
Su YJ, Lee YH, Hsieh MS. SMARCB1(INI1)-deficient sinonasal adenocarcinoma: Report of a case previously diagnosed as high-grade non-intestinal-type sinonasal adenocarcinoma. Pathol Int 2021; 72:53-58. [PMID: 34597447 DOI: 10.1111/pin.13173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022]
Abstract
SMARCB1(INI1)-deficient sinonasal carcinoma is a recently recognized entity with wide histomorphologic spectrum. The classification of sinonasal adenocarcinoma (SNAC) is complex and yet to be redefined, especially the category of high-grade non-intestinal-type SNAC. Recently SMARCB1(INI1)-deficient SNACs with an unique oncocytoid/rhabdoid cytomorphology and variable degrees of glandular formation have been reported. Here we described a rare case of SMARCB1(INI1)-deficient SNAC composed of mainly oncocytoid/rhabdoid cells with mixed solid and cribriform patterns. This case was originally diagnosed as non-intestinal-type SNAC and was reclassified due to complete loss expression of SMARCB1(INI1) by immunohistochemistry (IHC). The SMARCB1(INI1) stain provides a valuable tool for identification of this specific type of SNAC. We compared this case with other SNACs diagnosed in our department and reviewed relevant literature for this specific type of SNAC.
Collapse
Affiliation(s)
- Yu-Ju Su
- Department of Pathology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yi-Hsuan Lee
- Department of Pathology, National Taiwan University Hospital and National Taiwan, University College of Medicine, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital and National Taiwan, University College of Medicine, Taipei, Taiwan.,Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Pang Y, Sun L, Liu H, Ma J. Differential diagnosis and treatment of salivary secretory carcinoma and acinic cell carcinoma. Oral Oncol 2021; 119:105370. [PMID: 34157553 DOI: 10.1016/j.oraloncology.2021.105370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023]
Abstract
Secretory carcinoma (SC) and acinic cell carcinoma (AciCC) are two rare tumors originating in the salivary gland of the head and neck. Before the World Health Organization (WHO) classified SC as a new entity in 2017, the majority of SC cases were incorrectly diagnosed as AciCC. Indeed, they are similar in biological behaviors, clinical manifestations and histomorphological features. Especially, SC and zymogen granule-poor AciCC are difficult to differentiate, which brings a tough challenge in clinical diagnosis. This article provides an updated understanding of the differential diagnosis in SC and AciCC from two main perspectives: histopathology and molecular genetics. The targeted therapies for both tumors are also mentioned. It aims to give some hints in clinical diagnosis and treatment, in hopes that patients with adequate diagnosis could obtain the opportunityformore effective treatment.
Collapse
Affiliation(s)
- Yu Pang
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, PR China; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province 610041, PR China.
| | - Lingqi Sun
- Department of Neurology, Air Force Hospital of Western Theater Command, Chengdu, Sichuan Province 610041, PR China
| | - Huijia Liu
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, PR China
| | - Ji Ma
- Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, PR China.
| |
Collapse
|
9
|
Wang T, Liu W, Li C, Si G, Liang Z, Yin J. Mist1 promoted inflammation in colitis model via K+-ATPase NLRP3 inflammasome by SNAI1. Pathol Res Pract 2021; 224:153511. [PMID: 34214845 DOI: 10.1016/j.prp.2021.153511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory intestinal disease. Genetic susceptibility, gut microbiota and mucosal immune dysfunction play important roles in the pathogenesis and development of UC. We investigate the effect of Mist1 in model of colitis and its underlying mechanism. The expressions of Mist1 in patients with colitis tissue were up-regulated. Meanwhile, Mist1 mRNA and protein expressions in DSS-induced colitis mice model were also induced and Mist1 mRNA and protein expressions of LPS induced THP-1 cell were also up-regulated. we found Mist1 human protein promoted inflammation in DSS-induced colitis mice by NLRP3. So, we up-regulated Mist1 expression and over-expression of Mist1 promoted IL-1β and NLRP3 protein expression levels in vitro model. However, down-regulation of Mist1 suppressed IL-1β and NLRP3 protein expression levels in vitro model. Next, SNAI1 is a shooting point of Mist1 in the effects of Mist1 in colitis. The inhibition of SNAI1 reduced the effects of Mist1 on NLRP3 inflammasome in vitro model. Activation of SNAI1 induced the effects of Mist1 on NLRP3 inflammasome in vitro model. Lastly, anti-SNAI1 human protein lowered the effects of Mist1 human protein on NLRP3 inflammasome in DSS-induced colitis mice. We demonstrated that Mist1 promoted inflammation in colitis model via NLRP3 inflammasome by SNAI1, whereas the absence of these macrophages led to a significant improvement in colitis treatment.
