1
|
Bettini S, Lazzari M, Franceschini V. Molecular Markers in the Study of Non-model Vertebrates: Their Significant Contributions to the Current Knowledge of Tetrapod Glial Cells and Fish Olfactory Neurons. Results Probl Cell Differ 2019; 68:355-377. [PMID: 31598864 DOI: 10.1007/978-3-030-23459-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The knowledge of the morphological and functional aspects of mammalian glial cells has greatly increased in the last few decades. Glial cells represent the most diffused cell type in the central nervous system, and they play a critical role in the development and function of the brain. Glial cell dysfunction has recently been shown to contribute to various neurological disorders, such as autism, schizophrenia, pain, and neurodegeneration. For this reason, glia constitutes an interesting area of research because of its clinical, diagnostic, and pharmacological relapses. In this chapter, we present and discuss the cytoarchitecture of glial cells in tetrapods from an evolutive perspective. GFAP and vimentin are main components of the intermediate filaments of glial cells and are used as cytoskeletal molecular markers because of their high degree of conservation in the various vertebrate groups. In the anamniotic tetrapods and their progenitors, Rhipidistia (Dipnoi are the only extant rhipidistian fish), the cytoskeletal markers show a model based exclusively on radial glial cells. In the transition from primitive vertebrates to successively evolved forms, the emergence of a new model has been observed which is believed to support the most complex functional aspects of the nervous system in the vertebrates. In reptiles, radial glial cells are prevalent, but star-shaped astrocytes begin to appear in the midbrain. In endothermic amniotes (birds and mammals), star-shaped astrocytes are predominant. In glial cells, vimentin is indicative of immature cells, while GFAP indicates mature ones.Olfactory receptor neurons undergo continuous turnover, so they are an easy model for neurogenesis studies. Moreover, they are useful in neurotoxicity studies because of the exposed position of their apical pole to the external environment. Among vertebrates, fish represent a valid biological model in this field. In particular, zebrafish, already used in laboratories for embryological, neurobiological, genetic, and pathophysiological studies, is the reference organism in olfactory system research. Smell plays an important role in the reproductive behavior of fish, with direct influences also on the numerical consistency of their populations. Taking into account that a lot of species have considerable economic importance, it is necessary to verify if the model of zebrafish olfactory organ is also directly applicable to other fish. In this chapter, we focus on crypt cells, a morphological type of olfactory cells specific of fish. We describe hypothetical function (probably related with social behavior) and evolutive position of these cells (prior to the appearance of the vomeronasal organ in tetrapods). We also offer the first comparison of the molecular characteristics of these receptors between zebrafish and the guppy. Interestingly, the immunohistochemical expression patterns of known crypt cell markers are not overlapping in the two species.
Collapse
Affiliation(s)
- Simone Bettini
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy.
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Matsui T, Kobayashi Y. Glycoconjugate expression in the olfactory bulb of the premetamorphic larva of the Japanese sword-tailed newt (Cynops ensicauda). J Vet Med Sci 2018. [PMID: 29540650 PMCID: PMC5989032 DOI: 10.1292/jvms.17-0679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the organization of the olfactory organ and assessed the lectin histochemistry to investigate the glycoconjugate distribution of the olfactory bulb in premetamorphic larvae of
Cynops ensicauda. The nasal cavity was an oval chamber that contained olfactory epithelium and a primitive vomeronasal organ. Secretory products were found in the
supporting cells of the two sensory epithelia and in the respiratory cells. Ten lectins bound to the olfactory and vomeronasal nerve fibers as well as to the glomeruli in the olfactory bulb.
The binding intensity in larvae was weaker than that reported previously in mature animals. This difference suggests a functional correlation between the expression change of glycoconjugates
and the developmental refinement of the olfactory system during metamorphosis.
