1
|
Ishikawa M, Ishii T, Morikawa T, Iijima Y, Sueishi K. The Effects of Fluvastatin on Indian Hedgehog Pathway in Endochondral Ossification. Cartilage 2021; 13:304S-314S. [PMID: 31327238 PMCID: PMC8804868 DOI: 10.1177/1947603519862318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Statins have demonstrated to be effective for treating chondrodysplasia and its effects were believed to be associated with the fibroblast growth factor receptor 3 (FGFR3). Statins promoted the degradation of FGFR3 in studies using disease-specific induced pluripotent stem cells and model mice, however, recent studies using normal chondrocytes reported that statins did not degrade FGFR3. In order to further investigate the effects of statins in endochondral ossification, this study examined the influence of statins on Indian hedgehog (Ihh), another important component of endochondral ossification, and its related pathways. The chondrocyte cell line ATDC5 was used to investigate changes in cell proliferation, mRNA, and protein expression levels. In addition, an organ culture of a mouse metatarsal bone was performed followed by hematoxylin-eosin staining and fluorescent immunostaining. Results indicated that expression level of Ihh increased with the addition of statins, which activated the Ihh pathway and altered the localization of Ihh. Changes in cholesterol modification may have affected Ihh diffusibility; however, further experiments are necessary. A reactive increase in parathyroid hormone-related protein (PTHrP) was observed in addition to changes in the Wnt pathway through secreted-related protein 2/3 and low-density lipoprotein 5/6. This led to the promotion of cell proliferation, increase of the hypertrophic chondrocyte layer, inhibition of apoptosis, and decrease in mineralization. This study demonstrated that statins had an influence on Ihh, and that the hyperfunction of Ihh may prevent premature cell death caused by FGFR3-related chondrodysplasia through an indirect increase in the expression of PTHrP.
Collapse
Affiliation(s)
| | - Takenobu Ishii
- Department of Orthodontics, Tokyo Dental
Collage, Tokyo, Japan,Takenobu Ishii, Department of Orthodontics,
Tokyo Dental Collage, 2-9-18, Misakicho, Chiyoda-ku, Tokyo, 101-0061, Japan.
| | - Taiki Morikawa
- Department of Orthodontics, Tokyo Dental
Collage, Tokyo, Japan
| | - Yuki Iijima
- Department of Orthodontics, Tokyo Dental
Collage, Tokyo, Japan
| | - Kenji Sueishi
- Department of Orthodontics, Tokyo Dental
Collage, Tokyo, Japan
| |
Collapse
|
2
|
Smeeton J, Natarajan N, Naveen Kumar A, Miyashita T, Baddam P, Fabian P, Graf D, Crump JG. Zebrafish model for spondylo-megaepiphyseal-metaphyseal dysplasia reveals post-embryonic roles of Nkx3.2 in the skeleton. Development 2021; 148:dev193409. [PMID: 33462117 PMCID: PMC7860120 DOI: 10.1242/dev.193409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/31/2020] [Indexed: 01/10/2023]
Abstract
The regulated expansion of chondrocytes within growth plates and joints ensures proper skeletal development through adulthood. Mutations in the transcription factor NKX3.2 underlie spondylo-megaepiphyseal-metaphyseal dysplasia (SMMD), which is characterized by skeletal defects including scoliosis, large epiphyses, wide growth plates and supernumerary distal limb joints. Whereas nkx3.2 knockdown zebrafish and mouse Nkx3.2 mutants display embryonic lethal jaw joint fusions and skeletal reductions, respectively, they lack the skeletal overgrowth seen in SMMD patients. Here, we report adult viable nkx3.2 mutant zebrafish displaying cartilage overgrowth in place of a missing jaw joint, as well as severe dysmorphologies of the facial skeleton, skullcap and spine. In contrast, cartilage overgrowth and scoliosis are absent in rare viable nkx3.2 knockdown animals that lack jaw joints, supporting post-embryonic roles for Nkx3.2. Single-cell RNA-sequencing and in vivo validation reveal increased proliferation and upregulation of stress-induced pathways, including prostaglandin synthases, in mutant chondrocytes. By generating a zebrafish model for the skeletal overgrowth defects of SMMD, we reveal post-embryonic roles for Nkx3.2 in dampening proliferation and buffering the stress response in joint-associated chondrocytes.
