1
|
Whitaker-Hardin B, McGregor KM, Uswatte G, Lokken K. A Narrative Review of the Efficacy of Long COVID Interventions on Brain Fog, Processing Speed, and Other Related Cognitive Outcomes. Biomedicines 2025; 13:421. [PMID: 40002834 PMCID: PMC11853337 DOI: 10.3390/biomedicines13020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
In the years following the global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or COVID-19, researchers have become acutely aware of long-term symptomology associated with this disease, often termed long COVID. Long COVID is associated with pervasive symptoms affecting multiple organ systems. Neurocognitive symptoms are reported by up to 40% of long COVID patients, with resultant effects of loss of daily functioning, employment issues, and enormous economic impact and high healthcare utilization. The literature on effective, safe, and non-invasive interventions for the remediation of the cognitive consequences of long COVID is scarce and poorly described. Of specific interest to this narrative review is the identification of potential interventions for long COVID-associated neurocognitive deficits. Articles were sourced from PubMed, EBSCO, Scopus, and Embase following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Articles published between the dates of January 2020 and 30 June 2024 were included in the search. Twelve studies were included in the narrative review, including a feasibility study, a pilot study, a case series, a case study, and an observational study, in addition to three randomized clinical trials and four interventional studies. Overall, treatment interventions such as cognitive training, non-invasive brain stimulation therapy, exercise rehabilitation, targeted pharmacological intervention, and other related treatment paradigms show promise in reducing long COVID cognitive issues. This narrative review highlights the need for more rigorous experimental designs and future studies are needed to fully evaluate treatment interventions for persistent cognitive deficits associated with long COVID.
Collapse
Affiliation(s)
- Bryana Whitaker-Hardin
- Neuroscience Theme, Graduate Biomedical Sciences Doctoral Training Program, Joint Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Keith M. McGregor
- Birmingham Veterans Affairs Geriatric Research Education and Clinical Center, Birmingham Veterans Affairs Health Care System, Birmingham, AL 35294, USA;
- Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gitendra Uswatte
- Departments of Psychology & Physical Therapy, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Kristine Lokken
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
2
|
Gongwer MW, Qi A, Enos AS, Rueda SA, Klune CB, Shari M, Kashay AQ, Williams OH, Hacking A, Riley JP, Wilke GA, Yang Y, Lu H, Leuchter AF, DeNardo LA, Wilke SA. A cell type-specific mechanism driving the rapid antidepressant effects of transcranial magnetic stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635537. [PMID: 39975365 PMCID: PMC11838264 DOI: 10.1101/2025.01.29.635537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an emerging treatment for brain disorders, but its therapeutic mechanism is unknown. We developed a novel mouse model of rTMS with superior clinical face validity and investigated the neural mechanism by which accelerated intermittent theta burst stimulation (aiTBS) - the first rapid-acting rTMS antidepressant protocol - reversed chronic stress-induced behavioral deficits. Using fiber photometry, we showed that aiTBS drives distinct patterns of neural activity in intratelencephalic (IT) and pyramidal tract (PT) projecting neurons in dorsomedial prefrontal cortex (dmPFC). However, only IT neurons exhibited persistently increased activity during both aiTBS and subsequent depression-related behaviors. Similarly, aiTBS reversed stress-related loss of dendritic spines on IT, but not PT neurons, further demonstrating cell type-specific effects of stimulation. Finally, chemogenetic inhibition of dmPFC IT neurons during rTMS blocked the antidepressant-like behavioral effects of aiTBS. Thus, we demonstrate a prefrontal mechanism linking rapid aiTBS-driven therapeutic effects to cell type-specific circuit plasticity.
Collapse
Affiliation(s)
- Michael W. Gongwer
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Alex Qi
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, Neuromodulation Division, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Alexander S. Enos
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Sophia A. Rueda
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Cassandra B. Klune
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Meelan Shari
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Adrienne Q. Kashay
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, Neuromodulation Division, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Owen H. Williams
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Aliza Hacking
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Jack P. Riley
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | | | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Andrew F. Leuchter
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, Neuromodulation Division, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Laura A. DeNardo
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Scott A. Wilke
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry, Neuromodulation Division, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Ong RCS, Tang AD. Subthreshold repetitive transcranial magnetic stimulation induces cortical layer-, brain region-, and protocol-dependent neural plasticity. SCIENCE ADVANCES 2025; 11:eado6705. [PMID: 39772671 PMCID: PMC11708880 DOI: 10.1126/sciadv.ado6705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is commonly used to study the brain or as a treatment for neurological disorders, but the neural circuits and molecular mechanisms it affects remain unclear. To determine the molecular mechanisms of rTMS and the brain regions they occur in, we used spatial transcriptomics to map changes to gene expression across the mouse brain in response to two commonly used rTMS protocols. Our results revealed that rTMS alters the expression of genes related to several cellular processes and neural plasticity mechanisms across the brain, which was both brain region- and rTMS protocol-dependent. In the cortex, the effect of rTMS was dependent not only on the cortical region but also on each cortical layer. These findings uncover the diverse molecular mechanisms induced by rTMS, which will be useful in interpreting its effects on cortical and subcortical circuits.