Collapse
Affiliation(s)
- Toshiyasu Matsui
- Department of Anatomy and Neurobiology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Yasushi Kobayashi
- Department of Anatomy and Neurobiology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
3
|
Matsui T, Tanaka K, Kobayashi Y. Heterogeneous expression of glycoconjugates in the primary olfactory centre of the Japanese sword-tailed newt (Cynops ensicauda). Anat Histol Embryol 2017; 47:28-37. [PMID: 29052233 DOI: 10.1111/ahe.12320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Histochemical organization of the Caudata olfactory system remains largely unknown, despite this amphibian order showing phylogenetic diversity in the development of the vomeronasal organ and its primary centre, the accessory olfactory bulb. Here, we investigated the glycoconjugate distribution in the olfactory bulb of a semi-aquatic salamander, the Japanese sword-tailed newt (Cynops ensicauda), by histochemical analysis of the lectins that were present. Eleven lectins showed a specific binding to the olfactory and vomeronasal nerves as well as to the olfactory glomeruli. Among them, succinylated wheat germ agglutinin (s-WGA), soya bean agglutinin (SBA), Bandeiraea simplicifolia lectin-I (BSL-I) and peanut agglutinin showed significantly different bindings to glomeruli between the main and accessory olfactory bulbs. We also found that s-WGA, SBA, BSL-I and Pisum sativum agglutinin preferentially bound to a rostral cluster of glomeruli in the main olfactory bulb. This finding suggests the presence of a functional subset of primary projections to the main olfactory system. Our results therefore demonstrated a region-specific glycoconjugate expression in the olfactory bulb of C. ensicauda, which would be related to a functional segregation of the olfactory system.
Collapse
Affiliation(s)
- T Matsui
- Department of Anatomy and Neurobiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - K Tanaka
- Department of Anatomy and Neurobiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Y Kobayashi
- Department of Anatomy and Neurobiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
4
|
Nakada T, Hagino-Yamagishi K, Nakanishi K, Yokosuka M, Saito TR, Toyoda F, Hasunuma I, Nakakura T, Kikuyama S. Expression of G proteins in the olfactory receptor neurons of the newt Cynops pyrrhogaster: their unique projection into the olfactory bulbs. J Comp Neurol 2014; 522:3501-19. [PMID: 24771457 DOI: 10.1002/cne.23619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 12/11/2022]
Abstract
We analyzed the expression of G protein α subunits and the axonal projection into the brain in the olfactory system of the semiaquatic newt Cynops pyrrhogaster by immunostaining with antibodies against Gαolf and Gαo , by in situ hybridization using probes for Gαolf , Gαo , and Gαi2 , and by neuronal tracing with DiI and DiA. The main olfactory epithelium (OE) consists of two parts, the ventral OE and dorsal OE. In the ventral OE, the Gαolf - and Gαo -expressing neurons are located in the apical and basal zone of the OE, respectively. This zonal expression was similar to that of the OE in the middle cavity of the fully aquatic toad Xenopus laevis. However, the Gαolf - and Gαo -expressing neurons in the newt ventral OE project their axons toward the main olfactory bulb (MOB) and the accessory olfactory bulb (AOB), respectively, whereas in Xenopus, the axons of both neurons project solely toward the MOB. In the dorsal OE of the newt, as in the principal cavity of Xenopus, the majority of the neurons express Gαolf and extend their axons into the MOB. In the vomeronasal organ (VNO), the neurons mostly express Gαo . These neurons and quite a few Gαolf -expressing neurons project their axons toward the AOB. This feature is similar to that in the terrestrial toad Bufo japonicus and is different from that in Xenopus, in which VNO neurons express solely Gαo , although their axons invariably project toward the AOB. We discuss the findings in the light of diversification and evolution of the vertebrate olfactory system.
Collapse
Affiliation(s)
- Tomoaki Nakada
- Department of Comparative and Behavioral Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, 180-8602, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
The olfactory receptor organs and their primary centers are classified into
several types. The receptor organs are divided into fish-type olfactory epithelium (OE),
mammal-type OE, middle chamber epithelium (MCE), lower chamber epithelium (LCE), recess
epithelium, septal olfactory organ of Masera (SO), mammal-type vomeronasal organ (VNO) and
snake-type VNO. The fish-type OE is observed in flatfish and lungfish, while the
mammal-type OE is observed in amphibians, reptiles, birds and mammals. The MCE and LCE are
unique to Xenopus and turtles, respectively. The recess epithelium is
unique to lungfish. The SO is observed only in mammals. The mammal-type VNO is widely
observed in amphibians, lizards and mammals, while the snake-type VNO is unique to snakes.
The VNO itself is absent in turtles and birds. The mammal-type OE, MCE, LCE and recess
epithelium seem to be descendants of the fish-type OE that is derived from the putative
primitive OE. The VNO may be derived from the recess epithelium or fish-type OE and
differentiate into the mammal-type VNO and snake-type VNO. The primary olfactory centers
are divided into mammal-type main olfactory bulbs (MOB), fish-type MOB and mammal-type
accessory olfactory bulbs (AOB). The mammal-type MOB first appears in amphibians and
succeeds to reptiles, birds and mammals. The fish-type MOB, which is unique to fish, may
be the ancestor of the mammal-type MOB. The mammal-type AOB is observed in amphibians,
lizards, snakes and mammals and may be the remnant of the fish-type MOB.
