1
|
Kawanishi T, Takeda H. Dorsoventral patterning beyond the gastrulation stage: Interpretation of early dorsoventral cues and modular development mediated by zic1/zic4. Cells Dev 2025:204012. [PMID: 40010691 DOI: 10.1016/j.cdev.2025.204012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Dorsoventral (DV) patterning is fundamental to vertebrate development, organizing the entire body across different germ layers. Although early DV axis formation, centered on the Spemann-Mangold organizer through the BMP activity gradient, has been extensively studied, the mechanisms shaping DV traits during later development remain largely unexplored. In this review, we highlight recent findings, especially from studies involving the Double anal fin (Da) spontaneous mutant of the small teleost medaka (Oryzias latipes), focusing on the roles of zic1 and zic4 (zic1/zic4) in regulating late DV patterning. These genes establish the dorsal domain of the trunk by converting the initial BMP gradient into distinct on/off spatial compartments within somites and their derivatives, acting as selector genes that define dorsal-specific traits, including myotome structure, body shape, and dorsal fin development. We also discuss how the zic-mediated dorsal domain is established and maintained from embryogenesis through adulthood. Furthermore, we provide evidence that zic-dependent action on the dorsal characteristics is dosage-dependent. We propose that the zic1/zic4-mediated DV patterning mechanism may represent a conserved regulatory framework that has been adapted to support the diverse body plans observed across vertebrate species.
Collapse
Affiliation(s)
- Toru Kawanishi
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama 226-8501, Japan.
| | - Hiroyuki Takeda
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| |
Collapse
|
2
|
Lozovska A, Korovesi AG, Duarte P, Casaca A, Assunção T, Mallo M. The control of transitions along the main body axis. Curr Top Dev Biol 2023; 159:272-308. [PMID: 38729678 DOI: 10.1016/bs.ctdb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Although vertebrates display a large variety of forms and sizes, the mechanisms controlling the layout of the basic body plan are substantially conserved throughout the clade. Following gastrulation, head, trunk, and tail are sequentially generated through the continuous addition of tissue at the caudal embryonic end. Development of each of these major embryonic regions is regulated by a distinct genetic network. The transitions from head-to-trunk and from trunk-to-tail development thus involve major changes in regulatory mechanisms, requiring proper coordination to guarantee smooth progression of embryonic development. In this review, we will discuss the key cellular and embryological events associated with those transitions giving particular attention to their regulation, aiming to provide a cohesive outlook of this important component of vertebrate development.
Collapse
Affiliation(s)
| | | | - Patricia Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Ana Casaca
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Tereza Assunção
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Moises Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal.
| |
Collapse
|
3
|
Ibarra-Soria X, Thierion E, Mok GF, Münsterberg AE, Odom DT, Marioni JC. A transcriptional and regulatory map of mouse somite maturation. Dev Cell 2023; 58:1983-1995.e7. [PMID: 37499658 PMCID: PMC10563765 DOI: 10.1016/j.devcel.2023.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/12/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
The mammalian body plan is shaped by rhythmic segmentation of mesoderm into somites, which are transient embryonic structures that form down each side of the neural tube. We have analyzed the genome-wide transcriptional and chromatin dynamics occurring within nascent somites, from early inception of somitogenesis to the latest stages of body plan establishment. We created matched gene expression and open chromatin maps for the three leading pairs of somites at six time points during mouse embryonic development. We show that the rate of somite differentiation accelerates as development progresses. We identified a conserved maturation program followed by all somites, but somites from more developed embryos concomitantly switch on differentiation programs from derivative cell lineages soon after segmentation. Integrated analysis of the somitic transcriptional and chromatin activities identified opposing regulatory modules controlling the onset of differentiation. Our results provide a powerful, high-resolution view of the molecular genetics underlying somitic development in mammals.
Collapse
Affiliation(s)
- Ximena Ibarra-Soria
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| | - Elodie Thierion
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Gi Fay Mok
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Andrea E Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; DKFZ, Division of Regulatory Genomics and Cancer Evolution B270, Im Neunheimer Feld 280, Heidelberg, 69120, Germany.
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge CB10 1SD, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK.
| |
Collapse
|
4
|
Yong LW, Lu TM, Tung CH, Chiou RJ, Li KL, Yu JK. Somite Compartments in Amphioxus and Its Implications on the Evolution of the Vertebrate Skeletal Tissues. Front Cell Dev Biol 2021; 9:607057. [PMID: 34041233 PMCID: PMC8141804 DOI: 10.3389/fcell.2021.607057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Mineralized skeletal tissues of vertebrates are an evolutionary novelty within the chordate lineage. While the progenitor cells that contribute to vertebrate skeletal tissues are known to have two embryonic origins, the mesoderm and neural crest, the evolutionary origin of their developmental process remains unclear. Using cephalochordate amphioxus as our model, we found that cells at the lateral wall of the amphioxus somite express SPARC (a crucial gene for tissue mineralization) and various collagen genes. During development, some of these cells expand medially to surround the axial structures, including the neural tube, notochord and gut, while others expand laterally and ventrally to underlie the epidermis. Eventually these cell populations are found closely associated with the collagenous matrix around the neural tube, notochord, and dorsal aorta, and also with the dense collagen sheets underneath the epidermis. Using known genetic markers for distinct vertebrate somite compartments, we showed that the lateral wall of amphioxus somite likely corresponds to the vertebrate dermomyotome and lateral plate mesoderm. Furthermore, we demonstrated a conserved role for BMP signaling pathway in somite patterning of both amphioxus and vertebrates. These results suggest that compartmentalized somites and their contribution to primitive skeletal tissues are ancient traits that date back to the chordate common ancestor. The finding of SPARC-expressing skeletal scaffold in amphioxus further supports previous hypothesis regarding SPARC gene family expansion in the elaboration of the vertebrate mineralized skeleton.
Collapse
Affiliation(s)
- Luok Wen Yong
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tsai-Ming Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Che-Huang Tung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Department of Aquatic Biology, Chia-Yi University, Chia-Yi, Taiwan
| | - Ruei-Jen Chiou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kun-Lung Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| |
Collapse
|
5
|
Mutation in the Ciliary Protein C2CD3 Reveals Organ-Specific Mechanisms of Hedgehog Signal Transduction in Avian Embryos. J Dev Biol 2021; 9:jdb9020012. [PMID: 33805906 PMCID: PMC8103285 DOI: 10.3390/jdb9020012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Primary cilia are ubiquitous microtubule-based organelles that serve as signaling hubs for numerous developmental pathways, most notably the Hedgehog (Hh) pathway. Defects in the structure or function of primary cilia result in a class of diseases called ciliopathies. It is well known that primary cilia participate in transducing a Hh signal, and as such ciliopathies frequently present with phenotypes indicative of aberrant Hh function. Interestingly, the exact mechanisms of cilia-dependent Hh signaling transduction are unclear as some ciliopathic animal models simultaneously present with gain-of-Hh phenotypes in one organ system and loss-of-Hh phenotypes in another. To better understand how Hh signaling is perturbed across different tissues in ciliopathic conditions, we examined four distinct Hh-dependent signaling centers in the naturally occurring avian ciliopathic mutant talpid2 (ta2). In addition to the well-known and previously reported limb and craniofacial malformations, we observed dorsal-ventral patterning defects in the neural tube, and a shortened gastrointestinal tract. Molecular analyses for elements of the Hh pathway revealed that the loss of cilia impact transduction of an Hh signal in a tissue-specific manner at variable levels of the pathway. These studies will provide increased knowledge into how impaired ciliogenesis differentially regulates Hh signaling across tissues and will provide potential avenues for future targeted therapeutic treatments.
Collapse
|
6
|
Dill TL, Carroll A, Pinheiro A, Gao J, Naya FJ. The long noncoding RNA Meg3 regulates myoblast plasticity and muscle regeneration through epithelial-mesenchymal transition. Development 2021; 148:dev.194027. [PMID: 33298462 DOI: 10.1242/dev.194027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Formation of skeletal muscle is among the most striking examples of cellular plasticity in animal tissue development, and while muscle progenitor cells are reprogrammed by epithelial-mesenchymal transition (EMT) to migrate during embryonic development, the regulation of EMT in post-natal myogenesis remains poorly understood. Here, we demonstrate that the long noncoding RNA (lncRNA) Meg3 regulates EMT in myoblast differentiation and skeletal muscle regeneration. Chronic inhibition of Meg3 in C2C12 myoblasts induced EMT, and suppressed cell state transitions required for differentiation. Furthermore, adenoviral Meg3 knockdown compromised muscle regeneration, which was accompanied by abnormal mesenchymal gene expression and interstitial cell proliferation. Transcriptomic and pathway analyses of Meg3-depleted C2C12 myoblasts and injured skeletal muscle revealed a significant dysregulation of EMT-related genes, and identified TGFβ as a key upstream regulator. Importantly, inhibition of TGFβR1 and its downstream effectors, and the EMT transcription factor Snai2, restored many aspects of myogenic differentiation in Meg3-depleted myoblasts in vitro We further demonstrate that reduction of Meg3-dependent Ezh2 activity results in epigenetic alterations associated with TGFβ activation. Thus, Meg3 regulates myoblast identity to facilitate progression into differentiation.