Collapse
Affiliation(s)
- Rebecca C. S. Ong
- Experimental and Regenerative Neurosciences, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Sciences, Perth, Australia
| | - Alexander D. Tang
- Experimental and Regenerative Neurosciences, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Sciences, Perth, Australia
- Pharmacology and Toxicology Discipline, School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
4
|
Slan AR, Citrenbaum C, Corlier J, Ngo D, Vince-Cruz N, Jackson NJ, Valles TE, Wilke SA, Hoftman GD, Koek RJ, Leuchter MK, Krantz DE, Strouse TB, Tadayonnejad R, Ginder ND, Distler MG, Lee JH, Adelekun AE, Einstein EH, Oughli HA, Leuchter AF. The role of sex and age in the differential efficacy of 10 Hz and intermittent theta-burst (iTBS) repetitive transcranial magnetic stimulation (rTMS) treatment of major depressive disorder (MDD). J Affect Disord 2024; 366:106-112. [PMID: 39187197 DOI: 10.1016/j.jad.2024.08.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Sex- and age-dependent outcome differences have been observed in treatment of Major Depressive Disorder (MDD), including 10 Hz repetitive Transcranial Magnetic Stimulation (rTMS). We examined whether there are sex- and age-dependent differences in outcome with intermittent Theta Burst Stimulation (iTBS), another rTMS protocol. METHODS The relationship between biological sex, age, and treatment outcome was retrospectively examined among 414 patients with MDD treated with 10 Hz or iTBS rTMS. Linear mixed-effects modeling was used to examine the association between treatment and change in the 30-item Inventory of Depressive Symptomatology Self-Report (IDS-SR30) score from baseline to treatments 10 and 30, with biological sex (M/F), protocol (iTBS/10 Hz), age (≥/<50 years old), and time (treatment 1/10/30) included as fixed effects. The three-way sex-protocol-time and age-protocol-time interactions were used to determine any differential relationships between protocol and outcome dependent on sex and age. Post-hoc t-tests were conducted to examine differences in improvement. RESULTS There was a significant three-way sex-protocol-time interaction at treatments 10 (p = 0.016) and 30 (p = 0.031). Males showed significantly greater improvement with iTBS than females at treatments 10 (p = 0.041) and 30 (p = 0.035), while females showed numerically greater improvement with 10 Hz treatment. While there was not a significant three-way age-protocol-time interaction, there was a significant interaction between age (≥50 years old) and time at treatments 10 (p = 0.007) and 30 (p = 0.042), and among age, sex, and time at treatment 30 (p = 0.028). LIMITATIONS Retrospective naturalistic treatment protocol. CONCLUSIONS iTBS appeared less efficacious in females than in males, and rTMS overall was more efficacious in patients over fifty, particularly females.
Collapse
Affiliation(s)
- Aaron R Slan
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Cole Citrenbaum
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Juliana Corlier
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Doan Ngo
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nikita Vince-Cruz
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nicholas J Jackson
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Thomas E Valles
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Scott A Wilke
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gil D Hoftman
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ralph J Koek
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michael K Leuchter
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - David E Krantz
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Thomas B Strouse
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Reza Tadayonnejad
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Nathaniel D Ginder
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Margaret G Distler
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John H Lee
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Adesewa E Adelekun
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Evan H Einstein
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hanadi A Oughli
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Andrew F Leuchter
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
5
|
Kweon J, Fukuda AM, Gobin AP, Haq L, Carpenter LL, Brown JC. Effect of sleep quality on repetitive transcranial magnetic stimulation outcomes in depression. Front Psychiatry 2024; 15:1458696. [PMID: 39376965 PMCID: PMC11456523 DOI: 10.3389/fpsyt.2024.1458696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction While repetitive transcranial magnetic stimulation (rTMS) is effective for 50-60% of those treatment-resistant depression, it is critical to identify predictors of response for optimal patient selection to improve therapy. Insomnia is a known symptom of depression that is both correlated with depression severity and associated with poor antidepressant response. Therefore, understanding this relationship may open new opportunities for the optimization of rTMS treatment. We aimed to explore whether baseline sleep quality, specifically insomnia, is associated with rTMS outcomes in a naturalistic sample of 975 patients (age 18-90; 63.9% F) receiving a standard course of rTMS treatment from two outpatient TMS clinics located within psychiatric hospitals in the United States. One site additionally collected information on concurrent medication use on 350 patients; among these, we examined whether pharmacological treatment of insomnia affected TMS treatment response. Methods Depression was measured using the 30-item Inventory of Depressive Symptomology Self Report (IDS-SR) in site one and an abbreviated 16-item Quick Inventory of Depressive Symptomology (QIDS) derived from the IDS-SR in site two. Sleep disturbances were measured using three insomnia-related questions. Multilevel logistic regression was used to determine whether baseline insomnia scores were associated with TMS treatment outcome. Upon dichotomous categorization of the sample by insomnia and sleep-medication use, depression and sleep scores were analyzed across time using mixed repeated measures ANOVA. Results We found that sleep quality improves after TMS (p<.001) and correlates with improvement in non-insomnia related depression symptoms (r= .318, p<.001). We found that among those who had significant insomnia at baseline, those not using sleep medications had significantly worse post-treatment IDS-SR scores compared to those using sleep medications (p=. 021) despite no difference in final insomnia score. Discussion Together, our results suggest that while baseline insomnia is not associated with TMS effectiveness, treating insomnia may affect the trajectory of TMS therapy. Future prospective studies are needed to examine the effect of insomnia treatment alongside TMS for depression.