Collapse
Affiliation(s)
- Joanna Smeeton
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, and Department of Genetics and Development, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Natasha Natarajan
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Arati Naveen Kumar
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tetsuto Miyashita
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Pranidhi Baddam
- Department of Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Peter Fabian
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Daniel Graf
- Department of Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
3
|
Chen H, Capellini TD, Schoor M, Mortlock DP, Reddi AH, Kingsley DM. Heads, Shoulders, Elbows, Knees, and Toes: Modular Gdf5 Enhancers Control Different Joints in the Vertebrate Skeleton. PLoS Genet 2016; 12:e1006454. [PMID: 27902701 PMCID: PMC5130176 DOI: 10.1371/journal.pgen.1006454] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/02/2016] [Indexed: 11/18/2022] Open
Abstract
Synovial joints are crucial for support and locomotion in vertebrates, and are the frequent site of serious skeletal defects and degenerative diseases in humans. Growth and differentiation factor 5 (Gdf5) is one of the earliest markers of joint formation, is required for normal joint development in both mice and humans, and has been genetically linked to risk of common osteoarthritis in Eurasian populations. Here, we systematically survey the mouse Gdf5 gene for regulatory elements controlling expression in synovial joints. We identify separate regions of the locus that control expression in axial tissues, in proximal versus distal joints in the limbs, and in remarkably specific sub-sets of composite joints like the elbow. Predicted transcription factor binding sites within Gdf5 regulatory enhancers are required for expression in particular joints. The multiple enhancers that control Gdf5 expression in different joints are distributed over a hundred kilobases of DNA, including regions both upstream and downstream of Gdf5 coding exons. Functional rescue tests in mice confirm that the large flanking regions are required to restore normal joint formation and patterning. Orthologs of these enhancers are located throughout the large genomic region previously associated with common osteoarthritis risk in humans. The large array of modular enhancers for Gdf5 provide a new foundation for studying the spatial specificity of joint patterning in vertebrates, as well as new candidates for regulatory regions that may also influence osteoarthritis risk in human populations. Joints, such as the hip and knee, are crucial for support and locomotion in animals, and are the frequent sites of serious human diseases such as arthritis. The Growth and differentiation factor 5 (Gdf5) gene is required for normal joint formation, and has been linked to risk of common arthritis in Eurasians. Here, we surveyed the mouse gene for the regulatory information that controls Gdf5's expression pattern in stripes at sites of joint formation. The gene does not have a single regulatory sequence that drives expression in all joints. Instead, Gdf5 has multiple different control sequences that show striking specificity for joints in the head, vertebral column, shoulder, elbow, wrist, hip, knee, and digits. Rescue experiments show that multiple control sequences are required to restore normal joint formation in Gdf5 mutants. The joint control sequences originally found in mice are also present in humans, where they are marked as active regions during fetal development and post-natal life, and map to a large region associated with arthritis risk in human populations. Regulatory variants in the human GDF5 control sequences can now be studied for their potential role in altering joint development or disease risk at particular locations in the skeleton.