Collapse
Affiliation(s)
- Tiffany L Dill
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Alina Carroll
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Amanda Pinheiro
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Jiachen Gao
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Francisco J Naya
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
7
|
Viaut C, Weldon S, Münsterberg A. Fine-tuning of the PAX-SIX-EYA-DACH network by multiple microRNAs controls embryo myogenesis. Dev Biol 2021; 469:68-79. [PMID: 33080252 DOI: 10.1016/j.ydbio.2020.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 01/27/2023]
Abstract
MicroRNAs (miRNAs), short non-coding RNAs, which act post-transcriptionally to regulate gene expression, are of widespread significance during development and disease, including muscle disease. Advances in sequencing technology and bioinformatics led to the identification of a large number of miRNAs in vertebrates and other species, however, for many of these miRNAs specific roles have not yet been determined. LNA in situ hybridisation has revealed expression patterns of somite-enriched miRNAs, here we focus on characterising the functions of miR-128. We show that antagomiR-mediated knockdown (KD) of miR-128 in developing chick somites has a negative impact on skeletal myogenesis. Computational analysis identified the transcription factor EYA4 as a candidate target consistent with the observation that miR-128 and EYA4 display similar expression profiles. Luciferase assays confirmed that miR-128 interacts with the EYA4 3'UTR. In vivo experiments also suggest that EYA4 is regulated by miR-128. EYA4 is a member of the PAX-SIX-EYA-DACH (PSED) network of transcription factors. Therefore, we identified additional candidate miRNA binding sites in the 3'UTR of SIX1/4, EYA1/2/3 and DACH1. Using the miRanda algorithm, we found sites for miR-128, as well as for other myogenic miRNAs, miR-1a, miR-206 and miR-133a, some of these were experimentally confirmed as functional miRNA target sites. Our results reveal that miR-128 is involved in regulating skeletal myogenesis by directly targeting EYA4 with indirect effects on other PSED members, including SIX4 and PAX3. Hence, the inhibitory effect on myogenesis observed after miR-128 knockdown was rescued by concomitant knockdown of PAX3. Moreover, we show that the PSED network of transcription factors is co-regulated by multiple muscle-enriched microRNAs.
Collapse
Affiliation(s)
- Camille Viaut
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Shannon Weldon
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrea Münsterberg
- School of Biological Sciences, Cell and Developmental Biology, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
8
|
Mallo M. The vertebrate tail: a gene playground for evolution. Cell Mol Life Sci 2020; 77:1021-1030. [PMID: 31559446 PMCID: PMC11104866 DOI: 10.1007/s00018-019-03311-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022]
Abstract
The tail of all vertebrates, regardless of size and anatomical detail, derive from a post-anal extension of the embryo known as the tail bud. Formation, growth and differentiation of this structure are closely associated with the activity of a group of cells that derive from the axial progenitors that build the spinal cord and the muscle-skeletal case of the trunk. Gdf11 activity switches the development of these progenitors from a trunk to a tail bud mode by changing the regulatory network that controls their growth and differentiation potential. Recent work in the mouse indicates that the tail bud regulatory network relies on the interconnected activities of the Lin28/let-7 axis and the Hox13 genes. As this network is likely to be conserved in other mammals, it is possible that the final length and anatomical composition of the adult tail result from the balance between the progenitor-promoting and -repressing activities provided by those genes. This balance might also determine the functional characteristics of the adult tail. Particularly relevant is its regeneration potential, intimately linked to the spinal cord. In mammals, known for their complete inability to regenerate the tail, the spinal cord is removed from the embryonic tail at late stages of development through a Hox13-dependent mechanism. In contrast, the tail of salamanders and lizards keep a functional spinal cord that actively guides the tail's regeneration process. I will argue that the distinct molecular networks controlling tail bud development provided a collection of readily accessible gene networks that were co-opted and combined during evolution either to end the active life of those progenitors or to make them generate the wide diversity of tail shapes and sizes observed among vertebrates.
Collapse
Affiliation(s)
- Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| |
Collapse
|
9
|
Aldea D, Subirana L, Keime C, Meister L, Maeso I, Marcellini S, Gomez-Skarmeta JL, Bertrand S, Escriva H. Genetic regulation of amphioxus somitogenesis informs the evolution of the vertebrate head mesoderm. Nat Ecol Evol 2019; 3:1233-1240. [PMID: 31263232 DOI: 10.1038/s41559-019-0933-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023]
Abstract
The evolution of vertebrates from an ancestral chordate was accompanied by the acquisition of a predatory lifestyle closely associated to the origin of a novel anterior structure, the highly specialized head. While the vertebrate head mesoderm is unsegmented, the paraxial mesoderm of the earliest divergent chordate clade, the cephalochordates (amphioxus), is fully segmented in somites. We have previously shown that fibroblast growth factor signalling controls the formation of the most anterior somites in amphioxus; therefore, unravelling the fibroblast growth factor signalling downstream effectors is of crucial importance to shed light on the evolutionary origin of vertebrate head muscles. By using a comparative RNA sequencing approach and genetic functional analyses, we show that several transcription factors, such as Six1/2, Pax3/7 and Zic, act in combination to ensure the formation of three different somite populations. Interestingly, these proteins are orthologous to key regulators of trunk, and not head, muscle formation in vertebrates. Contrary to prevailing thinking, our results suggest that the vertebrate head mesoderm is of visceral and not paraxial origin and support a multistep evolutionary scenario for the appearance of the unsegmented mesoderm of the vertebrates new 'head'.
Collapse
Affiliation(s)
- Daniel Aldea
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Lucie Subirana
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Celine Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, U1258, CNRS, UMR7104, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Lydvina Meister
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Ignacio Maeso
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Sylvain Marcellini
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Stephanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France.
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France.
| |
Collapse
|
10
|
Della Gaspera B, Mateus A, Andéol Y, Weill L, Charbonnier F, Chanoine C. Lineage tracing of sclerotome cells in amphibian reveals that multipotent somitic cells originate from lateral somitic frontier. Dev Biol 2019; 453:11-18. [PMID: 31128088 DOI: 10.1016/j.ydbio.2019.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/18/2019] [Accepted: 05/21/2019] [Indexed: 11/29/2022]
Abstract
The two somite compartments, dorso-lateral dermomyotome and medio-ventral sclerotome are major vertebrate novelties, but little is known about their evolutionary origin. We determined that sclerotome cells in Xenopus come from lateral somitic frontier (LSF) by lineage tracing, ablation experiments and histological analysis. We identified Twist1 as marker of migrating sclerotome progenitors in two amphibians, Xenopus and axolotl. From these results, three conclusions can be drawn. First, LSF is made up of multipotent somitic cells (MSCs) since LSF gives rise to sclerotome but also to dermomytome as already shown in Xenopus. Second, the basic scheme of somite compartmentalization is conserved from cephalochordates to anamniotes since in both cases, lateral cells envelop dorsally and ventrally the ancestral myotome, suggesting that lateral MSCs should already exist in cephalochordates. Third, the transition from anamniote to amniote vertebrates is characterized by extension of the MSCs domain to the entire somite at the expense of ancestral myotome since amniote somite is a naive tissue that subdivides into sclerotome and dermomyotome. Like neural crest pluripotent cells, MSCs are at the origin of major vertebrate novelties, namely hypaxial region of the somite, dermomyotome and sclerotome compartments. Hence, change in MSCs properties and location is involved in somite evolution.