Collapse
Affiliation(s)
- Jamie Kweon
- Brain Stimulation Mechanisms Laboratory, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, United States
| | - Andrew M. Fukuda
- Brain Stimulation Mechanisms Laboratory, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Asi P. Gobin
- Neuromodulation Research Facility, Butler Hospital, Providence, RI, United States
| | - Lamaan Haq
- Brain Stimulation Mechanisms Laboratory, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, United States
| | - Linda L. Carpenter
- Neuromodulation Research Facility, Butler Hospital, Providence, RI, United States
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Butler Hospital, Providence, RI, United States
| | - Joshua C. Brown
- Brain Stimulation Mechanisms Laboratory, Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Ambron R. Synaptic sensitization in the anterior cingulate cortex sustains the consciousness of pain via synchronized oscillating electromagnetic waves. Front Hum Neurosci 2024; 18:1462211. [PMID: 39323956 PMCID: PMC11422113 DOI: 10.3389/fnhum.2024.1462211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
A recent report showed that experiencing pain requires not only activities in the brain, but also the generation of electric fields in a defined area of the anterior cingulate cortex (ACC). The present manuscript presents evidence that electromagnetic (EM) waves are also necessary. Action potentials (APs) encoding information about an injury stimulate thousands synapses on pyramidal neurons within the ACC resulting in the generation of synchronized oscillating (EM) waves and the activation of NMDA receptors. The latter induces a long-term potentiation (LTP) in the pyramidal dendrites that is necessary to experience both neuropathic and visceral pain. The LTP sensitizes transmission across the synapses that sustains the duration of the waves and the pain, EM waves containing information about the injury travel throughout the brain and studies using transcranial stimulation indicate that they can induce NMDA-mediated LTP in distant neuronal circuits. What is ultimately experienced as pain depends on the almost instantaneous integration of information from numerous neuronal centers, such as the amygdala, that are widely separated in the brain. These centers also generate EM waves and I propose that the EM waves from these centers interact to rapidly adjust the intensity of the pain to accommodate past and present circumstances. Where the waves are transformed into a consciousness of pain is unknown. One possibility is the mind which, according to contemporary theories, is where conscious experiences arise. The hypothesis can be tested directly by blocking the waves from the ACC. If correct, the waves would open new avenues of research into the relationship between the brain, consciousness, and the mind.
Collapse
|
7
|
Sundaram P, Dong C, Makaroff S, Okada Y. How conductivity boundaries influence the electric field induced by transcranial magnetic stimulation in in vitro experiments. Brain Stimul 2024; 17:1034-1044. [PMID: 39142380 PMCID: PMC11586064 DOI: 10.1016/j.brs.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/10/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Although transcranial magnetic stimulation (TMS) has become a valuable method for non-invasive brain stimulation, the cellular basis of TMS activation of neurons is still not fully understood. In vitro preparations have been used to understand the biophysical mechanisms of TMS, but in many cases these studies have encountered substantial difficulties in activating neurons. OBJECTIVE/HYPOTHESIS The hypothesis of this work is that conductivity boundaries can have large effects on the electric field in commonly used in vitro preparations. Our goal was to analyze the resulting difficulties in in vitro TMS using a simulation study, using a charge-based boundary element model. METHODS We decomposed the total electric field into the sum of the primary electric field, which only depends on coil geometry and current, and the secondary electric field arising from conductivity boundaries, which strongly depends on tissue and chamber geometry. We investigated the effect of the conductivity boundaries on the electric field strength for a variety of in vitro experimental settings to determine the sources of difficulty. RESULTS We showed that conductivity boundaries can have large effects on the electric field in in vitro preparations. Depending on the geometry of the air-saline and the saline-tissue interfaces, the secondary electric field can significantly enhance, or attenuate the primary electric field, resulting in a much stronger or weaker total electric field inside the tissue; we showed this using a realistic preparation. Submerged chambers are generally much more efficient than interface chambers since the secondary field due to the thin film of saline covering the tissue in the interface chamber opposes the primary field and significantly reduces the total field in the tissue placed in the interface chamber. The relative dimensions of the chamber and the TMS coil critically determine the total field; the popular setup with a large coil and a small chamber is particularly sub-optimal because the secondary field due to the air-chamber boundary opposes the primary field, thereby attenuating the total field. The form factor (length vs width) of the tissue in the direction of the induced field can be important since a relatively narrow tissue enhances the total field at the saline-tissue boundary. CONCLUSIONS Overall, we found that the total electric field in the tissue is higher in submerged chambers, higher if the chamber size is larger than the coil and if the shorter tissue dimension is in the direction of the electric field. Decomposing the total field into the primary and secondary fields is useful for designing in vitro experiments and interpreting the results.