Collapse
Affiliation(s)
- Hao Chen
- Department of Developmental Biology, Beckman Center B300, Stanford University School of Medicine, Stanford, California, United States of America
| | - Terence D. Capellini
- Department of Developmental Biology, Beckman Center B300, Stanford University School of Medicine, Stanford, California, United States of America
- Human Evolutionary Biology, Peabody Museum, Harvard University, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | - Doug P. Mortlock
- Molecular Physiology and Biophysics and Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee, United States of America
| | - A. Hari Reddi
- Center for Tissue Regeneration and Repair, University of California Davis Medical Center, Sacramento, California, United States of America
| | - David M. Kingsley
- Department of Developmental Biology, Beckman Center B300, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
Tak HJ, Park TJ, Piao Z, Lee SH. Separate development of the maxilla and mandible is controlled by regional signaling of the maxillomandibular junction during avian development. Dev Dyn 2016; 246:28-40. [PMID: 27756109 DOI: 10.1002/dvdy.24465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Syngnathia is a congenital craniofacial disorder characterized by bony or soft tissue fusion of upper and lower jaws. Previous studies suggested some causative signals, such as Foxc1 or Bmp4, cause the disruption of maxillomandibular identity, but their location and the interactive signals involved remain unexplored. We wanted to examine the embryonic origin of syngnathia based on the assumption that it may be located at the separation between the maxillary and mandibular processes. This region, known as the maxillomandibular junction (MMJ), is involved in segregation of cranial neural crest-derived mesenchyme into the presumptive upper and lower jaws. RESULTS Here we investigated the role of Fgf, Bmp, and retinoid signaling during development of MMJ in chicken embryos. By changing the levels of these signals with bead implants, we induced syngnathia with microstomia on the treated side, which showed increased Barx1 and neural cell adhesion molecule (NCAM) expression. Redistribution of proliferating cells was also observed at the proximal region to maxillary and mandibular arch around MMJ. CONCLUSIONS We propose that interactive molecular signaling by Fgfs, Bmps, and retinoids around MMJ is required for normal separation of the maxilla and mandible, as well as the proper positioning of beak commissure during early facial morphogenesis. Developmental Dynamics 246:28-40, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hye-Jin Tak
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea
| | - Tae-Jin Park
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea
| | - Zhenngu Piao
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital of Guangzhou Medical College, GuangZhou City, China
| | - Sang-Hwy Lee
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea.,Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, Seoul, Korea
| |
Collapse
|
5
|
Suppression of Nkx3.2 by phosphatidylinositol-3-kinase signaling regulates cartilage development by modulating chondrocyte hypertrophy. Cell Signal 2015; 27:2389-400. [PMID: 26363466 DOI: 10.1016/j.cellsig.2015.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 01/04/2023]
Abstract
Phosphatidylinositol-3-kinase (PI3K) is a key regulator of diverse biological processes including cell proliferation, migration, survival, and differentiation. While a role of PI3K in chondrocyte differentiation has been suggested, its precise mechanisms of action are poorly understood. Here we show that PI3K signaling can down-regulate Nkx3.2 at both mRNA and protein levels in various chondrocyte cultures in vitro. In addition, we have intriguingly found that p85β, not p85α, is specifically employed as a regulatory subunit for PI3K-mediated Nkx3.2 suppression. Furthermore, we found that regulation of Nkx3.2 by PI3K requires Rac1-PAK1, but not Akt, signaling downstream of PI3K. Finally, using embryonic limb bud cultures, ex vivo long bone cultures, and p85β knockout mice, we demonstrated that PI3K-mediated suppression of Nkx3.2 in chondrocytes plays a role in the control of cartilage hypertrophy during skeletal development in vertebrates.
Collapse
|
6
|
Abstract
Transcription factor, Nkx3.2, is a member of the NK family of developmental genes and is expressed during embryogenesis in a variety of mammalian model organisms, including chicken and mouse. It was first identified in Drosophila as the Bagpipe (bap) gene, where it has been demonstrated to be essential during formation of the midgut musculature. However, mammalian homolog Nkx3.2 has been shown to play a significant role in axial and limb skeletogenesis; in particular, the human skeletal disease, spondylo-megaepiphyseal-metaphyseal dysplasia (SMMD), is associated with mutations of the Nkx3.2 gene. In this review, we highlight the role of Nkx3.2 during musculoskeletal development, with an emphasis on the factor's role in determining chondrogenic cell fate and its subsequent role in endochondral ossification and chondrocyte survival.