Collapse
Affiliation(s)
- Bruno Della Gaspera
- UMR INSERM 1124, Université de Paris, Faculté des sciences biomédicales et fondamentales, 45 rue des Saints-Pères, F-75270, Paris Cedex 06, France.
| | - Alice Mateus
- UMR INSERM 1124, Université de Paris, Faculté des sciences biomédicales et fondamentales, 45 rue des Saints-Pères, F-75270, Paris Cedex 06, France
| | - Yannick Andéol
- Equipe UR6, Enzymologie de l'ARN, Sorbonne Université, Faculté des Sciences et Technologies, 9 quai St Bernard, 75251, Paris Cedex 05, France
| | - Laure Weill
- UMR INSERM 1124, Université de Paris, Faculté des sciences biomédicales et fondamentales, 45 rue des Saints-Pères, F-75270, Paris Cedex 06, France
| | - Frédéric Charbonnier
- UMR INSERM 1124, Université de Paris, Faculté des sciences biomédicales et fondamentales, 45 rue des Saints-Pères, F-75270, Paris Cedex 06, France
| | - Christophe Chanoine
- UMR INSERM 1124, Université de Paris, Faculté des sciences biomédicales et fondamentales, 45 rue des Saints-Pères, F-75270, Paris Cedex 06, France.
| |
Collapse
|
11
|
Huang Y, Lai X, Hu L, Lei C, Lan X, Zhang C, Ma Y, Zheng L, Bai Y, Lin F, Chen H. Over‐expression of DEC1 inhibits myogenic differentiation by modulating MyoG activity in bovine satellite cell. J Cell Physiol 2018; 233:9365-9374. [DOI: 10.1002/jcp.26471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/05/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Yongzhen Huang
- Shaanxi Key Laboratory of Molecular Biology for AgricultureCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| | - Xinsheng Lai
- Shaanxi Key Laboratory of Molecular Biology for AgricultureCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxiChina
- The Laboratory of Synaptic Development and Plasticity, Institute of Life ScienceNanchang UniversityNanchangChina
- School of Life ScienceNanchang UniversityNanchangChina
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningQinghaiChina
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Molecular Biology for AgricultureCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for AgricultureCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| | - Chunlei Zhang
- Institute of Cellular and Molecular BiologyJiangsu Normal UniversityXuzhouJiangsuChina
| | - Yun Ma
- College of Life Sciences, Xinyang Normal UniversityInstitute for Conservation and Utilization of Agro‐Bioresources in Dabie MountainsXinyangHenanChina
| | - Li Zheng
- Henan University of Animal Husbandry and EconomyZhengzhouHenanChina
| | - Yue‐Yu Bai
- Animal Health Supervision in Henan ProvinceZhengzhouHenanChina
| | - Fengpeng Lin
- Bureau of Animal Husbandry of Biyang CountyBiyangHenanChina
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for AgricultureCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
12
|
Asfour HA, Allouh MZ, Said RS. Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery. Exp Biol Med (Maywood) 2018; 243:118-128. [PMID: 29307280 DOI: 10.1177/1535370217749494] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prenatal and postnatal myogenesis share many cellular and molecular aspects. Myogenic regulatory factors are basic Helix-Loop-Helix transcription factors that indispensably regulate both processes. These factors (Myf5, MyoD, Myogenin, and MRF4) function as an orchestrating cascade, with some overlapped actions. Prenatally, myogenic regulatory factors are restrictedly expressed in somite-derived myogenic progenitor cells and their derived myoblasts. Postnatally, myogenic regulatory factors are important in regulating the myogenesis process via satellite cells. Many positive and negative regulatory mechanisms exist either between myogenic regulatory factors themselves or between myogenic regulatory factors and other proteins. Upstream factors and signals are also involved in the control of myogenic regulatory factors expression within different prenatal and postnatal myogenic cells. Here, the authors have conducted a thorough and an up-to-date review of the myogenic regulatory factors since their discovery 30 years ago. This review discusses the myogenic regulatory factors structure, mechanism of action, and roles and regulations during prenatal and postnatal myogenesis. Impact statement Myogenic regulatory factors (MRFs) are key players in the process of myogenesis. Despite a considerable amount of literature regarding these factors, their exact mechanisms of actions are still incompletely understood with several overlapped functions. Herein, we revised what has hitherto been reported in the literature regarding MRF structures, molecular pathways that regulate their activities, and their roles during pre- and post-natal myogenesis. The work submitted in this review article is considered of great importance for researchers in the field of skeletal muscle formation and regeneration, as it provides a comprehensive summary of all the biological aspects of MRFs and advances a better understanding of the cellular and molecular mechanisms regulating myogenesis. Indeed, attaining a better understanding of MRFs could be utilized in developing novel therapeutic protocols for multiple myopathies.
Collapse
Affiliation(s)
- Hasan A Asfour
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| | - Mohammed Z Allouh
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| | - Raed S Said
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| |
Collapse
|
13
|
Abstract
STUDY DESIGN Basic experiments in a mouse model of ossification of the posterior longitudinal ligament (OPLL). OBJECTIVE To assess the osteogenic potential of mesenchymal stem cells (MSCs) obtained from muscle and adipose tissue in Tiptoe-walking (ttw) mice, in which cervical OPLL compresses the spinal cord and causes motor and sensory dysfunction. SUMMARY OF BACKGROUND DATA In humans, MSCs have been implicated in the pathogenesis of cervical OPLL. Cervical OPLL in ttw mice causes chronic compression of the spinal cord. Few studies have compared the MSC osteogenic potential with behavioral changes in an OPLL animal model. METHODS We compared the osteogenic potential and behavioral characteristics of MSCs from ttw mice (4 to 20 weeks old) with those from control wild-type mice (without hyperostosis). Ligament ossification was monitored by micro-computed tomography and pathology; tissues were double stained with fluorescent antibodies against markers for MSCs (CD45 and CD105), at 8 weeks. The Basso Mouse Scale was used to assess motor function, and heat and mechanical tests to assess sensory function. The osteogenic potential of adipose and muscle MSCs was assessed by Alizarin Red S absorbance, staining for osteogenic mineralization, and real-time quantitative polymerase chain reaction for osteogenesis-related genes. RESULTS Spinal-ligament ossification began in ttw mice at 8 weeks of age, and the ossified area increased with age. Immunofluorescence staining identified MSCs in the ossification area. The ttw mice became hyposensitive at 8 weeks of age, and Basso Mouse Scale scores showed motor-function deficits starting at 12 weeks of age. Alizarin Red S staining for mineralization showed a higher osteogenic potential in the adipose- and muscle-derived MSCs from ttw mice than from wild-type mice at 4, 8, and 20 weeks of age. Real-time quantitative polymerase chain reaction showed that ttw MSCs strongly expressed osteogenesis-related genes. CONCLUSION MSCs derived from muscle and adipose tissue in ttw mice had a high osteogenic potential. LEVEL OF EVIDENCE N/A.
Collapse
|
14
|
Ha J, Kwon S, Hwang JH, Park DH, Kim TW, Kang DG, Yu GE, Park HC, An SM, Kim CW. Squalene epoxidase plays a critical role in determining pig meat quality by regulating adipogenesis, myogenesis, and ROS scavengers. Sci Rep 2017; 7:16740. [PMID: 29196684 PMCID: PMC5711910 DOI: 10.1038/s41598-017-16979-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/20/2017] [Indexed: 11/17/2022] Open
Abstract
In mammals, Squalene epoxidase (SQLE) is an enzyme that converts squalene to 2,3-oxidosqualene, in the early stage of cholesterol generation. Here, we identified single nucleotide polymorphisms (SNPs) in the SQLE gene (c.2565 G > T) by RNA Sequencing from the liver tissue of Berkshire pigs. Furthermore, we found that homozygous GG pigs expressed more SQLE mRNA than GT heterozygous and TT homozygous pigs in longissimus dorsi tissue. Next, we showed that the SNP in the SQLE gene was associated with several meat quality traits including backfat thickness, carcass weight, meat colour (yellowness), fat composition, and water-holding capacity. Rates of myogenesis and adipogenesis induced in C2C12 cells and 3T3-L1 cells, respectively, were decreased by Sqle knockdown. Additionally, the expression of myogenic marker genes (Myog, Myod, and Myh4) and adipogenic marker genes (Pparg, Cebpa, and Adipoq) was substantially downregulated in cells transfected with Sqle siRNA. Moreover, mRNA expression levels of ROS scavengers, which affect meat quality by altering protein oxidation processes, were significantly downregulated by Sqle knockdown. Taken together, our results suggest the molecular mechanism by which SNPs in the SQLE gene can affect meat quality.
Collapse
Affiliation(s)
- Jeongim Ha
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Seulgi Kwon
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Jung Hye Hwang
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Da Hye Park
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Tae Wan Kim
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Deok Gyeong Kang
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Go Eun Yu
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | | | - Sang Mi An
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Chul Wook Kim
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea.
| |
Collapse
|
15
|
Bhalla S, Lin KH, Tang SY. Postnatal Development of the Murine Notochord Remnants Quantified by High-resolution Contrast-enhanced MicroCT. Sci Rep 2017; 7:13361. [PMID: 29042621 PMCID: PMC5645339 DOI: 10.1038/s41598-017-13446-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022] Open
Abstract
The notochord gives rise to spinal segments during development, and it becomes embedded within the nucleus pulposus of the intervertebral disc (IVD) during maturation. The disruption of the notochord band has been observed with IVD degeneration. Since the mechanical competence of the IVD relies on its structural constituents, defining the structure of the notochord during aging is critical for investigations relating to IVD function and homeostasis. The assessment and imaging of the notochord has classically relied on histological techniques, which introduces sectioning artifacts during preparation and spatial biases. Magnetic resonance imaging (MRI) does not offer sufficient resolution to discriminate the notochord from the surrounding the nucleus pulposus, especially in murine models. Current X-ray based computed tomography systems provide imaging resolutions down to the single- and sub- micron scales, and when coupled with contrast-enhancing agents, enable the high-resolution three-dimensional imaging of relatively small features. Utilizing phosphomolybdic acid to preferentially bind to collagen cationic domains, we describe the structure of the notochord remnants with aging in the lumbar IVDs of BALB/c mice. These results provide a highly quantitative and sensitive approach to monitoring the IVD during postnatal development.