Collapse
Affiliation(s)
- Padmavathi Sundaram
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Chunling Dong
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sergey Makaroff
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Worcester Polytechnic Institute, Worcester, MA, USA
| | - Yoshio Okada
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Farahani MV, Shariatpanahi SP, Goliaei B. A computational model elucidating mechanisms and variability in theta burst stimulation responses. J Comput Neurosci 2024; 52:183-196. [PMID: 39120822 DOI: 10.1007/s10827-024-00875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/22/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Theta burst stimulation (TBS) is a form of repetitive transcranial magnetic stimulation (rTMS) with unknown underlying mechanisms and highly variable responses across subjects. To investigate these issues, we developed a simple computational model. Our model consisted of two neurons linked by an excitatory synapse that incorporates two mechanisms: short-term plasticity (STP) and spike-timing-dependent plasticity (STDP). We applied a variable-amplitude current through I-clamp with a TBS time pattern to the pre- and post-synaptic neurons, simulating synaptic plasticity. We analyzed the results and provided an explanation for the effects of TBS, as well as the variability of responses to it. Our findings suggest that the interplay of STP and STDP mechanisms determines the direction of plasticity, which selectively affects synapses in extended neurons and underlies functional effects. Our model describes how the timing, number, and intensity of pulses delivered to neurons during rTMS contribute to induced plasticity. This not only successfully explains the different effects of intermittent TBS (iTBS) and continuous TBS (cTBS), but also predicts the results of other protocols such as 10 Hz rTMS. We propose that the variability in responses to TBS can be attributed to the variable span of neuronal thresholds across individuals and sessions. Our model suggests a biologically plausible mechanism for the diverse responses to TBS protocols and aligns with experimental data on iTBS and cTBS outcomes. This model could potentially aid in improving TBS and rTMS protocols and customizing treatments for patients, brain areas, and brain disorders.
Collapse
Affiliation(s)
| | | | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, P.O.Box, 13145-1384, Tehran, Iran
| |
Collapse
|
9
|
Hananeia N, Ebner C, Galanis C, Cuntz H, Opitz A, Vlachos A, Jedlicka P. Multi-scale modelling of location- and frequency-dependent synaptic plasticity induced by transcranial magnetic stimulation in the dendrites of pyramidal neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601851. [PMID: 39005474 PMCID: PMC11244966 DOI: 10.1101/2024.07.03.601851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) induces long-term changes of synapses, but the mechanisms behind these modifications are not fully understood. Although there has been progress in the development of multi-scale modeling tools, no comprehensive module for simulating rTMS-induced synaptic plasticity in biophysically realistic neurons exists.. Objective We developed a modelling framework that allows the replication and detailed prediction of long-term changes of excitatory synapses in neurons stimulated by rTMS. Methods We implemented a voltage-dependent plasticity model that has been previously established for simulating frequency-, time-, and compartment-dependent spatio-temporal changes of excitatory synapses in neuronal dendrites. The plasticity model can be incorporated into biophysical neuronal models and coupled to electrical field simulations. Results We show that the plasticity modelling framework replicates long-term potentiation (LTP)-like plasticity in hippocampal CA1 pyramidal cells evoked by 10-Hz repetitive magnetic stimulation (rMS). This plasticity was strongly distance dependent and concentrated at the proximal synapses of the neuron. We predicted a decrease in the plasticity amplitude for 5 Hz and 1 Hz protocols with decreasing frequency. Finally, we successfully modelled plasticity in distal synapses upon local electrical theta-burst stimulation (TBS) and predicted proximal and distal plasticity for rMS TBS. Notably, the rMS TBS-evoked synaptic plasticity exhibited robust facilitation by dendritic spikes and low sensitivity to inhibitory suppression. Conclusion The plasticity modelling framework enables precise simulations of LTP-like cellular effects with high spatio-temporal resolution, enhancing the efficiency of parameter screening and the development of plasticity-inducing rTMS protocols.
Collapse
Affiliation(s)
- Nicholas Hananeia
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
| | - Christian Ebner
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
- Charité · NeuroCure (NCRC), Charité Universitätsmedizin Berlin
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg
- Bernstein Center Freiburg, University of Freiburg
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hermann Cuntz
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Alexander Opitz
- Dept of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg
- Bernstein Center Freiburg, University of Freiburg
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Jedlicka
- Computer-Based Modelling in the field of 3R Animal Protection, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
- Translational Neuroscience Network Giessen, Germany
| |
Collapse
|
10
|
Holl N, Heerdegen M, Zschorlich V, Köhling R, Kirschstein T. Inhibition of Acute mGluR5-Dependent Depression in Hippocampal CA1 by High-Frequency Magnetic Stimulation. Brain Sci 2024; 14:603. [PMID: 38928603 PMCID: PMC11202050 DOI: 10.3390/brainsci14060603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
High-frequency magnetic stimulation (HFMS) applied directly to the hippocampal slice preparation in vitro induces activity-dependent synaptic plasticity and metaplasticity. In addition, changes in synaptic transmission following HFMS involve the activation of N-methyl-D-aspartate and metabotropic glutamate receptors (mGluR). Here, we asked whether a short period of HFMS (5 × 10 delta-burst trains, duration of ~1 min) could alter mGluR5-mediated depression at Schaffer collateral-CA1 synapses in the acute brain slice preparation at 30 min after HFMS. To this end, we obtained field excitatory postsynaptic potential (fEPSP) slopes from Schaffer collateral-CA1 synapses after HFMS or control. First, we demonstrated that activity-dependent plasticity following HFMS depends on the slice orientation towards the magnetic coil indicating specific ion fluxes induced by magnetic fields. Second, we found that the mGluR5-specific agonist (RS)-2-chloro-5-hydroxyphenylglycine reduced the field excitatory postsynaptic potential (fEPSP) slopes in control slices but rather enhanced them in HFMS-treated slices. In contrast, the compound (S)-3,5-dihydroxyphenylglycine acting at both mGluR1 and mGluR5 reduced fEPSP slopes in both control and HFMS-treated slices. Importantly, the mGluR-dependent effects were independent from the slice-to-coil orientation indicating that asynchronous glutamate release could play a role. We conclude that a short period of HFMS inhibits subsequently evoked mGluR5-dependent depression at Schaffer collateral-CA1 synapses. This could be relevant for repetitive transcranial magnetic stimulation in psychiatric disorders such as major depression.
