1
|
Ujlaky-Nagy L, Szöllősi J, Vereb G. EGFR-HER2 Transactivation Viewed in Space and Time Through the Versatile Spectacles of Imaging Cytometry-Implications for Targeted Therapy. Cytometry A 2025; 107:187-202. [PMID: 40052543 DOI: 10.1002/cyto.a.24922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/03/2024] [Accepted: 01/24/2025] [Indexed: 04/11/2025]
Abstract
Ligand-induced formation of signaling platforms composed of homo- and/or heterodimers of receptor tyrosine kinases is considered essential for their activation and consequential contribution to the progression of many cancers. Epidermal Growth Factor Receptor (EGFR) acts as a signal receiver upon EGF binding and produces mitogenic input for many cells also through receptor-heterodimerization with its ligandless partner, Human Epidermal growth factor Receptor 2 (HER2). Ligand-driven transactivation is a key step leading to changes in the cell surface pattern of EGFR and HER2; their interaction plays a key role in various malignancies, especially when HER2 molecules are overexpressed. Our clinically relevant model system is the SK-BR-3 breast tumor cell line, overexpressing HER2 and moderately expressing EGFR. This cell line shows significant dependency on EGF-driven HER2 signaling. We studied changes in the interaction between EGFR and HER2 in the cell membrane upon EGF binding, applying various biophysical approaches with different time scales. Changes in molecular proximity were characterized by fluorescence lifetime imaging microscopy (FLIM) techniques assessing Förster resonance energy transfer (FRET), which confirmed the ligand-enhanced interaction of EGFR and HER2, followed by an increase in HER2 homoassociation. EGF binding and transactivation were reflected in the phosphorylation of both receptor types as well. At the same time, superresolution Airyscan microscopy and fluorescence correlation and cross-correlation spectroscopy (FCS/FCCS), sensitive to changes in the size of stationary and diffusing aggregates, respectively, have revealed cyclic increases in the aggregation and stable co-diffusion of membrane-localized HER2, possibly caused by internalization and recycling, eventually leading to a new equilibrium. Such dynamic fluctuation of receptor interaction may open a window for the binding of therapeutic antibodies that are aimed at inhibiting heterodimerization, such as pertuzumab. The complementary array of state-of-the-art imaging cytometry approaches thus demonstrates a spatiotemporal pattern of spontaneous and induced receptor aggregation states that could provide mechanistic insights into the potential success of targeted therapies directed at the HER family of receptor tyrosine kinases.
Collapse
Affiliation(s)
- László Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-DE Cell Biology and Signaling Research Group (Hungarian Research Network - University of Debrecen), Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-DE Cell Biology and Signaling Research Group (Hungarian Research Network - University of Debrecen), Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-DE Cell Biology and Signaling Research Group (Hungarian Research Network - University of Debrecen), Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Tanei T, Seno S, Sota Y, Hatano T, Kitahara Y, Abe K, Masunaga N, Tsukabe M, Yoshinami T, Miyake T, Shimoda M, Matsuda H, Shimazu K. High HER2 Intratumoral Heterogeneity Is a Predictive Factor for Poor Prognosis in Early-Stage and Locally Advanced HER2-Positive Breast Cancer. Cancers (Basel) 2024; 16:1062. [PMID: 38473420 DOI: 10.3390/cancers16051062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
PURPOSE Breast cancer tumors frequently have intratumoral heterogeneity (ITH). Tumors with high ITH cause therapeutic resistance and have human epidermal growth factor receptor 2 (HER2) heterogeneity in response to HER2-targeted therapies. This study aimed to investigate whether high HER2 heterogeneity levels were clinically related to a poor prognosis for HER2-targeted adjuvant therapy resistance in primary breast cancers. METHODS This study included patients with primary breast cancer (n = 251) treated with adjuvant HER2-targeted therapies. HER2 heterogeneity was manifested by the shape of HER2 fluorescence in situ hybridization amplification (FISH) distributed histograms with the HER2 gene copy number within a tumor sample. Each tumor was classified into a biphasic grade graph (high heterogeneity [HH]) group or a monophasic grade graph (low heterogeneity [LH]) group based on heterogeneity. Both groups were evaluated for disease-free survival (DFS) and overall survival (OS) for a median of ten years of annual follow-up. RESULTS Of 251 patients with HER2-positive breast cancer, 46 (18.3%) and 205 (81.7%) were classified into the HH and LH groups, respectively. The HH group had more distant metastases and a poorer prognosis than the LH group (DFS: p < 0.001 (HH:63% vs. LH:91% at 10 years) and for the OS: p = 0.012 (HH:78% vs. LH:95% at 10 years). CONCLUSIONS High HER2 heterogeneity is a poor prognostic factor in patients with HER2-positive breast cancer. A novel approach to heterogeneity, which is manifested by the shape of HER2 FISH distributions, might be clinically useful in the prognosis prediction of patients after HER2 adjuvant therapy.