Collapse
Affiliation(s)
- Sameer Bhalla
- Department of Biology, Washington University in St. Louis, Missouri, 63105, USA
| | - Kevin H Lin
- Department of Biology, Washington University in St. Louis, Missouri, 63105, USA
| | - Simon Y Tang
- Department of Orthopaedic Surgery, Washington University in St. Louis, Missouri, 63110, USA. .,Department of Biomedical Engineering, Washington University in St. Louis, Missouri, 63105, USA. .,Department of Materials Science and Mechanical Engineering, Washington University in St. Louis, Missouri, 63105, USA.
| |
Collapse
|
16
|
Abstract
Skeletal muscle is the largest tissue in the body and loss of its function or its regenerative properties results in debilitating musculoskeletal disorders. Understanding the mechanisms that drive skeletal muscle formation will not only help to unravel the molecular basis of skeletal muscle diseases, but also provide a roadmap for recapitulating skeletal myogenesis in vitro from pluripotent stem cells (PSCs). PSCs have become an important tool for probing developmental questions, while differentiated cell types allow the development of novel therapeutic strategies. In this Review, we provide a comprehensive overview of skeletal myogenesis from the earliest premyogenic progenitor stage to terminally differentiated myofibers, and discuss how this knowledge has been applied to differentiate PSCs into muscle fibers and their progenitors in vitro.
Collapse
Affiliation(s)
- Jérome Chal
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA .,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
17
|
Lawson LY, Harfe BD. Developmental mechanisms of intervertebral disc and vertebral column formation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [DOI: 10.1002/wdev.283] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 05/09/2017] [Accepted: 05/23/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Lisa Y. Lawson
- Department of Molecular Genetics and Microbiology; Genetics Institute University of Florida, College of Medicine; Gainesville FL USA
| | - Brian D. Harfe
- Department of Molecular Genetics and Microbiology; Genetics Institute University of Florida, College of Medicine; Gainesville FL USA
| |
Collapse
|
18
|
Saberi M, Pu Q, Valasek P, Norizadeh-Abbariki T, Patel K, Huang R. The hypaxial origin of the epaxially located rhomboid muscles. Ann Anat 2017; 214:15-20. [PMID: 28655569 DOI: 10.1016/j.aanat.2017.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 10/19/2022]
Abstract
In vertebrates, skeletal muscles of the body are made up of epaxial and hypaxial muscles based on their innervation and relative position to the vertebral column. The epaxial muscles are innervated by the dorsal branches of the spinal nerves and comprise the intrinsic (deep) back muscles, while the hypaxial muscles are innervated by the ventral branches of the spinal nerves including the plexus and consist of a heterogeneous group of intercostal, abdominal, and limb as well as girdle muscles. The canonical view holds that the epaxial muscles are derived from the medial halves of the somites, whereas the hypaxial muscles are all derived from the lateral somitic halves. The rhomboid muscles are situated dorsal to the vertebral column and therefore in the domain typically occupied by epaxial muscles. However, they are innervated by a ventral branch of the brachial plexus called the N. dorsalis scapulae. Due to the apparent inappropriate position of the muscle in relation to its innervation we investigated its origin to help clarify this issue. To study the embryonic origin of the rhomboid muscles, we followed derivatives of the medial and lateral somite halves using quail-chick chimeras. Our results showed that the rhomboid muscles are made up of cells derived mainly from the lateral portion of the somite. Therefore the rhomboid muscles which lie within the epaxial domain of the body, originate from the hypaxial domain of the somites. However their connective tissue is derived from both medial and lateral somites.
Collapse
Affiliation(s)
- Minu Saberi
- Institute of Anatomy, Department of Neuroanatomy, Medical Faculty Bonn, Rheinische Friedrich-Wilhelms-University of Bonn, Germany; Department of Operative Dentistry and Periodontology, Medical Center-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Qin Pu
- Institute of Anatomy, Department of Neuroanatomy, Medical Faculty Bonn, Rheinische Friedrich-Wilhelms-University of Bonn, Germany; Institute of Anatomy, Department of Anatomy and Molecular Embryology, Ruhr-University Bochum, Germany
| | - Petr Valasek
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tannaz Norizadeh-Abbariki
- Institute of Anatomy, Department of Neuroanatomy, Medical Faculty Bonn, Rheinische Friedrich-Wilhelms-University of Bonn, Germany
| | - Ketan Patel
- School of Biological Sciences, University of Reading, UK
| | - Ruijin Huang
- Institute of Anatomy, Department of Neuroanatomy, Medical Faculty Bonn, Rheinische Friedrich-Wilhelms-University of Bonn, Germany; Institute of Anatomy and Cell Biology, Department of Anatomy and Molecular Embryology, University of Freiburg, Germany.
| |
Collapse
|
19
|
Warrier S, Nuwayhid S, Sabatino JA, Sugrue KF, Zohn IE. Supt20 is required for development of the axial skeleton. Dev Biol 2016; 421:245-257. [PMID: 27894818 DOI: 10.1016/j.ydbio.2016.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 09/08/2016] [Accepted: 11/11/2016] [Indexed: 10/20/2022]
Abstract
Somitogenesis and subsequent axial skeletal development is regulated by the interaction of pathways that determine the periodicity of somite formation, rostrocaudal somite polarity and segment identity. Here we use a hypomorphic mutant mouse line to demonstrate that Supt20 (Suppressor of Ty20) is required for development of the axial skeleton. Supt20 hypomorphs display fusions of the ribs and vertebrae at lower thoracic levels along with anterior homeotic transformation of L1 to T14. These defects are preceded by reduction of the rostral somite and posterior shifts in Hox gene expression. While cycling of Notch target genes in the posterior presomitic mesoderm (PSM) appeared normal, expression of Lfng was reduced. In the anterior PSM, Mesp2 expression levels and cycling were unaffected; yet, expression of downstream targets such as Lfng, Ripply2, Mesp1 and Dll3 in the prospective rostral somite was reduced accompanied by expansion of caudal somite markers such as EphrinB2 and Hes7. Supt20 interacts with the Gcn5-containing SAGA histone acetylation complex. Gcn5 hypomorphic mutant embryos show similar defects in axial skeletal development preceded by posterior shift of Hoxc8 and Hoxc9 gene expression. We demonstrate that Gcn5 and Supt20 hypomorphs show similar defects in rostral-caudal somite patterning potentially suggesting shared mechanisms.
Collapse
Affiliation(s)
- Sunita Warrier
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Samer Nuwayhid
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Julia A Sabatino
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Kelsey F Sugrue
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA
| | - Irene E Zohn
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| |
Collapse
|
20
|
Niibe K, Zhang M, Nakazawa K, Morikawa S, Nakagawa T, Matsuzaki Y, Egusa H. The potential of enriched mesenchymal stem cells with neural crest cell phenotypes as a cell source for regenerative dentistry. JAPANESE DENTAL SCIENCE REVIEW 2016; 53:25-33. [PMID: 28479933 PMCID: PMC5405184 DOI: 10.1016/j.jdsr.2016.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/30/2016] [Accepted: 09/16/2016] [Indexed: 01/14/2023] Open
Abstract
Effective regenerative treatments for periodontal tissue defects have recently been demonstrated using mesenchymal stromal/stem cells (MSCs). Furthermore, current bioengineering techniques have enabled de novo fabrication of tooth-perio dental units in mice. These cutting-edge technologies are expected to address unmet needs within regenerative dentistry. However, to achieve efficient and stable treatment outcomes, preparation of an appropriate stem cell source is essential. Many researchers are investigating the use of adult stem cells for regenerative dentistry; bone marrow-derived MSCs (BM-MSCs) are particularly promising and presently used clinically. However, current BM-MSC isolation techniques result in a heterogeneous, non-reproducible cell population because of a lack of identified distinct BM-MSC surface markers. Recently, specific subsets of cell surface markers for BM-MSCs have been reported in mice (PDGFRα+ and Sca-1+) and humans (LNGFR+, THY-1+ and VCAM-1+), facilitating the isolation of unique enriched BM-MSCs (so-called “purified MSCs”). Notably, the enriched BM-MSC population contains neural crest-derived cells, which can differentiate into cells of neural crest- and mesenchymal lineages. In this review, characteristics of the enriched BM-MSCs are outlined with a focus on their potential application within future regenerative dentistry.