Collapse
Affiliation(s)
- Norman Holl
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, University of Rostock, Gertrudenstrasse 9, 18057 Rostock, Germany; (N.H.); (M.H.); (R.K.)
| | - Marco Heerdegen
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, University of Rostock, Gertrudenstrasse 9, 18057 Rostock, Germany; (N.H.); (M.H.); (R.K.)
| | - Volker Zschorlich
- Institute of Sport Sciences, University of Rostock, Am Waldessaum 23a, 18057 Rostock, Germany;
- Institute of Sport Sciences, Carl von Ossietzky University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, University of Rostock, Gertrudenstrasse 9, 18057 Rostock, Germany; (N.H.); (M.H.); (R.K.)
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, University of Rostock, Gertrudenstrasse 9, 18057 Rostock, Germany; (N.H.); (M.H.); (R.K.)
| |
Collapse
|
11
|
Li S, Xiao Z. Recent Research Progress on the Use of Transcranial Magnetic Stimulation in the Treatment of Vascular Cognitive Impairment. Neuropsychiatr Dis Treat 2024; 20:1235-1246. [PMID: 38883416 PMCID: PMC11179638 DOI: 10.2147/ndt.s467357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/01/2024] [Indexed: 06/18/2024] Open
Abstract
Vascular Cognitive Impairment (VCI) is a condition where problems with brain blood vessels lead to a decline in cognitive abilities, commonly affecting the elderly and placing a significant burden on both patients and their families. Compared to medication and surgery, Transcranial Magnetic Stimulation (TMS) is a non-invasive treatment option with fewer risks and side effects, making it particularly suitable for elderly patients. TMS not only assesses the excitability and plasticity of the cerebral cortex, but its effectiveness in treating Vascular Cognitive Impairment (VCI) and its subtypes has also been validated in numerous clinical trials worldwide. However, there is still a lack of review on the physiological mechanisms of TMS treatment for VCI and its specific clinical application parameters. Therefore, this article initially provided a brief overview of the risk factors, pathological mechanisms, and classification of VCI. Next, the article explained the potential physiological mechanisms of TMS in treating VCI, particularly its role in promoting synaptic plasticity, regulating neurotransmitter balance, and improving the function of the default mode network. Additionally, The article also summarizes the application of rTMS in treating VCI and its subtypes, VCI-related sleep disorders, and the use of TMS in follow-up studies of VCI patients, providing empirical evidence for the clinical application of TMS and rTMS technologies.
Collapse
Affiliation(s)
- Sijing Li
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Clinical Research Center for Immune‑Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Zijian Xiao
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Clinical Research Center for Immune‑Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| |
Collapse
|
12
|
Xie Y, Li C, Guan M, Zhang T, Ma C, Wang Z, Ma Z, Wang H, Fang P. The efficacy of low frequency repetitive transcial magnetic stimulation for treating auditory verbal hallucinations in schizophrenia: Insights from functional gradient analyses. Heliyon 2024; 10:e30194. [PMID: 38707410 PMCID: PMC11066630 DOI: 10.1016/j.heliyon.2024.e30194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
Background Auditory Verbal Hallucinations (AVH) constitute a prominent feature of schizophrenia. Although low-frequency repetitive transcranial magnetic stimulation (rTMS) has demonstrated therapeutic benefits in ameliorating AVH, the underlying mechanisms of its efficacy necessitate further elucidation. Objective This study investigated the cortical gradient characteristics and their associations with clinical responses in schizophrenia patients with AVH, mediated through 1 Hz rTMS targeting the left temporoparietal junction. Method Functional gradient metrics were employed to examine the hierarchy patterns of cortical organization, capturing whole-brain functional connectivity profiles in patients and controls. Results The 1 Hz rTMS treatment effectively ameliorated the positive symptoms in patients, specifically targeting AVH. Initial evaluations revealed expanded global gradient distribution patterns and specific principal gradient variations in certain brain regions in patients at baseline compared to a control cohort. Following treatment, these divergent global and local patterns showed signs of normalizing. Furthermore, there was observed a closer alignment in between-network dispersion among various networks after treatment, including the somatomotor, attention, and limbic networks, indicating a potential harmonization of brain functionality. Conclusion Low-frequency rTMS induces alternations in principal functional gradient patterns, may serve as imaging markers to elucidate the mechanisms underpinning the therapeutic efficacy of rTMS on AVH in schizophrenia.