Collapse
Affiliation(s)
- Kazuyuki Taniguchi
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | | |
Collapse
|
6
|
Ibrahim D, Nakamuta N, Taniguchi K, Yamamoto Y, Taniguchi K. Histological and lectin histochemical studies on the olfactory and respiratory mucosae of the sheep. J Vet Med Sci 2013; 76:339-46. [PMID: 24200894 PMCID: PMC4013359 DOI: 10.1292/jvms.13-0436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The olfactory and respiratory mucosae of the Corriedale sheep were examined
using lectin histochemistry in order to clarify the histochemical and glycohistochemical
differences between these two tissues. The olfactory epithelium was stained with 13
lectins out of 21 lectins examined, while the respiratory epithelium was positive to 16
lectins. The free border of both of the olfactory and respiratory epithelia was stained
with 12 lectins: Wheat germ agglutinin (WGA), succinylated-wheat germ agglutinin (s-WGA),
Lycopersicon esculentum lectin (LEL), Solanum
tuberosum lectin (STL), Datura stramonium lectin (DSL),
Soybean agglutinin (SBA), Bandeiraea simplicifolia lectin-I (BSL-I),
Ricinus communis agglutinin-I (RCA-120), Erythrina
cristagalli lectin (ECL), Concanavalin A (Con A), Phaseolus
vulgaris agglutinin-E (PHA-E) and Phaseolus vulgaris
agglutinin-L (PHA-L). The associated glands of the olfactory mucosa, Bowman’s glands, were
stained with 13 lectins. While both the goblet cells and mucous nasal glands were stained
with 8 lectins; five of them (WGA, s-WGA, STL, Vicia villosa agglutinin
(VVA) and ECL) were mutually positive among the Bowman’s glands, mucous nasal glands and
the goblet cells. These findings indicate that the glycohistochemical characteristics of
the free borders of both olfactory and respiratory epithelia are similar to each other,
suggesting that secretions from the Bowman’s glands and those of the goblet cells and
mucous nasal glands are partially exchanged between the surface of two epithelia to
contribute the functions of the respiratory epithelium and the olfactory receptor cells,
respectively.
Collapse
Affiliation(s)
- Dalia Ibrahim
- United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | | | | | |
Collapse
|
7
|
Nakamuta S, Nakamuta N, Taniguchi K, Taniguchi K. Histological and ultrastructural characteristics of the primordial vomeronasal organ in lungfish. Anat Rec (Hoboken) 2012; 295:481-91. [PMID: 22271496 DOI: 10.1002/ar.22415] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 12/28/2011] [Indexed: 11/10/2022]
Abstract
Many vertebrates have two anatomically distinct olfactory organs--the olfactory epithelium and the vomeronasal organ--to detect chemicals such as general odorants and pheromones in their environment. The vomeronasal organ is not present in fish but is present in vertebrates of a higher order than amphibians. Among all extant fishes, the lungfish is considered to be genetically and phylogenetically closest to tetrapods. In this study, we examined the olfactory organs of African lungfish, Protopterus annectens, by lectin histochemistry, immunohistochemistry, and transmission electron microscopy. Two types of sensory epithelia were identified in the olfactory organ--the olfactory epithelium covering the surface of lamellae and the sensory epithelium lining the recesses both at the base of lamellae and in the wall of the nasal sac--and designated here as the lamellar olfactory epithelium and the recess epithelium, respectively. Based on analysis of G-protein expression and ultrastructure, the lamellar olfactory epithelium resembled the olfactory epithelium of ordinary teleosts and the recess epithelium resembled the vomeronasal organ of tetrapods. Furthermore, lectin histochemistry demonstrated that the axons from the recess epithelium converge and project to the ventrolateral part of the olfactory bulb, suggesting that lungfish possess a region homologous to the accessory olfactory bulb of tetrapods. Based on these results, it seems appropriate to refer to the recess epithelium as "a primordium of the vomeronasal organ." This study may provide important clues to elucidate how the vomeronasal organ emerged during the evolution of vertebrates.