Collapse
Affiliation(s)
- Kunimichi Niibe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Maolin Zhang
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kosuke Nakazawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Satoru Morikawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taneaki Nakagawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yumi Matsuzaki
- Department of Cancer Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho Izumo, Shimane 693-8501, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
21
|
Costamagna D, Mommaerts H, Sampaolesi M, Tylzanowski P. Noggin inactivation affects the number and differentiation potential of muscle progenitor cells in vivo. Sci Rep 2016; 6:31949. [PMID: 27573479 PMCID: PMC5004166 DOI: 10.1038/srep31949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/28/2016] [Indexed: 10/25/2022] Open
Abstract
Inactivation of Noggin, a secreted antagonist of Bone Morphogenetic Proteins (BMPs), in mice leads, among others, to severe malformations of the appendicular skeleton and defective skeletal muscle fibers. To determine the molecular basis of the phenotype, we carried out a histomorphological and molecular analysis of developing muscles Noggin(-/-) mice. We show that in 18.5 dpc embryos there is a marked reduction in muscle fiber size and a failure of nuclei migration towards the cell membrane. Molecularly, the absence of Noggin results in an increased BMP signaling in muscle tissue as shown by the increase in SMAD1/5/8 phosphorylation, concomitant with the induction of BMP target genes such as Id1, 2, 3 as well as Msx1. Finally, upon removal of Noggin, the number of mesenchymal Pax7(+) muscle precursor cells is reduced and they are more prone to differentiate into adipocytes in vitro. Thus, our results highlight the importance of Noggin/BMP balance for myogenic commitment of early fetal progenitor cells.
Collapse
Affiliation(s)
- Domiziana Costamagna
- Translational Cardiomyology Lab, Stem Cell Biology and Embryology, Dept. Development and Regeneration, KU Leuven, Belgium.,Laboratory of Experimental Medicine and Clinical Pathology, Dept. Clinical and Biological Sciences, University of Turin, Italy
| | - Hendrik Mommaerts
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, KU Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Lab, Stem Cell Biology and Embryology, Dept. Development and Regeneration, KU Leuven, Belgium.,Division of Human Anatomy, Dept. of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - Przemko Tylzanowski
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, KU Leuven, Belgium.,Department of Biochemistry and Molecular Biology, Medical University, Lublin, Poland
| |
Collapse
|
22
|
|
23
|
Jin W, Peng J, Jiang S. The epigenetic regulation of embryonic myogenesis and adult muscle regeneration by histone methylation modification. Biochem Biophys Rep 2016; 6:209-219. [PMID: 28955879 PMCID: PMC5600456 DOI: 10.1016/j.bbrep.2016.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle formation in vertebrates is derived from the paraxial mesoderm, which develops into myogenic precursor cells and finally differentiates into mature myofibers. This myogenic program involves temporal-spatial molecular events performed by transcription regulators (such as members of the Pax, MRFs and Six families) and signaling pathways (such as Wnts, BMP and Shh signaling). Epigenetic regulation, including histone post-translational modifications is crucial for controlling gene expression through recruitment of various chromatin-modifying enzymes that alter chromatin dynamics during myogenesis. The chromatin modifying enzymes are also recruited at regions of muscle gene regulation, coordinating transcription regulators to influence gene expression. In particular, the reversible methylation status of histone N-terminal tails provides the important regulatory mechanisms in either activation or repression of muscle genes. In this report, we review the recent literatures to deduce mechanisms underlying the epigenetic regulation of gene expression with a focus on histone methylation modification during embryo myogenesis and adult muscle regeneration. Recent results from different histone methylation/demethylation modifications have increased our understanding about the highly intricate layers of epigenetic regulations involved in myogenesis and cross-talk of histone enzymes with the muscle-specific transcriptional machinery. Myogenesis is influenced by regulation of transcription factors, signal pathways and post-transcriptional modifications. Histone methylation modifications as “on/off” switches regulated myogenic lineage commitment and differentiation. The myogenic regulatory factors and histone methylation modifications established dynamic regulatory mechanism.
Collapse
Key Words
- BMP4, bone morphogenic protein 4
- ChIP, chromatin immunoprecipitation
- Epigenetic
- H3K27, methylation of histone H3 lysine 27
- H3K4, methylation of histone H3 lysine 4
- H3K9, methylation of histone H3 lysine 9
- Histone methylation/demethylation modification
- KDMs, lysine demethyltransferases
- LSD1, lysine specific demethyltransferase 1
- MEF2, myocyte enhancer factor 2
- MRFs, myogenic regulatory factors
- Muscle differentiation
- Muscle progenitor cells
- Muscle regeneration
- Myogenesis
- PRC2, polycomb repressive complex 2
- SCs, satellite cells
- Shh, sonic hedgehog
- TSS, transcription start sites
- UTX, ubiquitously transcribed tetratricopeptide repeat, X chromosome
- bHLH, basic helix-loop-helix
- p38 MAPK, p38 mitogen-activated protein kinase
Collapse
Affiliation(s)
- Wei Jin
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Siwen Jiang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Projects in the Cooperative Innovation Center for Sustainable Pig Production of Wuhan, PR China
| |
Collapse
|
24
|
The many roles of Notch signaling during vertebrate somitogenesis. Semin Cell Dev Biol 2016; 49:68-75. [DOI: 10.1016/j.semcdb.2014.11.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 02/06/2023]
|
25
|
Abstract
A tissue that commonly deteriorates in older vertebrates is the intervertebral disc, which is located between the vertebrae. Age-related changes in the intervertebral discs are thought to cause most cases of back pain. Back pain affects more than half of people over the age of 65, and the treatment of back pain costs 50-100 billion dollars per year in the USA. The normal intervertebral disc is composed of three distinct regions: a thick outer ring of fibrous cartilage called the annulus fibrosus, a gel-like material that is surrounded by the annulus fibrosus called the nucleus pulposus, and superior and inferior cartilaginous end plates. The nucleus pulposus has been shown to be critical for disc health and function. Damage to this structure often leads to disc disease. Recent reports have demonstrated that the embryonic notochord, a rod-like structure present in the midline of vertebrate embryos, gives rise to all cell types found in adult nuclei pulposi. The mechanism responsible for the transformation of the notochord into nuclei pulposi is unknown. In this review, we discuss potential molecular and physical mechanisms that may be responsible for the notochord to nuclei pulposi transition.
Collapse
Affiliation(s)
- Lisa Lawson
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA,
| | | |
Collapse
|
26
|
McKinnon EL, Rand AJ, Selim MA, Fuchs HE, Buckley AF, Cummings TJ. Rhabdomyomatous mesenchymal hamartoma presenting as a sacral skin tag in two neonates with spinal dysraphism. J Cutan Pathol 2015; 42:774-8. [DOI: 10.1111/cup.12538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 01/12/2023]
Affiliation(s)
| | - Andrew J. Rand
- Department of Pathology; Duke University Medical Center; Durham NC USA
| | - M. Angelica Selim
- Department of Pathology and Dermatology; Duke University Medical Center; Durham NC USA
| | - Herbert E. Fuchs
- Department of Neurosurgery; Duke University Medical Center; Durham NC USA
| | - Anne F. Buckley
- Department of Pathology; Duke University Medical Center; Durham NC USA
| | | |
Collapse
|
27
|
Masyuk M, Brand-Saberi B. Recruitment of skeletal muscle progenitors to secondary sites: a role for CXCR4/SDF-1 signalling in skeletal muscle development. Results Probl Cell Differ 2015; 56:1-23. [PMID: 25344664 DOI: 10.1007/978-3-662-44608-9_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During embryonic development, myogenesis occurs in different functional muscle groups at different time points depending on the availability of their final destinations. Primary trunk muscle consists of the intrinsic dorsal (M. erector spinae) and ventral (cervical, thoracic, abdominal) muscles. In contrast, secondary trunk muscles are established from progenitor cells that have migrated initially from the somites into the limb buds and thereafter returned to the trunk. Furthermore, craniofacial muscle constitutes a group that originates from four different sources and employs a different set of regulatory molecules. Development of muscle groups at a distance from their origins involves the maintenance of a pool of progenitor cells capable of proliferation and directed cell migration. We review here the data concerning somite-derived progenitor cell migration to the limbs and subsequent retrograde migration in the establishment of secondary trunk muscle in chicken and mouse. We review the function of SDF-1 and CXCR4 in the control of this process referring to our previous work in shoulder muscle and cloacal/perineal muscle development. Some human anatomical variations and malformations of secondary trunk muscles are discussed.