Collapse
|
7
|
Mori Y, Saito T, Chang SH, Kobayashi H, Ladel CH, Guehring H, Chung UI, Kawaguchi H. Identification of fibroblast growth factor-18 as a molecule to protect adult articular cartilage by gene expression profiling. J Biol Chem 2014; 289:10192-200. [PMID: 24577103 DOI: 10.1074/jbc.m113.524090] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify genes that maintain the homeostasis of adult articular cartilage and regenerate its lesions, we initially compared four types of chondrocytes: articular (AA) versus growth plate (AG) cartilage chondrocytes in adult rats, and superficial layer (IS) versus deep layer (ID) chondrocytes of epiphyseal cartilage in infant rats. Microarray analyses revealed that 40 and 186 genes had ≥10-fold higher expression ratios of AA/AG and IS/ID, respectively, and 16 genes showed ≥10-fold of both AA/AG and IS/ID ratios. The results were validated by real-time RT-PCR analysis. Among them, Hoxd1, Fgf18, and Esm1 were expressed more strongly in AA than in IS. Fgf18 was the extracellular and secreted factor that decreased glycosaminoglycan release and depletion from the cartilage, and enhanced proliferation of articular chondrocytes. Fgf18 was strongly expressed in the articular cartilage chondrocytes of adult rats. In a surgical rat osteoarthritis model, a once-weekly injection of recombinant human FGF18 (rhFGF18) given 3 weeks after surgery prevented cartilage degeneration in a dose-dependent manner at 6 and 9 weeks after surgery, with significant effect at 10 μg/week of rhFGF18. As the underlying mechanism, rhFGF18 strongly up-regulated Timp1 expression in the cell and organ cultures, and inhibition of aggrecan release by rhFGF18 was restored by addition of an antibody to Timp1. In conclusion, we have identified Fgf18 as a molecule that protects articular cartilage by gene expression profiling, and the anticatabolic effects may at least partially be mediated by the Timp1 expression.
Collapse
|
8
|
Pax1 acts as a negative regulator of chondrocyte maturation. Exp Cell Res 2013; 319:3128-39. [PMID: 24080012 DOI: 10.1016/j.yexcr.2013.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/02/2013] [Accepted: 09/18/2013] [Indexed: 12/27/2022]
Abstract
Paired box gene 1 (Pax1) indirectly promotes the early stages of chondrogenic differentiation through induction and transactivation of Nk3 homeobox 2 (Nkx3.2), a transcriptional repressor. Later in chondrogenic differentiation, Nkx3.2 blocks chondrocyte hypertrophy by repressing Runt-related transcription factor 2 (Runx2). Here we report the inhibitory action of Pax1 on chondrocyte maturation, independently of Nkx3.2. Upon cartilage formation, Pax1 expression in the ventral sclerotome was gradually decreased except for the perichondrial region of the vertebral bodies and the intervertebral region, both of which express SRY-box containing gene 9 (Sox9). Forced expression of Pax1 in the chick forelimb resulted in the formation of shortened skeletal elements with a significant reduction of proteoglycans (PGs) accumulation in cartilage as well as a lack of the cortical bone formation and vascular invasion into the primary ossification center. Pax1-misexpressing chondrocytes exhibited aberrant cell morphology with a marked downregulation of Aggrecan (Agc1). Pax1-misexpressing cultured chondrocytes failed to accumulate cartilaginous PGs and became fibroblastic, in association with downregulation of the expression of Sox9, Nkx3.2, Indian hedgehog (Ihh), type II collagen (Col2a1), Chondromodulin-1 (Chm1), and Agc1. Accumulation of cartilaginous PGs in chondrocytes was also reduced by forced expression of Pax1 and Sox9. Thus, chondrocyte maturation driven by Sox9 is antagonized by Pax1 that is downregulated during chondrogenic differentiation.
Collapse
|
9
|
Adachi N, Takechi M, Hirai T, Kuratani S. Development of the head and trunk mesoderm in the dogfish, Scyliorhinus torazame: II. Comparison of gene expression between the head mesoderm and somites with reference to the origin of the vertebrate head. Evol Dev 2013; 14:257-76. [PMID: 23017074 DOI: 10.1111/j.1525-142x.2012.00543.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The vertebrate mesoderm differs distinctly between the head and trunk, and the evolutionary origin of the head mesoderm remains enigmatic. Although the presence of somite-like segmentation in the head mesoderm of model animals is generally denied at molecular developmental levels, the appearance of head cavities in elasmobranch embryos has not been explained, and the possibility that they may represent vestigial head somites once present in an amphioxus-like ancestor has not been ruled out entirely. To examine whether the head cavities in the shark embryo exhibit any molecular signatures reminiscent of trunk somites, we isolated several developmentally key genes, including Pax1, Pax3, Pax7, Pax9, Myf5, Sonic hedgehog, and Patched2, which are involved in myogenic and chondrogenic differentiation in somites, and Pitx2, Tbx1, and Engrailed2, which are related to the patterning of the head mesoderm, from an elasmobranch species, Scyliorhinus torazame. Observation of the expression patterns of these genes revealed that most were expressed in patterns that resembled those found in amniote embryos. In addition, the head cavities did not exhibit an overt similarity to somites; that is, the similarity was no greater than that of the unsegmented head mesoderm in other vertebrates. Moreover, the shark head mesoderm showed an amniote-like somatic/visceral distinction according to the expression of Pitx2, Tbx1, and Engrailed2. We conclude that the head cavities do not represent a manifestation of ancestral head somites; rather, they are more likely to represent a derived trait obtained in the lineage of gnathostomes.