Collapse
Affiliation(s)
- Tao Wang
- Division of gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China.
| | - Wenxiang Liu
- Division of gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China
| | - Chenyang Li
- Medical School of Chinese PLA, Beijing 100835, China
| | - Guowei Si
- Division of gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China
| | - Zhimin Liang
- Medical School of Chinese PLA, Beijing 100835, China
| | - Jian Yin
- Department of Gastroenterology, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
10
|
Xie X, Zhou Z, Song Y, Zhang X, Dang C, Zhang H. Mist1 Inhibits Epithelial-Mesenchymal Transition in Gastric Adenocarcinoma via Downregulating the Wnt/β-catenin Pathway. J Cancer 2021; 12:4574-4584. [PMID: 34149921 PMCID: PMC8210560 DOI: 10.7150/jca.59138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
As a secretory cell transcription factor, muscle intestine stomach expression 1 (Mist1) is associated with serous secretory cell development and gastric chief cell maturation. Here, we focus on the function of Mist1 in gastric adenocarcinoma carcinogenesis. Based on clinical data and a mouse model of gastric cancer, we found that Mist1 expression was reduced in gastric cancer. Then, we overexpressed Mist1 using a lentivirus system and found that overexpression of Mist1 could inhibit gastric cancer cell proliferation, migration and invasion in vitro. Additionally, in vivo, we assessed the function of Mist1 in a gastric cancer xenograft model and distant pulmonary metastasis model. Overexpression of Mist1 decreased tumour growth and distant metastasis in vivo, suggesting that Mist1 acts as a tumour suppressor in gastric carcinogenesis. Furthermore, Mist1 overexpression inhibited epithelial-mesenchymal transition (EMT) in gastric cancer by suppressing β-catenin transcription activity and then the Wingless and INT-1 (Wnt)/β-catenin signalling pathway, which could be reversed by a Wnt/β-catenin-specific agonist. In conclusion, this study indicated that overexpression of Mist1 could reverse EMT in gastric carcinogenesis by inhibiting the Wnt/β-catenin signalling pathway and that Mist1 might be a novel marker for early gastric cancer screening.
Collapse
Affiliation(s)
- Xin Xie
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhangjian Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Yongchun Song
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
11
|
Wang W, Xie X, Zhou Z, Zhang H. Expression Analysis of MIST1 and EMT Markers in Primary Tumor Samples Points to MIST1 as a Biomarker of Cervical Cancer. Int J Gen Med 2021; 14:1293-1300. [PMID: 33883927 PMCID: PMC8055369 DOI: 10.2147/ijgm.s307367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/01/2021] [Indexed: 12/09/2022] Open
Abstract
Background Mist1 is a basic transcription factor, which plays an important role in the development of multiple organs, and may also regulate tumor progression by mediating epithelial-mesenchymal transformation. However, there is lack of research on its role of squamous cell carcinoma, especially in cervical squamous cell carcinoma. Methods Bioinformatic methods were used to analyze gene expression, correlation, and patient survival according to the TCGA database. Thirty pairs of cancer tissues and distal cancer tissues from cervical cancer patients who received radical surgery were enrolled in the study. The expression of Mist1 was analyzed using Western blot. Furthermore, the potential associations among Mist1 expression, EMT biomarkers and various clinicopathological characteristics were investigated. All statistical tests employed in this study were two-sided, and P values <0.05 were deemed statistically significant. Results Overall survival data were obtained from TCGA-CESC dataset, containing 3 control samples and 305 tumor samples. The expression of Mist1 was significantly higher in primary tumor than in normal tissues (P<0.001). The samples were divided into a low Mist1 expression group (n=144) and a high Mist1 expression group (n=146) according to the median expression level. Kaplan–Meier survival analysis revealed that high expression of Mist1 was significantly correlated with poor overall survival (P=0.032). We further explored the relationships between Mist1 and EMT. Among the 30 primary cervical cancer specimens investigated, the difference in Mist1 expressed statuses between cervical cancer tissues and distal noncancerous cervical tissues was significant (P=0.001). And the epithelial cell marker E-cadherin was downregulated in Mist1 overexpressed cervical cancer cells; however, the mesenchymal marker N-Cadherin and Twist was upregulated. Conclusion Our study found that Mist1 seemed to play the role of oncogene in cervical squamous cell carcinoma and could be a potential biomarker.
Collapse
Affiliation(s)
- Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xin Xie
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Zhangjian Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| |
Collapse
|