Collapse
Affiliation(s)
- Yuanjun Xie
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chenxi Li
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical College, Xi'an, China
| | - Tian Zhang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Chaozong Ma
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng Fang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Xi'an, China
- Military Medical Innovation Center, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Galanis C, Neuhaus L, Hananeia N, Turi Z, Jedlicka P, Vlachos A. Axon morphology and intrinsic cellular properties determine repetitive transcranial magnetic stimulation threshold for plasticity. Front Cell Neurosci 2024; 18:1374555. [PMID: 38638302 PMCID: PMC11025360 DOI: 10.3389/fncel.2024.1374555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Repetitive transcranial magnetic stimulation (rTMS) is a widely used therapeutic tool in neurology and psychiatry, but its cellular and molecular mechanisms are not fully understood. Standardizing stimulus parameters, specifically electric field strength, is crucial in experimental and clinical settings. It enables meaningful comparisons across studies and facilitates the translation of findings into clinical practice. However, the impact of biophysical properties inherent to the stimulated neurons and networks on the outcome of rTMS protocols remains not well understood. Consequently, achieving standardization of biological effects across different brain regions and subjects poses a significant challenge. Methods This study compared the effects of 10 Hz repetitive magnetic stimulation (rMS) in entorhino-hippocampal tissue cultures from mice and rats, providing insights into the impact of the same stimulation protocol on similar neuronal networks under standardized conditions. Results We observed the previously described plastic changes in excitatory and inhibitory synaptic strength of CA1 pyramidal neurons in both mouse and rat tissue cultures, but a higher stimulation intensity was required for the induction of rMS-induced synaptic plasticity in rat tissue cultures. Through systematic comparison of neuronal structural and functional properties and computational modeling, we found that morphological parameters of CA1 pyramidal neurons alone are insufficient to explain the observed differences between the groups. Although morphologies of mouse and rat CA1 neurons showed no significant differences, simulations confirmed that axon morphologies significantly influence individual cell activation thresholds. Notably, differences in intrinsic cellular properties were sufficient to account for the 10% higher intensity required for the induction of synaptic plasticity in the rat tissue cultures. Conclusion These findings demonstrate the critical importance of axon morphology and intrinsic cellular properties in predicting the plasticity effects of rTMS, carrying valuable implications for the development of computer models aimed at predicting and standardizing the biological effects of rTMS.
Collapse
Affiliation(s)
- Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lena Neuhaus
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nicholas Hananeia
- 3R-Zentrum Gießen, Justus-Liebig-Universitat Giessen, Giessen, Germany
| | - Zsolt Turi
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Jedlicka
- 3R-Zentrum Gießen, Justus-Liebig-Universitat Giessen, Giessen, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has become an increasingly popular tool to modulate neural excitability and induce neural plasticity in clinical and preclinical models; however, the physiological mechanisms in which it exerts these effects remain largely unknown. To date, studies have primarily focused on characterizing rTMS-induced changes occurring at the synapse, with little attention given to changes in intrinsic membrane properties. However, accumulating evidence suggests that rTMS may induce its effects, in part, via intrinsic plasticity mechanisms, suggesting a new and potentially complementary understanding of how rTMS alters neural excitability and neural plasticity. In this review, we provide an overview of several intrinsic plasticity mechanisms before reviewing the evidence for rTMS-induced intrinsic plasticity. In addition, we discuss a select number of neurological conditions where rTMS-induced intrinsic plasticity has therapeutic potential before speculating on the temporal relationship between rTMS-induced intrinsic and synaptic plasticity.
Collapse
Affiliation(s)
- Emily S King
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Alexander D Tang
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| |
Collapse
|
15
|
Liu L, Hu H, Wu J, Koleske AJ, Chen H, Wang N, Yu K, Wu Y, Xiao X, Zhang Q. Integrin α3 is required for high-frequency repetitive transcranial magnetic stimulation-induced glutamatergic synaptic transmission in mice with ischemia. CNS Neurosci Ther 2024; 30:e14498. [PMID: 37867481 PMCID: PMC11017422 DOI: 10.1111/cns.14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is an effective therapy in post-stroke motor recovery. However, the underlying mechanisms of rTMS regulates long-lasting changes with synaptic transmission and glutamate receptors function (including AMPARs or NMDARs) remains unclear. METHODS Mice were received 10-Hz rTMS treatment once daily on the third day after photothrombotic (PT) stroke for 18 days. Motor behaviors and the Western blot were used to evaluate the therapeutic efficacy of 10-Hz rTMS in the mice with PT model. Moreover, we used wild-type (WT) and NEX-α3-/- mice to further explore the 10-Hz rTMS effect. RESULTS We found that 10-Hz rTMS improved the post-stroke motor performance in the PT mice. Moreover, the levels of AMPAR, vGlut1, and integrin α3 in the peri-infarct were significantly increased in the rTMS group. In contrast, 10-Hz rTMS did not induce these aforementioned effects in NEX-α3-/- mice. The amplitude of AMPAR-mediated miniature excitatory postsynaptic currents (EPSCs) and evoked EPSCs was increased in the WT + rTMS group, but did not change in NEX-α3-/- mice with rTMS. CONCLUSIONS In this study, 10-Hz rTMS improved the glutamatergic synaptic transmission in the peri-infract cortex through effects on integrin α3 and AMPARs, which resulted in motor function recovery after stroke.