Collapse
Affiliation(s)
- Noritaka Adachi
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | | | |
Collapse
|
10
|
Indian Hedgehog signalling triggers Nkx3.2 protein degradation during chondrocyte maturation. Biochem J 2012; 443:789-98. [PMID: 22507129 DOI: 10.1042/bj20112062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Ihh (Indian Hedgehog) pathway plays an essential role in facilitating chondrocyte hypertrophy and bone formation during skeletal development. Nkx3.2 (NK3 homeobox 2) is initially induced in chondrocyte precursor cells, maintained in early-stage chondrocytes and down-regulated in terminal-stage chondrocytes. Consistent with these expression patterns, Nkx3.2 has been shown to enhance chondrocyte differentiation and cell survival, while inhibiting chondrocyte hypertrophy and apoptosis. Thus, in the present study, we investigated whether Nkx3.2, an early-stage chondrogenic factor, can be regulated by Ihh, a key regulator for chondrocyte hypertrophy. We show that Ihh signalling can induce proteasomal degradation of Nkx3.2. In addition, we found that Ihh can suppress levels of Lrp (low-density-lipoprotein-receptor-related protein) (Wnt co-receptor) and Sfrp (secreted frizzled-related protein) (Wnt antagonist) expression, which, in turn, may selectively enhance Lrp-independent non-canonical Wnt pathways in chondrocytes. In agreement with these findings, Ihh-induced Nkx3.2 degradation requires Wnt5a, which is capable of triggering Nkx3.2 degradation. Finally, we found that Nkx3.2 protein levels in chondrocytes are remarkably elevated in mice defective in Ihh signalling by deletion of either Ihh or smoothened. Thus these results suggest that Ihh/Wnt5a signalling may play a role in negative regulation of Nkx3.2 for appropriate progression of chondrocyte hypertrophy during chondrogenesis.
Collapse
|
11
|
Makarenkova HP, Meech R. Barx homeobox family in muscle development and regeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:117-73. [PMID: 22608559 DOI: 10.1016/b978-0-12-394308-8.00004-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Homeobox transcription factors are key intrinsic regulators of myogenesis. In studies spanning several years, we have characterized the homeobox factor Barx2 as a novel marker for muscle progenitor cells and an important regulator of muscle growth and repair. In this review, we place the expression and function of Barx2 and its paralogue Barx1 in context with other muscle-expressed homeobox factors in both embryonic and adult myogenesis. We also describe the structure and regulation of Barx genes and possible gene/disease associations. The functional domains of Barx proteins, their molecular interactions, and cellular functions are presented with particular emphasis on control of genes and processes involved in myogenic differentiation. Finally, we describe the patterns of Barx gene expression in vivo and the phenotypes of various Barx gene perturbation models including null mice. We focus on the Barx2 null mouse model, which has demonstrated the critical roles of Barx2 in postnatal myogenesis including muscle maintenance during aging, and regeneration of acute and chronic muscle injury.
Collapse
Affiliation(s)
- Helen P Makarenkova
- The Neurobiology Department, Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
12
|
Pitsillides AA, Beier F. Cartilage biology in osteoarthritis--lessons from developmental biology. Nat Rev Rheumatol 2011; 7:654-63. [PMID: 21947178 DOI: 10.1038/nrrheum.2011.129] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cellular and molecular mechanisms responsible for the initiation and progression of osteoarthritis (OA), and in particular cartilage degeneration in OA, are not completely understood. Increasing evidence implicates developmental processes in OA etiology and pathogenesis. Herein, we review this evidence. We first examine subtle changes in cartilage development and the specification and formation of joints, which predispose to OA development, and second, we review the switch from an articular to a hypertrophic chondrocyte phenotype that is thought to be part of the OA pathological process ultimately resulting in cartilage degeneration. The latest studies are summarized and we discuss the concepts emerging from these findings in cartilage biology, in the light of our understanding of the developmental processes involved.