Collapse
Affiliation(s)
- Maryna Masyuk
- Department of Anatomy and Molecular Embryology, Ruhr-Universität Bochum, Universitätsstraße 150, MA 5/161, 44801, Bochum, Germany,
| | | |
Collapse
|
28
|
Abstract
This review will focus on the use of the chicken and quail as model systems to analyze myogenesis and as such will emphasize the experimental approaches that are strongest in these systems-the amenability of the avian embryo to manipulation and in ovo observation. During somite differentiation, a wide spectrum of developmental processes occur such as cellular differentiation, migration, and fusion. Cell lineage studies combined with recent advancements in cell imaging allow these biological phenomena to be readily observed and hypotheses tested extremely rapidly-a strength that is restricted to the avian system. A clear weakness of the chicken in the past has been genetic approaches to modulate gene function. Recent advances in the electroporation of expression vectors, siRNA constructs, and use of tissue specific reporters have opened the door to increasingly sophisticated experiments that address questions of interest not only to the somite/muscle field in particular but also fundamental to biology in general. Importantly, an ever-growing body of evidence indicates that somite differentiation in birds is indistinguishable to that of mammals; therefore, these avian studies complement the complex genetic models of the mouse.
Collapse
Affiliation(s)
- Claire E Hirst
- EMBL Australia, Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC, 3800, Australia,
| | | |
Collapse
|
29
|
FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos. PLoS One 2014; 9:e110559. [PMID: 25343614 PMCID: PMC4208771 DOI: 10.1371/journal.pone.0110559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/24/2014] [Indexed: 11/19/2022] Open
Abstract
In vertebrates, the embryonic dorsal midline is a crucial signalling centre that patterns the surrounding tissues during development. Members of the FoxA subfamily of transcription factors are expressed in the structures that compose this centre. Foxa2 is essential for dorsal midline development in mammals, since knock-out mouse embryos lack a definitive node, notochord and floor plate. The related gene foxA4 is only present in amphibians. Expression begins in the blastula -chordin and -noggin expressing centre (BCNE) and is later restricted to the dorsal midline derivatives of the Spemann's organiser. It was suggested that the early functions of mammalian foxa2 are carried out by foxA4 in frogs, but functional experiments were needed to test this hypothesis. Here, we show that some important dorsal midline functions of mammalian foxa2 are exerted by foxA4 in Xenopus. We provide new evidence that the latter prevents the respecification of dorsal midline precursors towards contiguous fates, inhibiting prechordal and paraxial mesoderm development in favour of the notochord. In addition, we show that foxA4 is required for the correct regionalisation and maintenance of the central nervous system. FoxA4 participates in constraining the prospective rostral forebrain territory during neural specification and is necessary for the correct segregation of the most anterior ectodermal derivatives, such as the cement gland and the pituitary anlagen. Moreover, the early expression of foxA4 in the BCNE (which contains precursors of the whole forebrain and most of the midbrain and hindbrain) is directly required to restrict anterior neural development.
Collapse
|
30
|
Almazán-Moga A, Roma J, Molist C, Vidal I, Jubierre L, Soriano A, Segura MF, Llort A, Sánchez de Toledo J, Gallego S. Optimization of rhabdomyosarcoma disseminated disease assessment by flow cytometry. Cytometry A 2014; 85:1020-9. [PMID: 25155056 DOI: 10.1002/cyto.a.22514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/16/2014] [Accepted: 07/08/2014] [Indexed: 11/08/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children. Circulating tumor cells in peripheral blood or disseminated to bone marrow, a concept commonly referred to as minimal residual disease (MRD), are thought to be key to the prediction of metastasis and treatment efficacy. To date, two MRD markers, MYOD and MYOGENIN, have been tested; however, MRD detection continues to be challenging mainly owing to the closeness of the detection limit and the discordance of both markers in some samples. Therefore, the addition of a third marker could be useful for more accurate MRD assessment. The PAX3 gene is expressed during embryo development in all myogenic precursor cells in the dermomyotome. As RMS cells are thought to originate from these muscle precursor cells, they are expected to be positive for PAX3. In this study, PAX3 expression was characterized in cancer cell lines and tumors, showing wide expression in RMS. Detection sensitivities by quantitative polymerase chain reaction (qPCR) of the previously proposed markers, MYOD and MYOGENIN, were similar to that of PAX3, thereby indicating the feasibility of its detection. Interestingly, the flow cytometry experiments supported the usefulness of this technique in the quantification of MRD in RMS using PAX3 as a marker. These results indicate that flow cytometry, albeit in some cases slightly less sensitive, can be considered a good approach for MRD assessment in RMS and more consistent than qPCR, especially owing to its greater specificity. Furthermore, fluorescence-activated cell sorting permits the recovery of cells, thereby providing material for further characterization of circulating or disseminated cancer cells.
Collapse
Affiliation(s)
- Ana Almazán-Moga
- Laboratory of Translational Research in Pediatric Cancer, Vall d'Hebron Research Institute, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Retrograde migration of pectoral girdle muscle precursors depends on CXCR4/SDF-1 signaling. Histochem Cell Biol 2014; 142:473-88. [PMID: 24972797 DOI: 10.1007/s00418-014-1237-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 01/26/2023]
Abstract
In vertebrates, muscles of the pectoral girdle connect the forelimbs with the thorax. During development, the myogenic precursor cells migrate from the somites into the limb buds. Whereas most of the myogenic precursors remain in the limb bud to form the forelimb muscles, several cells migrate back toward the trunk to give rise to the superficial pectoral girdle muscles, such as the large pectoral muscle, the latissimus dorsi and the deltoid. Recently, this developing mode has been referred to as the "In-Out" mechanism. The present study focuses on the mechanisms of the "In-Out" migration during formation of the pectoral girdle muscles. Combining in ovo electroporation, tissue slice-cultures and confocal laser scanning microscopy, we visualize live in detail the retrograde migration of myogenic precursors from the forelimb bud into the trunk region by live imaging. Furthermore, we present for the first time evidence for the involvement of the chemokine receptor CXCR4 and its ligand SDF-1 during these processes. After microsurgical implantations of CXCR4 inhibitor beads in the proximal forelimb region of chicken embryos, we demonstrate with the aid of in situ hybridization and live-cell imaging that CXCR4/SDF-1 signaling is crucial for the retrograde migration of pectoral girdle muscle precursors. Moreover, we analyzed the MyoD expression in CXCR4-mutant mouse embryos and observed a considerable decrease in pectoral girdle musculature. We thus demonstrate the importance of the CXCR4/SDF-1 axis for the pectoral girdle muscle formation in avians and mammals.
Collapse
|
32
|
Chen Y, Wang G, Ma ZL, Li Y, Wang XY, Cheng X, Chuai M, Tang SZ, Lee KKH, Yang X. Adverse effects of high glucose levels on somite and limb development in avian embryos. Food Chem Toxicol 2014; 71:1-9. [PMID: 24882757 DOI: 10.1016/j.fct.2014.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/18/2014] [Accepted: 05/20/2014] [Indexed: 11/30/2022]
Abstract
Gestational diabetes has an adverse impact on fetal musculoskeletal development, but the mechanism involved is still not completely understood. In this study, we investigated the effects of high glucose on the developing somites and their derivate using the chick embryo as a model. We demonstrated that under high glucose, the number of generated somites was reduced and their morphology altered in 2-day old chick embryos. In addition, high glucose repressed the development of the limb buds in 5.5-day old chick embryos. We also demonstrated that high glucose abridged the development of the sclerotome and the cartilage in the developing limb bud. The sonic hedgehog (Shh) gene has been reported to play a crucial role in the development and differentiation of sclerotome. Hence, we examined how Shh expression in the sclerotome was affected under high glucose. We found that high glucose treatment significantly inhibited Shh expression. The high glucose also impaired myotome formation at trunk level - as revealed by immunofluorescent staining with MF20 antibodies. In the neural tube, we established that Wnt3a expression was also significantly repressed. In summary, our study demonstrates that high glucose concentrations impair somite and limb bud development in chick embryos, and suggests that Shh and Wnt genes may play a role in the underlying mechanism.