Collapse
Affiliation(s)
- Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | | | | | | |
Collapse
|
8
|
Kondoh D, Yamamoto Y, Nakamuta N, Taniguchi K, Taniguchi K. Seasonal changes in the histochemical properties of the olfactory epithelium and vomeronasal organ in the Japanese striped snake, Elaphe quadrivirgata. Anat Histol Embryol 2011; 41:41-53. [PMID: 21895741 DOI: 10.1111/j.1439-0264.2011.01101.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Seasonal changes in the histochemical properties of the vomeronasal and olfactory epithelia of the Japanese striped snake were examined in four seasons, viz. the reproductive, pre-hibernating, hibernating and post-hibernating seasons. In the vomeronasal and olfactory supporting cells, secretory granules were much more abundant in the hibernating season than in the other seasons. In the vomeronasal and olfactory receptor cells, the lipofuscin granules were much fewer in the post-hibernating season than in the other seasons. In histochemical studies with 21 lectins, several lectins stained the vomeronasal and olfactory epithelia (receptor cells, supporting cells and free border) more weakly in the hibernating season than in the reproductive season. However, all lectins stained both epithelia in the hibernating season after sialic acid removal in a similar manner as in the reproductive season after sialic acid removal. These lectin histochemical studies indicate that sialic acid residues in the vomeronasal and olfactory epithelia are more numerous in the hibernating season than in the reproductive season. The results suggest that during hibernation, the vomeronasal and olfactory receptor cells possibly undergo rapid cell turnover, and that during this time, the vomeronasal and olfactory epithelia are securely protected from pathogens by an innate immune defence system.
Collapse
Affiliation(s)
- D Kondoh
- Department of Basic Veterinary Science, The United Graduate School of Veterinary Science, Gifu University, 1-1 Yanagido, Gifu, Gifu, Japan
| | | | | | | | | |
Collapse
|
9
|
Matsui T, Saito S, Kobayashi Y, Taniguchi K. Lectin histochemical study on the olfactory bulb of the newt, Cynops pyrrhogaster. Anat Histol Embryol 2011; 40:419-25. [PMID: 21592192 DOI: 10.1111/j.1439-0264.2011.01087.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The function and/or morphological features of the vomeronasal olfactory system remain unclear in aquatic animals, although the system appeared first in urodeles based on phylogenic data. We examined the lectin binding patterns in the olfactory bulb of a semi-aquatic urodele, the Japanese red-bellied newt, Cynops pyrrhogaster, using 22 different lectins. Eleven of the lectins showed specific binding to the nerve fibres and glomeruli in the olfactory bulb. Among these, Wheat germ agglutinin, pokeweed and peanut agglutinin preferentially bound the main olfactory bulb, reflecting variation in the expression of glycoconjugates between the main and accessory olfactory bulbs. By contrast, the types of lectins bound to the Cynops olfactory bulb were considerably different from those reported in other urodele families. These results suggest a histochemical distinction between the main and accessory olfactory bulbs, and that glycoconjugate expression may differ significantly among urodele families.
Collapse
Affiliation(s)
- T Matsui
- Department of Anatomy and Neurobiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | | | | | |
Collapse
|
10
|
Fine structure of the vomeronasal organ in the grass lizard, Takydromus tachydromoides. Tissue Cell 2010; 42:322-7. [DOI: 10.1016/j.tice.2010.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 07/04/2010] [Accepted: 07/08/2010] [Indexed: 11/20/2022]
|
11
|
Yokosuka M, Hagiwara A, Saito TR, Aoyama M, Ichikawa M, Sugita S. Morphological and Histochemical Study of the Nasal Cavity and Fused Olfactory Bulb of the Brown-Eared Bulbul,Hysipetes amaurotis. Zoolog Sci 2009; 26:713-21. [DOI: 10.2108/zsj.26.713] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Yokosuka M, Hagiwara A, Saito TR, Tsukahara N, Aoyama M, Wakabayashi Y, Sugita S, Ichikawa M. Histological properties of the nasal cavity and olfactory bulb of the Japanese jungle crow Corvus macrorhynchos. Chem Senses 2009; 34:581-93. [PMID: 19620387 DOI: 10.1093/chemse/bjp040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nasal cavity and olfactory bulb (OB) of the Japanese jungle crow (Corvus macrorhynchos) were studied using computed tomography (CT) and histochemical staining. The nasal septum divided the nasal cavity in half. The anterior and maxillary conchae were present on both sides of the nasal cavity, but the posterior concha was indistinct. A small OB was present on the ventral surface of the periphery of the cerebrum. The OB-brain ratio--the ratio of the size of the OB to that of the cerebral hemisphere--was 6.13. The olfactory nerve bundles projected independently to the OB, which appeared fused on gross examination. Histochemical analysis confirmed the fusion of all OB layers. Using a neural tracer, we found that the olfactory nerve bundles independently projected to the olfactory nerve layer (ONL) and glomerular layer (GL) of the left and right halves of the fused OB. Only 4 of 21 lectins bound to the ONL and GL. Thus, compared with mammals and other birds, the jungle crow may have a poorly developed olfactory system and an inferior sense of olfaction. However, it has been contended recently that the olfactory abilities of birds cannot be judged from anatomical findings alone. Our results indicate that the olfactory system of the jungle crow is an interesting research model to evaluate the development and functions of vertebrate olfactory systems.