Collapse
Affiliation(s)
- Li Liu
- Department of Rehabilitation Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Han Hu
- Behavioral and Cognitive Neuroscience CenterInstitute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
| | - Junfa Wu
- Department of Rehabilitation Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Anthony J. Koleske
- Departments of Molecular Biophysics and Biochemistry and NeuroscienceYale UniversityNew HavenConnecticutUSA
| | - Hongting Chen
- Behavioral and Cognitive Neuroscience CenterInstitute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
| | - Nianhong Wang
- Department of Rehabilitation Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Kewei Yu
- Department of Rehabilitation Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiao Xiao
- Behavioral and Cognitive Neuroscience CenterInstitute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
| | - Qun Zhang
- Department of Rehabilitation Medicine, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
16
|
Shaner S, Lu H, Lenz M, Garg S, Vlachos A, Asplund M. Brain stimulation-on-a-chip: a neuromodulation platform for brain slices. LAB ON A CHIP 2023; 23:4967-4985. [PMID: 37909911 PMCID: PMC10661668 DOI: 10.1039/d3lc00492a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
Electrical stimulation of ex vivo brain tissue slices has been a method used to understand mechanisms imparted by transcranial direct current stimulation (tDCS), but there are significant direct current electric field (dcEF) dosage and electrochemical by-product concerns in conventional experimental setups that may impact translational findings. Therefore, we developed an on-chip platform with fluidic, electrochemical, and magnetically-induced spatial control. Fluidically, the chamber geometrically confines precise dcEF delivery to the enclosed brain slice and allows for tissue recovery in order to monitor post-stimulation effects. Electrochemically, conducting hydrogel electrodes mitigate stimulation-induced faradaic reactions typical of commonly-used metal electrodes. Magnetically, we applied ferromagnetic substrates beneath the tissue and used an external permanent magnet to enable in situ rotational control in relation to the dcEF. By combining the microfluidic chamber with live-cell calcium imaging and electrophysiological recordings, we showcased the potential to study the acute and lasting effects of dcEFs with the potential of providing multi-session stimulation. This on-chip bioelectronic platform presents a modernized yet simple solution to electrically stimulate explanted tissue by offering more environmental control to users, which unlocks new opportunities to conduct thorough brain stimulation mechanistic investigations.
Collapse
Affiliation(s)
- Sebastian Shaner
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany
| | - Han Lu
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 17, 79104 Freiburg im Breisgau, Germany.
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 17, 79104 Freiburg im Breisgau, Germany.
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Shreyash Garg
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 17, 79104 Freiburg im Breisgau, Germany.
- MSc Neuroscience Program, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg im Breisgau, Germany
| | - Andreas Vlachos
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 17, 79104 Freiburg im Breisgau, Germany.
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Maria Asplund
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Chalmersplatsen 4, 41258 Gothenburg, Sweden.
- Division of Nursing and Medical Technology, Luleå University of Technology, 79187 Luleå, Sweden
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
17
|
Shenoy S, Ibrahim S. Perinatal Depression and the Role of Synaptic Plasticity in Its Pathogenesis and Treatment. Behav Sci (Basel) 2023; 13:942. [PMID: 37998688 PMCID: PMC10669186 DOI: 10.3390/bs13110942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Emerging evidence indicates that synaptic plasticity is significantly involved in the pathophysiology and treatment of perinatal depression. Animal models have demonstrated the effects of overstimulated or weakened synapses in various circuits of the brain in causing affective disturbances. GABAergic theory of depression, stress, and the neuroplasticity model of depression indicate the role of synaptic plasticity in the pathogenesis of depression. Multiple factors related to perinatal depression like hormonal shifts, newer antidepressants, mood stabilizers, monoamine systems, biomarkers, neurotrophins, cytokines, psychotherapy and electroconvulsive therapy have demonstrated direct and indirect effects on synaptic plasticity. In this review, we discuss and summarize the various patho-physiology-related effects of synaptic plasticity in depression. We also discuss the association of treatment-related aspects related to psychotropics, electroconvulsive therapy, neuromodulation, psychotherapy, physical exercise and yoga with synaptic plasticity in perinatal depression. Future insights into newer methods of treatment directed towards the modulation of neuroplasticity for perinatal depression will be discussed.
Collapse
Affiliation(s)
- Sonia Shenoy
- Department of Psychiatry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Sufyan Ibrahim
- Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
18
|
Dufor T, Lohof AM, Sherrard RM. Magnetic Stimulation as a Therapeutic Approach for Brain Modulation and Repair: Underlying Molecular and Cellular Mechanisms. Int J Mol Sci 2023; 24:16456. [PMID: 38003643 PMCID: PMC10671429 DOI: 10.3390/ijms242216456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Neurological and psychiatric diseases generally have no cure, so innovative non-pharmacological treatments, including non-invasive brain stimulation, are interesting therapeutic tools as they aim to trigger intrinsic neural repair mechanisms. A common brain stimulation technique involves the application of pulsed magnetic fields to affected brain regions. However, investigations of magnetic brain stimulation are complicated by the use of many different stimulation parameters. Magnetic brain stimulation is usually divided into two poorly connected approaches: (1) clinically used high-intensity stimulation (0.5-2 Tesla, T) and (2) experimental or epidemiologically studied low-intensity stimulation (μT-mT). Human tests of both approaches are reported to have beneficial outcomes, but the underlying biology is unclear, and thus optimal stimulation parameters remain ill defined. Here, we aim to bring together what is known about the biology of magnetic brain stimulation from human, animal, and in vitro studies. We identify the common effects of different stimulation protocols; show how different types of pulsed magnetic fields interact with nervous tissue; and describe cellular mechanisms underlying their effects-from intracellular signalling cascades, through synaptic plasticity and the modulation of network activity, to long-term structural changes in neural circuits. Recent advances in magneto-biology show clear mechanisms that may explain low-intensity stimulation effects in the brain. With its large breadth of stimulation parameters, not available to high-intensity stimulation, low-intensity focal magnetic stimulation becomes a potentially powerful treatment tool for human application.