Collapse
Affiliation(s)
- Andrew A Pitsillides
- Department of Veterinary Basic Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| | | |
Collapse
|
13
|
Defining the earliest transcriptional steps of chondrogenic progenitor specification during the formation of the digits in the embryonic limb. PLoS One 2011; 6:e24546. [PMID: 21931747 PMCID: PMC3172225 DOI: 10.1371/journal.pone.0024546] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/12/2011] [Indexed: 12/12/2022] Open
Abstract
The characterization of genes involved in the formation of cartilage is of key importance to improve cell-based cartilage regenerative therapies. Here, we have developed a suitable experimental model to identify precocious chondrogenic events in vivo by inducing an ectopic digit in the developing embryo. In this model, only 12 hr after the implantation of a Tgfβ bead, in the absence of increased cell proliferation, cartilage forms in undifferentiated interdigital mesoderm and in the course of development, becomes a structurally and morphologically normal digit. Systematic quantitative PCR expression analysis, together with other experimental approaches allowed us to establish 3 successive periods preceding the formation of cartilage. The “pre-condensation stage”, occurring within the first 3 hr of treatment, is characterized by the activation of connective tissue identity transcriptional factors (such as Sox9 and Scleraxis) and secreted factors (such as Activin A and the matricellular proteins CCN-1 and CCN-2) and the downregulation of the galectin CG-8. Next, the “condensation stage” is characterized by intense activation of Smad 1/5/8 BMP-signaling and increased expression of extracellular matrix components. During this period, the CCN matricellular proteins promote the expression of extracellular matrix and cell adhesion components. The third period, designated the “pre-cartilage period”, precedes the formation of molecularly identifiable cartilage by 2–3 hr and is characterized by the intensification of Sox 9 gene expression, along with the stimulation of other pro-chondrogenic transcription factors, such as HifIa. In summary, this work establishes a temporal hierarchy in the regulation of pro-chondrogenic genes preceding cartilage differentiation and provides new insights into the relative roles of secreted factors and cytoskeletal regulators that direct the first steps of this process in vivo.
Collapse
|
14
|
Bren-Mattison Y, Hausburg M, Olwin BB. Growth of limb muscle is dependent on skeletal-derived Indian hedgehog. Dev Biol 2011; 356:486-95. [PMID: 21683695 PMCID: PMC3322465 DOI: 10.1016/j.ydbio.2011.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
During embryogenesis, muscle and bone develop in close temporal and spatial proximity. We show that Indian Hedgehog, a bone-derived signaling molecule, participates in growth of skeletal muscle. In Ihh(-/-) embryos, skeletal muscle development appears abnormal at embryonic day 14.5 and at later ages through embryonic day 20.5, dramatic losses of hindlimb muscle occur. To further examine the role of Ihh in myogenesis, we manipulated Ihh expression in the developing chick hindlimb. Reduction of Ihh in chicken embryo hindlimbs reduced skeletal muscle mass similar to that seen in Ihh(-/-) mouse embryos. The reduction in muscle mass appears to be a direct effect of Ihh since ectopic expression of Ihh by RCAS retroviral infection of chicken embryo hindlimbs restores muscle mass. These effects are independent of bone length, and occur when Shh is not expressed, suggesting Ihh acts directly on fetal myoblasts to regulate secondary myogenesis. Loss of muscle mass in Ihh null mouse embryos is accompanied by a dramatic increase in myoblast apoptosis by a loss of p21 protein. Our data suggest that Ihh promotes fetal myoblast survival during their differentiation into secondary myofibers by maintaining p21 protein levels.