Collapse
Affiliation(s)
- Tomonori Tanei
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, 2-2-E10 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Yoshiaki Sota
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, 2-2-E10 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Takaaki Hatano
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, 2-2-E10 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Yuri Kitahara
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, 2-2-E10 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Kaori Abe
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, 2-2-E10 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Nanae Masunaga
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, 2-2-E10 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Masami Tsukabe
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, 2-2-E10 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Tetsuhiro Yoshinami
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, 2-2-E10 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Tomohiro Miyake
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, 2-2-E10 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Masafumi Shimoda
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, 2-2-E10 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Hideo Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Kenzo Shimazu
- Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka University, 2-2-E10 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
3
|
Veeraraghavan J, Gutierrez C, De Angelis C, Davis R, Wang T, Pascual T, Selenica P, Sanchez K, Nitta H, Kapadia M, Pavlick AC, Galvan P, Rexer B, Forero-Torres A, Nanda R, Storniolo AM, Krop IE, Goetz MP, Nangia JR, Wolff AC, Weigelt B, Reis-Filho JS, Hilsenbeck SG, Prat A, Osborne CK, Schiff R, Rimawi MF. A Multiparameter Molecular Classifier to Predict Response to Neoadjuvant Lapatinib plus Trastuzumab without Chemotherapy in HER2+ Breast Cancer. Clin Cancer Res 2023; 29:3101-3109. [PMID: 37195235 PMCID: PMC10923553 DOI: 10.1158/1078-0432.ccr-22-3753] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/22/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE Clinical trials reported 25% to 30% pathologic complete response (pCR) rates in HER2+ patients with breast cancer treated with anti-HER2 therapies without chemotherapy. We hypothesize that a multiparameter classifier can identify patients with HER2-"addicted" tumors who may benefit from a chemotherapy-sparing strategy. EXPERIMENTAL DESIGN Baseline HER2+ breast cancer specimens from the TBCRC023 and PAMELA trials, which included neoadjuvant treatment with lapatinib and trastuzumab, were used. In the case of estrogen receptor-positive (ER+) tumors, endocrine therapy was also administered. HER2 protein and gene amplification (ratio), HER2-enriched (HER2-E), and PIK3CA mutation status were assessed by dual gene protein assay (GPA), research-based PAM50, and targeted DNA-sequencing. GPA cutoffs and classifier of response were constructed in TBCRC023 using a decision tree algorithm, then validated in PAMELA. RESULTS In TBCRC023, 72 breast cancer specimens had GPA, PAM50, and sequencing data, of which 15 had pCR. Recursive partitioning identified cutoffs of HER2 ratio ≥ 4.6 and %3+ IHC staining ≥ 97.5%. With PAM50 and sequencing data, the model added HER2-E and PIK3CA wild-type (WT). For clinical implementation, the classifier was locked as HER2 ratio ≥ 4.5, %3+ IHC staining ≥ 90%, and PIK3CA-WT and HER2-E, yielding 55% and 94% positive (PPV) and negative (NPV) predictive values, respectively. Independent validation using 44 PAMELA cases with all three biomarkers yielded 47% PPV and 82% NPV. Importantly, our classifier's high NPV signifies its strength in accurately identifying patients who may not be good candidates for treatment deescalation. CONCLUSIONS Our multiparameter classifier differentially identifies patients who may benefit from HER2-targeted therapy alone from those who need chemotherapy and predicts pCR to anti-HER2 therapy alone comparable with chemotherapy plus dual anti-HER2 therapy in unselected patients.
Collapse
Affiliation(s)
- Jamunarani Veeraraghavan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Carolina Gutierrez
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Carmine De Angelis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robert Davis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Tao Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Tomas Pascual
- Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Hospital Clinic de Barcelona, Barcelona, Spain
- SOLTI Cancer Research Group
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Sanchez
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Anne C. Pavlick
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | - Ian E. Krop
- Dana Farber Cancer Institute, Boston, MA, USA
| | | | - Julie R. Nangia
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S. Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Susan G. Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - C. Kent Osborne
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Mothaffar F. Rimawi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Saeki S, Kumegawa K, Takahashi Y, Yang L, Osako T, Yasen M, Otsuji K, Miyata K, Yamakawa K, Suzuka J, Sakimoto Y, Ozaki Y, Takano T, Sano T, Noda T, Ohno S, Yao R, Ueno T, Maruyama R. Transcriptomic intratumor heterogeneity of breast cancer patient-derived organoids may reflect the unique biological features of the tumor of origin. Breast Cancer Res 2023; 25:21. [PMID: 36810117 PMCID: PMC9942352 DOI: 10.1186/s13058-023-01617-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND The intratumor heterogeneity (ITH) of cancer cells plays an important role in breast cancer resistance and recurrence. To develop better therapeutic strategies, it is necessary to understand the molecular mechanisms underlying ITH and their functional significance. Patient-derived organoids (PDOs) have recently been utilized in cancer research. They can also be used to study ITH as cancer cell diversity is thought to be maintained within the organoid line. However, no reports investigated intratumor transcriptomic heterogeneity in organoids derived from patients with breast cancer. This study aimed to investigate transcriptomic ITH in breast cancer PDOs. METHODS We established PDO lines from ten patients with breast cancer and performed single-cell transcriptomic analysis. First, we clustered cancer cells for each PDO using the Seurat package. Then, we defined and compared the cluster-specific gene signature (ClustGS) corresponding to each cell cluster in each PDO. RESULTS Cancer cells were clustered into 3-6 cell populations with distinct cellular states in each PDO line. We identified 38 clusters with ClustGS in 10 PDO lines and used Jaccard similarity index to compare the similarity of these signatures. We found that 29 signatures could be categorized into 7 shared meta-ClustGSs, such as those related to the cell cycle or epithelial-mesenchymal transition, and 9 signatures were unique to single PDO lines. These unique cell populations appeared to represent the characteristics of the original tumors derived from patients. CONCLUSIONS We confirmed the existence of transcriptomic ITH in breast cancer PDOs. Some cellular states were commonly observed in multiple PDOs, whereas others were specific to single PDO lines. The combination of these shared and unique cellular states formed the ITH of each PDO.