Collapse
Affiliation(s)
- Makoto Yokosuka
- Department of Comparative and Behavior Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Taniguchi K, Saito S, Oikawa T, Taniguchi K. Phylogenic aspects of the amphibian dual olfactory system. J Vet Med Sci 2008; 70:1-9. [PMID: 18250565 DOI: 10.1292/jvms.70.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The phylogenic significance of the subdivision of dual olfactory system is reviewed mainly on the basis of our findings by electron microscopy and lectin histochemistry in the three amphibian species. The dual olfactory system is present in common in these species and consists of the projection from the olfactory epithelium (OE) to the main olfactory bulb (MOB) and that from the vomeronasal epithelium (VNE) to the accessory olfactory bulb (AOB). The phylogenic significance of subdivisions in the dual olfactory system in the amphibian must differently be interpreted. The subdivision of the MOB into its dorsal region (D-MOB) and ventral region (V-MOB) in Xenopus laevis must be attributed to the primitive features in their olfactory receptors. The middle cavity epithelium lining the middle cavity of this frog possesses both ciliated sensory cells and microvillous sensory cells, reminding the OE in fish. The subdivision of the AOB into the rostral (R-AOB) and caudal part (C-AOB) in Bufo japonicus formosus must be regarded as an advanced characteristic. The lack of subdivisions in both MOB and AOB in Cynops pyrrhogaster may reflect their phylogenic primitiveness. Since our lectin histochemistry to detect glycoconjugates expressed in the olfactory pathway reveals the subdivisions in the dual olfactory system in the amphibian, the glycoconjugates may deeply participate in the organization and function of olfactory pathways in phylogeny.
Collapse
Affiliation(s)
- Kazumi Taniguchi
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Towada, Japan.
| | | | | | | |
Collapse
|
14
|
Saito S, Kobayashi N, Atoji Y. Subdivision of the accessory olfactory bulb in the Japanese common toad, Bufo japonicus, revealed by lectin histochemical analysis. ACTA ACUST UNITED AC 2006; 211:395-402. [PMID: 16575607 DOI: 10.1007/s00429-006-0088-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2006] [Indexed: 11/30/2022]
Abstract
Lectin binding patterns in the olfactory bulb of the Japanese common toad, Bufo japonicus, were examined using 21 types of lectin. Ten out of 21 lectins, WGA, s-WGA, LEL, STL, DBA, VVA, SJA, RCA-I, PNA, and PHA-L, stained the olfactory nerve, the glomeruli in the main olfactory bulb (MOB), the vomeronasal nerve, and the glomeruli in the accessory olfactory bulb (AOB). The binding patterns of LEL, STL, DBA, and PHA-L subdivided AOB glomeruli into rostral and caudal regions, where LEL, STL, and DBA stained the rostral region more intensely than the caudal region, and PHA-L had the opposite effect. Another lectin, BSL-I, stained both AOB glomeruli and the vomeronasal nerve, but not MOB glomeruli or the olfactory nerve. This is the first report of histological subdivision in the AOB of an amphibian, which suggests that the AOB development in Bufo may be unique.