Collapse
Affiliation(s)
- Yvette Bren-Mattison
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Melissa Hausburg
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Bradley B. Olwin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
15
|
Kim HA, Jung HA, Kim TY. Identification of Genes Regulated by IL-1β Using Integrative microRNA and mRNA Genomic Analysis in Human Articular Chondrocytes. JOURNAL OF RHEUMATIC DISEASES 2011. [DOI: 10.4078/jrd.2011.18.4.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hyun Ah Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Hyun A Jung
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Tae Young Kim
- Department of Orthopedic Surgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| |
Collapse
|
16
|
Bobick BE, Chen FH, Le AM, Tuan RS. Regulation of the chondrogenic phenotype in culture. ACTA ACUST UNITED AC 2010; 87:351-71. [PMID: 19960542 DOI: 10.1002/bdrc.20167] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent years, there has been a great deal of interest in the development of regenerative approaches to produce hyaline cartilage ex vivo that can be utilized for the repair or replacement of damaged or diseased tissue. It is clinically imperative that cartilage engineered in vitro mimics the molecular composition and organization of and exhibits biomechanical properties similar to persistent hyaline cartilage in vivo. Experimentally, much of our current knowledge pertaining to the regulation of cartilage formation, or chondrogenesis, has been acquired in vitro utilizing high-density cultures of undifferentiated chondroprogenitor cells stimulated to differentiate into chondrocytes. In this review, we describe the extracellular matrix molecules, nuclear transcription factors, cytoplasmic protein kinases, cytoskeletal components, and plasma membrane receptors that characterize cells undergoing chondrogenesis in vitro and regulate the progression of these cells through the chondrogenic differentiation program. We also provide an extensive list of growth factors and other extracellular signaling molecules, as well as chromatin remodeling proteins such as histone deacetylases, known to regulate chondrogenic differentiation in culture. In addition, we selectively highlight experiments that demonstrate how an understanding of normal hyaline cartilage formation can lead to the development of novel cartilage tissue engineering strategies. Finally, we present directions for future studies that may yield information applicable to the in vitro generation of hyaline cartilage that more closely resembles native tissue.
Collapse
Affiliation(s)
- Brent E Bobick
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
17
|
Sperber SM, Dawid IB. barx1 is necessary for ectomesenchyme proliferation and osteochondroprogenitor condensation in the zebrafish pharyngeal arches. Dev Biol 2008; 321:101-10. [PMID: 18590717 PMCID: PMC2669285 DOI: 10.1016/j.ydbio.2008.06.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 06/02/2008] [Accepted: 06/03/2008] [Indexed: 12/11/2022]
Abstract
Barx1 modulates cellular adhesion molecule expression and participates in specification of tooth-types, but little is understood of its role in patterning the pharyngeal arches. We examined barx1 expression during zebrafish craniofacial development and performed a functional analysis using antisense morpholino oligonucleotides. Barx1 is expressed in the rhombencephalic neural crest, the pharyngeal arches, the pectoral fin buds and the gut in contrast to its paralogue barx2, which is most prominently expressed in the arch epithelium. Additionally, barx1 transient expression was observed in the posterior lateral line ganglia and developing trunk/tail. We show that Barx1 is necessary for proliferation of the arch osteochondrogenic progenitors, and that morphants exhibit diminished and dysmorphic arch cartilage elements due to reductions in chondrocyte differentiation and condensation. Attenuation of Barx1 results in lost arch expression of osteochondrogenic markers col2a1, runx2a and chondromodulin, as well as odontogenic marker dlx2b. Further, loss of barx1 positively influenced gdf5 and chordin, markers of jaw joint patterning. FGF signaling is required for maintaining barx1 expression, and that ectopic BMP4 induces expression of barx1 in the intermediate region of the second pharyngeal arch. Together, these results indicate an essential role for barx1 at early stages of chondrogenesis within the developing zebrafish viscerocranium.
Collapse
Affiliation(s)
- Steven M Sperber
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|
18
|
Solomon LA, Bérubé NG, Beier F. Transcriptional regulators of chondrocyte hypertrophy. ACTA ACUST UNITED AC 2008; 84:123-30. [DOI: 10.1002/bdrc.20124] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Crotwell PL, Mabee PM. Gene expression patterns underlying proximal-distal skeletal segmentation in late-stage zebrafish, Danio rerio. Dev Dyn 2008; 236:3111-28. [PMID: 17948314 DOI: 10.1002/dvdy.21352] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Timing and pattern of expression of ten candidate segmentation genes or gene pairs were reviewed or examined in developing median fins of late-stage zebrafish, Danio rerio. We found a general correspondence in timing and pattern of expression between zebrafish fin radial segmentation and tetrapod joint development, suggesting that molecular mechanisms underlying radial segmentation have been conserved over 400 million years of evolution. Gene co-expression during segmentation (5.5-6.5 mm SL) is similar between tetrapods and zebrafish: bmp2b, bmp4, chordin, and gdf5 in interradial mesenchyme and ZS; bapx1, col2a1, noggin3, and sox9a in chondrocytes. Surprisingly, wnt9a is not expressed in the developing median fins, though wnt9b is detected. In contrast to all other candidate segmentation genes we examined, bapx1 is not expressed in the caudal fin, which does not segment. Together, these data suggest a scenario of gene interactions underlying radial segmentation based on the patterns and timing of candidate gene expression.