Collapse
Affiliation(s)
- Yao Chen
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Guang Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Zheng-lai Ma
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Yan Li
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Xiao-yu Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Xin Cheng
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH, UK
| | - Shu-ze Tang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Kenneth Ka Ho Lee
- Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China; Institute of Fetal-Preterm Labor Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
33
|
EMT in developmental morphogenesis. Cancer Lett 2013; 341:9-15. [DOI: 10.1016/j.canlet.2013.02.037] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 02/14/2013] [Accepted: 02/14/2013] [Indexed: 12/24/2022]
|
34
|
Yang J, Zeng Z, Wei J, Jiang L, Ma Q, Wu M, Huang X, Ye S, Li Y, Ma D, Gao Q. Sema4d is required for the development of the hindbrain boundary and skeletal muscle in zebrafish. Biochem Biophys Res Commun 2013; 433:213-9. [DOI: 10.1016/j.bbrc.2013.02.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/22/2013] [Indexed: 01/01/2023]
|
35
|
Singh K, Dilworth FJ. Differential modulation of cell cycle progression distinguishes members of the myogenic regulatory factor family of transcription factors. FEBS J 2013; 280:3991-4003. [DOI: 10.1111/febs.12188] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Kulwant Singh
- Sprott Center for Stem Cell Research; Ottawa Hospital Research Institute; ON; Canada
| | | |
Collapse
|
36
|
Kawanishi T, Kaneko T, Moriyama Y, Kinoshita M, Yokoi H, Suzuki T, Shimada A, Takeda H. Modular development of the teleost trunk along the dorsoventral axis and zic1/zic4 as selector genes in the dorsal module. Development 2013; 140:1486-96. [PMID: 23462471 DOI: 10.1242/dev.088567] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Teleost fish exhibit remarkable diversity in morphology, such as fins and coloration, particularly on the dorsal side. These structures are evolutionary adaptive because their back is highly visible to other individuals. However, owing to the late phenotypic appearance (from larva to adult) and lack of appropriate mutants, the genetic mechanisms that regulate these dorsoventrally asymmetric external patterns are largely unknown. To address this, we have analyzed the spontaneous medaka mutant Double anal fin (Da), which exhibits a mirror-image duplication of the ventral half across the lateral midline from larva to adult. Da is an enhancer mutant for zic1 and zic4 in which their expression in dorsal somites is lost. We show that the dorsoventral polarity in Da somites is lost and then demonstrate using transplantation techniques that somites and their derived tissues globally determine the multiple dorsal-specific characteristics of the body (fin morphology and pigmentation) from embryo to adult. Intriguingly, the zic1/zic4 expression in the wild type persists throughout life in the dorsal parts of somite derivatives, i.e. the myotome, dermis and vertebrae, forming a broad dorsal domain in the trunk. Comparative analysis further implies a central role for zic1/zic4 in morphological diversification of the teleost body. Taken together, we propose that the teleost trunk consists of dorsal/ventral developmental modules and that zic1/zic4 in somites function as selector genes in the dorsal module to regulate multiple dorsal morphologies.
Collapse
Affiliation(s)
- Toru Kawanishi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Della Gaspera B, Armand AS, Lecolle S, Charbonnier F, Chanoine C. Mef2d acts upstream of muscle identity genes and couples lateral myogenesis to dermomyotome formation in Xenopus laevis. PLoS One 2012; 7:e52359. [PMID: 23300648 PMCID: PMC3534117 DOI: 10.1371/journal.pone.0052359] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/15/2012] [Indexed: 11/18/2022] Open
Abstract
Xenopus myotome is formed by a first medial and lateral myogenesis directly arising from the presomitic mesoderm followed by a second myogenic wave emanating from the dermomyotome. Here, by a series of gain and loss of function experiments, we showed that Mef2d, a member of the Mef2 family of MADS-box transcription factors, appeared as an upstream regulator of lateral myogenesis, and as an inducer of dermomyotome formation at the beginning of neurulation. In the lateral presomitic cells, we showed that Mef2d transactivates Myod expression which is necessary for lateral myogenesis. In the most lateral cells of the presomitic mesoderm, we showed that Mef2d and Paraxis (Tcf15), a member of the Twist family of transcription factors, were co-localized and activate directly the expression of Meox2, which acts upstream of Pax3 expression during dermomyotome formation. Cell tracing experiments confirm that the most lateral Meox2 expressing cells of the presomitic mesoderm correspond to the dermomyotome progenitors since they give rise to the most dorsal cells of the somitic mesoderm. Thus, Xenopus Mef2d couples lateral myogenesis to dermomyotome formation before somite segmentation. These results together with our previous works reveal striking similarities between dermomyotome and tendon formation in Xenopus: both develop in association with myogenic cells and both involve a gene transactivation pathway where one member of the Mef2 family, Mef2d or Mef2c, cooperates with a bHLH protein of the Twist family, Paraxis or Scx (Scleraxis) respectively. We propose that these shared characteristics in Xenopus laevis reflect the existence of a vertebrate ancestral mechanism which has coupled the development of the myogenic cells to the formation of associated tissues during somite compartmentalization.
Collapse
Affiliation(s)
- Bruno Della Gaspera
- Centre d'Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France.
| | | | | | | | | |
Collapse
|
38
|
Abstract
A segmented body plan is fundamental to all vertebrate species and this bestows both rigidity and flexibility on the body. Segmentation is initiated through the process of somitogenesis. This article aims to provide a broad and balanced cross-species overview of somitogenesis and to highlight the key molecular and cellular events involved in each stage of segmentation. We highlight where our understanding of this multifaceted process relies on strong experimental evidence as well as those aspects where our understanding still relies largely on models.
Collapse
Affiliation(s)
- Miguel Maroto
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Robert A. Bone
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - J. Kim Dale
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
39
|
Yusuf F, Brand-Saberi B. Myogenesis and muscle regeneration. Histochem Cell Biol 2012; 138:187-99. [DOI: 10.1007/s00418-012-0972-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2012] [Indexed: 12/27/2022]
|
40
|
Cho OH, Rivera-Pérez JA, Imbalzano AN. Chromatin immunoprecipitation assay for tissue-specific genes using early-stage mouse embryos. J Vis Exp 2011:2677. [PMID: 21559006 DOI: 10.3791/2677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chromatin immunoprecipitation (ChIP) is a powerful tool to identify protein:chromatin interactions that occur in the context of living cells. This technique has been widely exploited in tissue culture cells, and to a lesser extent, in primary tissue. The application of ChIP to rodent embryonic tissue, especially at early times of development, is complicated by the limited amount of tissue and the heterogeneity of cell and tissue types in the embryo. Here we present a method to perform ChIP using a dissociated embryonic day 8.5 (E8.5) embryo. Sheared chromatin from a single E8.5 embryo can be divided into up to five aliquots, which allows the investigator sufficient material for controls and for investigation of specific protein:chromatin interactions. We have utilized this technique to begin to document protein:chromatin interactions during the specification of tissue-specific gene expression programs. The heterogeneity of cell types in an embryo necessarily restricts the application of this technique because the result is the detection of protein:chromatin interactions without distinguishing whether the interactions occur in all, a subset of, or a single cell type(s). However, examination of tissue-specific genes during or following the onset of tissue-specific gene expression is feasible for two reasons. First, immunoprecipitation of tissue specific factors necessarily isolates chromatin from the cell type where the factor is expressed. Second, immunoprecipitation of coactivators and histones containing post-translational modifications that are associated with gene activation should only be found at genes and gene regulatory sequences in the cell type where the gene is being or has been activated. The technique should be applicable to the study of most tissue-specific gene activation events. In the example described below, we utilized E8.5 and E9.5 mouse embryos to examine factor binding at a skeletal muscle specific gene promoter. Somites, which are the precursor tissues from which the skeletal muscles of the trunk and limbs will form, are present at E8.5-9.5. Myogenin is a regulatory factor required for skeletal muscle differentiation. The data demonstrate that myogenin is associated with its own promoter in E8.5 and E9.5 embryos. Because myogenin is only expressed in somites at this stage of development, the data indicate that myogenin interactions with its own promoter have already occurred in skeletal muscle precursor cells in E8.5 embryos.
Collapse
Affiliation(s)
- Ok Hyun Cho
- Department of Cell Biology, University of Massachusetts Medical School, USA
| | | | | |
Collapse
|
41
|
Abstract
Myogenesis has been a leading model for elucidating the molecular mechanisms that underlie tissue differentiation and development since the discovery of MyoD. During myogenesis, the fate of myogenic precursor cells is first determined by Pax3/Pax7. This is followed by regulation of the myogenic differentiation program by muscle regulatory factors (Myf5, MyoD, Myog, and Mrf4) to form muscle tissues. Recent studies have uncovered a detailed myogenic program that involves the RP58 (Zfp238)-dependent regulatory network, which is critical for repressing the expression of inhibitor of DNA binding (Id) proteins. These novel findings contribute to a comprehensive understanding of the muscle differentiation transcriptional program.