Collapse
Affiliation(s)
- Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, 1-1Yanagido, Gifu, 501-1193, Japan.
| | | | | |
Collapse
|
15
|
Soeta S, Izu Y, Saito TR, Yamano S, Taniguchi K. Differential expression of neurofilament 200-like immunoreactivity in the main olfactory and vomeronasal systems of the Japanese newt, Cynops pyrrhogaster. J Vet Med Sci 2005; 67:701-6. [PMID: 16082118 DOI: 10.1292/jvms.67.701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of neurofilament 200 (NF200)-like immunoreactivity was examined in the main olfactory system and the vomeronasal system of the Japanese newt, Cynops pyrrhogaster, using anti-porcine NF200 monoclonal antibody (clone N52) to investigate the differences in phenotypical characteristics between these systems. The entire nasal cavity was a flattened single chamber consisting of the main nasal chamber (MNC) and the lateral nasal sinus (LNS) communicating with each other. The olfactory epithelium (OE) was present in the MNC, and the vomeronasal epithelium (VNE) was in the LNS. The OE possessed only a small number of NF200-like immunoreactive receptor neurons. The olfactory nerve and the olfactory nerve layer of the main olfactory bulb also contained a small number of NF200-like immunoreactive axons. In contrast, the VNE possessed many NF200-like immunoreactive receptor neurons. The vomeronasal nerve and the vomeronasal nerve layer of the accessory olfactory bulb contained many NF200-like immunoreactive axons. These findings in the Japanese newt indicate that NF200-like immunoreactive receptor neurons constitute a major subpopulation in the VNE and a minor subpopulation in the OE. In addition, NF200-like immunoreactivity seems to be a useful marker to distinguish the vomeronasal system from the other nervous systems including the main olfactory system in the Japanese newt. The localization of a few NF200-like immunoreactive receptor neurons in the OE might indicate that pheromone-sensitive receptor neurons are intermingled in the OE of the Japanese newt.
Collapse
Affiliation(s)
- Satoshi Soeta
- Department of Veterinary Anatomy, Nippon Veterinary and Animal Science University, Japan
| | | | | | | | | |
Collapse
|
16
|
Yamamoto Y, Mori M, Saito S, Amano M, Yamanome T, Taniguchi K, Oikawa T, Yamamori K, Taniguchi K. Differential expression of histochemical characteristics in the developing olfactory receptor cells in a flatfish, barfin flounder (Verasper moseri). J Vet Med Sci 2005; 66:1609-11. [PMID: 15644619 DOI: 10.1292/jvms.66.1609] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Differentiation of the histochemical characteristics of the olfactory receptor cells (ORC) was examined by immunohistochemistry for protein gene product 9.5 (PGP 9.5) and calretinin (CR) and lectin histochemistry for Phaseolus vulgaris agglutinin-L (PHA-L) in the developing olfactory epithelium (OE) of the barfin flounder. PGP 9.5 immunoreactivity was diffuse and CR immunoreactivity was restricted at day 7, but these immunoreactivities became intense in the OE toward day 91. Crypt cells were first identified at day 56. PHA-L staining was faint at day 28, but became intense toward day 91. These findings suggest that PGP 9.5-immunopositive cells, CR-immunopositive cells, crypt cells and PHA-L-reactive cells differentiate independently in the developing OE and constitute subsets of the ORC in the OE.
Collapse
Affiliation(s)
- Yoshio Yamamoto
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Saito S, Yamamoto Y, Mori M, Amano M, Yamanome T, Taniguchi K, Yamamori K, Taniguchi K. Variety in histochemical characteristics of the olfactory receptor cells in a flatfish, barfin flounder (Verasper moseri). J Vet Med Sci 2005; 66:1409-12. [PMID: 15585956 DOI: 10.1292/jvms.66.1409] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Variety in histochemical characteristics of the olfactory receptor cells (ORC) was examined by immunohistochemistry for protein gene product 9.5 (PGP9.5) and calretinin, and by lectin histochemistry with Phaseolus vulgaris leucoagglutinin (PHA-L) in the olfactory epithelium (OE) of the barfin flounder (Verasper moseri). PGP 9.5 immunoreactivity was observed in the ORC situated in the upper three fourths of the OE. Calretinin immunoreactivity was observed in the ORC which seemed to be immunonegative for PGP 9.5. These cells were located in the upper two thirds of the OE. PHA-L staining was observed in small subsets of the ORC. PGP 9.5 and calretinin immunoreactivities and PHA-L staining were also observed in the crypt cells unique to the fish OE. These findings suggest the different properties of olfactory perception among fish ORC.
Collapse
Affiliation(s)
- Shouichiro Saito
- Department of Anatomy and Embryology, Faculty of Medicine, Ehime University, Japan
| | | | | | | | | | | | | | | |
Collapse
|