Collapse
Affiliation(s)
- Patricia L Crotwell
- Department of Biology, University of South Dakota, Vermillion, South Dakota 57069, USA
| | | |
Collapse
|
20
|
Park M, Yong Y, Choi SW, Kim JH, Lee JE, Kim DW. Constitutive RelA activation mediated by Nkx3.2 controls chondrocyte viability. Nat Cell Biol 2007; 9:287-98. [PMID: 17310243 DOI: 10.1038/ncb1538] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 01/12/2007] [Indexed: 02/04/2023]
Abstract
During endochondral ossification, a process that accounts for the majority of bone formation in vertebrates, hypertrophic chondrocytes display a greater susceptibility to apoptosis when compared to proliferating chondrocytes. However, the molecular mechanisms underlying this phenomenon remain unclear. Nkx3.2, a member of the NK class of homeoproteins, is initially expressed in chondrogenic precursor cells, and later, during cartilage maturation, its expression is restricted to proliferating chondrocytes. Here, we show that the nuclear factor kappa B (NF-kappaB) pathway is required for chondrocyte viability and that Nkx3.2 supports chondrocyte survival by constitutively activating RelA. Although signal-dependent NF-kappaB activation has been intensively studied, ligand-independent NF-kappaB activation is poorly understood. The data presented here support a novel ligand-independent mechanism of NF-kappaB activation, whereby Nkx3.2 recruits the RelA-IkappaBalpha heteromeric complex into the nucleus by direct protein-protein interactions and activates RelA through proteasome-dependent IkappaBalpha degradation in the nucleus. Furthermore, we demonstrate that stage-specific NF-kappaB activation, mediated by Nkx3.2, regulates chondrocyte viability during cartilage maturation.
Collapse
Affiliation(s)
- Minsun Park
- Department of Biochemistry, Yonsei University, SEOUL, 120-749, Republic of Korea
| | | | | | | | | | | |
Collapse
|
21
|
Provot S, Kempf H, Murtaugh LC, Chung UI, Kim DW, Chyung J, Kronenberg HM, Lassar AB. Nkx3.2/Bapx1 acts as a negative regulator of chondrocyte maturation. Development 2006; 133:651-62. [PMID: 16421188 DOI: 10.1242/dev.02258] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) is essential to maintain a pool of dividing, immature chondrocytes in the growth plate of long bones. In chick and mouse, expression of Nkx3.2/Bapx1 in the growth plate is restricted to the proliferative zone and is down regulated as chondrocyte maturation begins. Nkx3.2/Bapx1 expression is lost in the growth plates of mice engineered to lack PTHrP signaling and, conversely, is maintained by ectopic expression of PTHrP in developing bones. Artificially preventing Nkx3.2/Bapx1 downregulation, by forced expression of either retroviral-encoded PTHrP or Nkx3.2 inhibits chondrocyte maturation. Although wild-type Nkx3.2 blocks chondrocyte maturation by acting as a transcriptional repressor, a ;reverse function' mutant of Nkx3.2 that has been converted into a transcriptional activator conversely accelerates chondrocyte maturation. Nkx3.2 represses expression of the chondrocyte maturation factor Runx2, and Runx2 mis-expression can rescue the Nkx3.2-induced blockade of chondrocyte maturation. Taken together, these results suggest that PTHrP signals block chondrocyte hypertrophy by, in part, maintaining the expression of Nkx3.2/Bapx1, which in turn represses the expression of genes required for chondrocyte maturation.
Collapse
Affiliation(s)
- Sylvain Provot
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|