Collapse
|
42
|
Hidalgo M, Sirour C, Bello V, Moreau N, Beaudry M, Darribère T. In vivo analyzes of dystroglycan function during somitogenesis in Xenopus laevis. Dev Dyn 2009; 238:1332-45. [PMID: 19086027 DOI: 10.1002/dvdy.21814] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Dystroglycan (Dg) is a cell adhesion receptor for laminin that has been reported to play a role in skeletal muscle cell stability, cytoskeletal organization, cell polarity, and signaling. Here we show that Dg is expressed at both the notochord/somite and the intersomitic boundaries, where laminin and fibronectin are accumulated during somitogenesis. Inhibition of Dg function with morpholino antisense oligonucleotides or a dominant negative mutant results in the normal segmentation of the presomitic mesoderm but affects the number, the size, and the integrity of somites. Depletion of Dg disrupts proliferation and alignment of myoblasts without affecting XMyoD and XMRF4 expression. It also leads to defects in laminin deposition at the intersomitic junctions, whereas expression of integrin beta1 subunits and fibronectin assembly occur normally. Our results show that Dg is critical for both proliferation and elongation of somitic cells and that the Dg-cytoplasmic domain is required for the laminin assembly at the intersomitic boundaries. Developmental Dynamics 238:1332-1345, 2009. (c) 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Magdalena Hidalgo
- Université Pierre et Marie Curie Paris 6 UMR CNRS 7622, Laboratoire de Biologie du Développement, équipe Matrice Extracellulaire et Développement, Paris, France
| | | | | | | | | | | |
Collapse
|
43
|
Guarino M, Tosoni A, Nebuloni M. Direct contribution of epithelium to organ fibrosis: epithelial-mesenchymal transition. Hum Pathol 2009; 40:1365-76. [PMID: 19695676 DOI: 10.1016/j.humpath.2009.02.020] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 02/15/2009] [Accepted: 02/20/2009] [Indexed: 02/06/2023]
Abstract
Fibrosis of epithelial parenchymal organs and end-stage organ failure represent the final common pathway of many chronic diseases and are a major determinant of morbidity and mortality worldwide. Fibrosis is a complex response initiated to protect the host from an injurious event; nevertheless, it leads to serious organ damage when it becomes independent from the initiating stimulus. It involves massive deposition of matrix by an expanded pool of fibrogenic cells, disruption of the normal tissue architecture, and parenchymal destruction. Fibroblasts, the effector cells of matrix production, when engaged in fibrogenesis, display the highly activated phenotype characteristic of myofibroblasts. These cells are present in a large number in sites with ongoing inflammation, reparative reaction, and fibrosis, but their origin has not yet been definitely elucidated. Although proliferation of preexisting stromal fibroblasts and, probably, recruitment of bone marrow-derived fibrogenic cells may account for a portion of them, emerging evidence seems to indicate that an important number of matrix-producing fibroblasts/myofibroblasts arises through a mechanism of epithelial-mesenchymal transition. Through this process, epithelial cells would lose intercellular cohesion and would translocate from the epithelial compartment into the interstitium where, gaining a full mesenchymal phenotype, they could participate in the synthesis of the fibrotic matrix. Epithelial-mesenchymal transition is induced by the integrated actions of many stimuli including transforming growth factor-beta and matrix-generated signals that are also known to be implicated in inflammation, repair responses, and fibrosis. The consequences of epithelial-mesenchymal transition in chronic fibrosing diseases could be two-fold as follows: on one hand, by supplementing new mesenchymal cells, it might feed the expanding pool of interstitial fibroblasts/myofibroblasts responsible for the matrix accumulation; on the other hand, it could cause loss of epithelial cells, thus, contributing to the parenchyma destruction seen in advanced fibrosis. Markers of epithelium undergoing epithelial-mesenchymal transition include loss of E-cadherin and cytokeratin; de novo expression of fibroblast-specific protein 1/S100A4, vimentin, and alpha-smooth muscle actin; basement membrane component loss; and production of interstitial-type matrix molecules such as fibronectin and type I/III collagen. Evidence of epithelial-mesenchymal transition has been reported in the kidney, lung, liver, eye, and serosal membranes suggesting that epithelial-mesenchymal transition could be involved in the pathogenesis of fibrotic disorders in these organs. Thus, because of its fibrogenic potential, the detection of epithelial-mesenchymal transition in biopsy specimens could be useful diagnostically and represent a new biomarker of progression in chronic fibrosing diseases.
Collapse
Affiliation(s)
- Marcello Guarino
- Department of Pathology, Hospital of Vimercate, Vimercate, Milan, Italy.
| | | | | |
Collapse
|
44
|
Hughes DST, Keynes RJ, Tannahill D. Extensive molecular differences between anterior- and posterior-half-sclerotomes underlie somite polarity and spinal nerve segmentation. BMC DEVELOPMENTAL BIOLOGY 2009; 9:30. [PMID: 19463158 PMCID: PMC2693541 DOI: 10.1186/1471-213x-9-30] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 05/22/2009] [Indexed: 01/10/2023]
Abstract
Background The polarization of somite-derived sclerotomes into anterior and posterior halves underlies vertebral morphogenesis and spinal nerve segmentation. To characterize the full extent of molecular differences that underlie this polarity, we have undertaken a systematic comparison of gene expression between the two sclerotome halves in the mouse embryo. Results Several hundred genes are differentially-expressed between the two sclerotome halves, showing that a marked degree of molecular heterogeneity underpins the development of somite polarity. Conclusion We have identified a set of genes that warrant further investigation as regulators of somite polarity and vertebral morphogenesis, as well as repellents of spinal axon growth. Moreover the results indicate that, unlike the posterior half-sclerotome, the central region of the anterior-half-sclerotome does not contribute bone and cartilage to the vertebral column, being associated instead with the development of the segmented spinal nerves.
Collapse
Affiliation(s)
- Daniel S T Hughes
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB3 2DY, UK.
| | | | | |
Collapse
|
45
|
Thompson J, Wong L, Lau PS, Bannigan J. Adherens junction breakdown in the periderm following cadmium administration in the chick embryo: distribution of cadherins and associated molecules. Reprod Toxicol 2007; 25:39-46. [PMID: 18031986 DOI: 10.1016/j.reprotox.2007.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 09/18/2007] [Accepted: 10/02/2007] [Indexed: 01/15/2023]
Abstract
BACKGROUND The teratogenic metal cadmium (Cd) has been found to cause ventral body wall defects similar to human omphalocele when administered to post-gastrulation chick embryos prior to body wall folding. From 4h after Cd, affected embryos demonstrate varying degrees of cell junction breakdown and desquamation in the periderm. We examined the effect of Cd on tissue and cell distribution of cadherins and their intracellular associates. METHODS Chicks were explanted and given 50microl of 50microM Cd solution at 60h incubation (Hamburger-Hamilton stage 16-17). To examine peridermal junctions, embryos were processed into resin and ultra-thin sections examined by transmission electron microscopy (TEM). Tissue was processed into paraffin and 6microm sections treated according to standard protocols for immunohistochemical detection of L-CAM, pan-cadherin, beta-catenin, alpha-1 and alpha-2 catenin. To examine actin distribution, frozen sections were cut at 10-20microm, stained with oragon green phalloidin and nuclei counter-stained with propidium iodide. RESULTS The overall tissue distribution of L-CAM, pan-cadherin and the alpha-catenins did not appear to be altered following Cd. However, beta-catenin changed from its normal sub-membranous location to a more general cytoplasmic distribution, with translocation to the nucleus in both peridermal and ectodermal cells. Similarly, actin distribution in the periderm in embryos demonstrating cell junction breakdown was markedly altered, with clumping and disorganization after 4h. CONCLUSIONS Although L-CAM is distributed normally after Cd, post-translational modification may occur causing breakdown of its normal association with the catenins and actin, and allowing beta-catenin to translocate to the nucleus in peri-ectodermal tissue, mimicking the canonical Wnt pathway.
Collapse
Affiliation(s)
- Jennifer Thompson
- School of Medicine and Medical Science and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| | | | | | | |
Collapse
|
46
|
Andrade RP, Palmeirim I, Bajanca F. Molecular clocks underlying vertebrate embryo segmentation: A 10-year-old hairy-go-round. ACTA ACUST UNITED AC 2007; 81:65-83. [PMID: 17600780 DOI: 10.1002/bdrc.20094] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Segmentation of the vertebrate embryo body is a fundamental developmental process that occurs with strict temporal precision. Temporal control of this process is achieved through molecular segmentation clocks, evidenced by oscillations of gene expression in the unsegmented presomitic mesoderm (PSM, precursor tissue of the axial skeleton) and in the distal limb mesenchyme (limb chondrogenic precursor cells). The first segmentation clock gene, hairy1, was identified in the chick embryo PSM in 1997. Ten years later, chick hairy2 expression unveils a molecular clock operating during limb development. This review revisits vertebrate embryo segmentation with special emphasis on the current knowledge on somitogenesis and limb molecular clocks. A compilation of human congenital disorders that may arise from deregulated embryo clock mechanisms is presented here, in an attempt to reconcile different sources of information regarding vertebrate embryo development. Challenging open questions concerning the somitogenesis clock are presented and discussed, such as When?, Where?, How?, and What for? Hopefully the next decade will be equally rich in answers.
Collapse
Affiliation(s)
- Raquel P Andrade
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.
| | | | | |
Collapse
|