Collapse
Affiliation(s)
- Sumito Saeki
- grid.410807.a0000 0001 0037 4131Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550 Japan ,grid.410807.a0000 0001 0037 4131Breast Surgical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kohei Kumegawa
- grid.410807.a0000 0001 0037 4131Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoko Takahashi
- grid.410807.a0000 0001 0037 4131Breast Surgical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Liying Yang
- grid.410807.a0000 0001 0037 4131Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550 Japan
| | - Tomo Osako
- grid.410807.a0000 0001 0037 4131Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mahmut Yasen
- grid.410807.a0000 0001 0037 4131Cancer Informatics and Biobanking Platform Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazutaka Otsuji
- grid.410807.a0000 0001 0037 4131Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kenichi Miyata
- grid.410807.a0000 0001 0037 4131Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550 Japan
| | - Kaoru Yamakawa
- grid.410807.a0000 0001 0037 4131Cancer Informatics and Biobanking Platform Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Jun Suzuka
- grid.410807.a0000 0001 0037 4131Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuri Sakimoto
- grid.410807.a0000 0001 0037 4131Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550 Japan
| | - Yukinori Ozaki
- grid.410807.a0000 0001 0037 4131Breast Medical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Toshimi Takano
- grid.410807.a0000 0001 0037 4131Breast Medical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takeshi Sano
- grid.410807.a0000 0001 0037 4131Department of Gastroenterological Surgery, Gastroenterological Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tetsuo Noda
- grid.410807.a0000 0001 0037 4131Director’s Room, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shinji Ohno
- grid.410807.a0000 0001 0037 4131Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryoji Yao
- grid.410807.a0000 0001 0037 4131Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takayuki Ueno
- grid.410807.a0000 0001 0037 4131Breast Surgical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan. .,Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
5
|
Peckys DB, Gaa D, de Jonge N. Quantification of EGFR-HER2 Heterodimers in HER2-Overexpressing Breast Cancer Cells Using Liquid-Phase Electron Microscopy. Cells 2021; 10:cells10113244. [PMID: 34831465 PMCID: PMC8623301 DOI: 10.3390/cells10113244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Currently, breast cancer patients are classified uniquely according to the expression level of hormone receptors, and human epidermal growth factor receptor 2 (HER2). This coarse classification is insufficient to capture the phenotypic complexity and heterogeneity of the disease. A methodology was developed for absolute quantification of receptor surface density ρR, and molecular interaction (dimerization), as well as the associated heterogeneities, of HER2 and its family member, the epidermal growth factor receptor (EGFR) in the plasma membrane of HER2 overexpressing breast cancer cells. Quantitative, correlative light microscopy (LM) and liquid-phase electron microscopy (LPEM) were combined with quantum dot (QD) labeling. Single-molecule position data of receptors were obtained from scanning transmission electron microscopy (STEM) images of intact cancer cells. Over 280,000 receptor positions were detected and statistically analyzed. An important finding was the subcellular heterogeneity in heterodimer shares with respect to plasma membrane regions with different dynamic properties. Deriving quantitative information about EGFR and HER2 ρR, as well as their dimer percentages, and the heterogeneities thereof, in single cancer cells, is potentially relevant for early identification of patients with HER2 overexpressing tumors comprising an enhanced share of EGFR dimers, likely increasing the risk for drug resistance, and thus requiring additional targeted therapeutic strategies.
Collapse
Affiliation(s)
- Diana B. Peckys
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, 66421 Homburg, Germany;
| | - Daniel Gaa
- INM—Leibniz Institute for New Materials, 66123 Saarbrücken, Germany;
| | - Niels de Jonge
- INM—Leibniz Institute for New Materials, 66123 Saarbrücken, Germany;
- Department of Physics, Saarland University, 66123 Saarbrücken, Germany
- Correspondence:
| |
Collapse
|