Collapse
Affiliation(s)
- Tom Dufor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Ann M. Lohof
- Sorbonne Université and CNRS, UMR8256 Biological Adaptation and Ageing, 75005 Paris, France;
| | - Rachel M. Sherrard
- Sorbonne Université and CNRS, UMR8256 Biological Adaptation and Ageing, 75005 Paris, France;
| |
Collapse
|
19
|
Anil S, Lu H, Rotter S, Vlachos A. Repetitive transcranial magnetic stimulation (rTMS) triggers dose-dependent homeostatic rewiring in recurrent neuronal networks. PLoS Comput Biol 2023; 19:e1011027. [PMID: 37956202 PMCID: PMC10681319 DOI: 10.1371/journal.pcbi.1011027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/27/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to induce neuronal plasticity in healthy individuals and patients. Designing effective and reproducible rTMS protocols poses a major challenge in the field as the underlying biomechanisms of long-term effects remain elusive. Current clinical protocol designs are often based on studies reporting rTMS-induced long-term potentiation or depression of synaptic transmission. Herein, we employed computational modeling to explore the effects of rTMS on long-term structural plasticity and changes in network connectivity. We simulated a recurrent neuronal network with homeostatic structural plasticity among excitatory neurons, and demonstrated that this mechanism was sensitive to specific parameters of the stimulation protocol (i.e., frequency, intensity, and duration of stimulation). Particularly, the feedback-inhibition initiated by network stimulation influenced the net stimulation outcome and hindered the rTMS-induced structural reorganization, highlighting the role of inhibitory networks. These findings suggest a novel mechanism for the lasting effects of rTMS, i.e., rTMS-induced homeostatic structural plasticity, and highlight the importance of network inhibition in careful protocol design, standardization, and optimization of stimulation.
Collapse
Affiliation(s)
- Swathi Anil
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Han Lu
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Citrenbaum C, Corlier J, Ngo D, Vince-Cruz N, Wilson A, Wilke SA, Krantz D, Tadayonnejad R, Ginder N, Levitt J, Lee JH, Leuchter MK, Strouse TB, Corse A, Vyas P, Leuchter AF. Pretreatment pupillary reactivity is associated with differential early response to 10 Hz and intermittent theta-burst repetitive transcranial magnetic stimulation (rTMS) treatment of major depressive disorder (MDD). Brain Stimul 2023; 16:1566-1571. [PMID: 37863389 DOI: 10.1016/j.brs.2023.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Repetitive Transcranial Magnetic Stimulation (rTMS) is an effective treatment for Major Depressive Disorder (MDD). Two common rTMS protocols, 10 Hz and intermittent theta burst stimulation (iTBS), have comparable rates of efficacy in groups of patients. Recent evidence suggests that some individuals may be more likely to benefit from one form of stimulation than the other. The pretreatment pupillary light reflex (PLR) is significantly associated with response to a full course of rTMS using heterogeneous stimulation protocols. OBJECTIVE To test whether the relationship between pretreatment PLR and early symptom improvement differed between subjects treated with iTBS or 10 Hz stimulation. METHODS PLR was measured in 52 subjects who received solely 10 Hz (n = 35) or iTBS (n = 17) to left dorsolateral prefrontal cortex (DLPFC) for the first ten sessions of their treatment course. Primary outcome measure was the percent change of Inventory of Depressive Symptomatology - Self Report (IDS-SR) from session 1 to session 10. RESULTS There was a positive association between normalized maximum constriction velocity (nMCV) and early improvement in subjects receiving 10 Hz stimulation (R = 0.48, p = 0.004) and a negative association in subjects receiving iTBS (R = -0.52, p = 0.03). ANOVA revealed a significant interaction between nMCV and the type of initial stimulation (p = 0.001). Among subjects with low nMCV, those initially treated with iTBS showed 2.6 times greater improvement after 10 sessions (p = 0.01) than subjects initially receiving 10 Hz stimulation. CONCLUSION nMCV may detect physiologic differences between those likely to benefit from 10 Hz or iTBS treatment. Future studies should examine whether PLR could guide prospective treatment selection.
Collapse
Affiliation(s)
- Cole Citrenbaum
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Juliana Corlier
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Doan Ngo
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Nikita Vince-Cruz
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Andrew Wilson
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO, USA; NOAA National Centers for Environmental Information (NCEI), Boulder, CO, USA
| | - Scott A Wilke
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - David Krantz
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Reza Tadayonnejad
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA; Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Nathaniel Ginder
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Jennifer Levitt
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - John H Lee
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Michael K Leuchter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Thomas B Strouse
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Andrew Corse
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Pooja Vyas
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Andrew F Leuchter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA.
| |
Collapse
|
21
|
Galanis C, Neuhaus L, Hananeia N, Turi Z, Jedlicka P, Vlachos A. Axon morphology and intrinsic cellular properties determine repetitive transcranial magnetic stimulation threshold for plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559399. [PMID: 37808716 PMCID: PMC10557586 DOI: 10.1101/2023.09.25.559399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a widely used therapeutic tool in neurology and psychiatry, but its cellular and molecular mechanisms are not fully understood. Standardizing stimulus parameters, specifically electric field strength and direction, is crucial in experimental and clinical settings. It enables meaningful comparisons across studies and facilitating the translation of findings into clinical practice. However, the impact of biophysical properties inherent to the stimulated neurons and networks on the outcome of rTMS protocols remains not well understood. Consequently, achieving standardization of biological effects across different brain regions and subjects poses a significant challenge. This study compared the effects of 10 Hz repetitive magnetic stimulation (rMS) in entorhino-hippocampal tissue cultures from mice and rats, providing insights into the impact of the same stimulation protocol on similar neuronal networks under standardized conditions. We observed the previously described plastic changes in excitatory and inhibitory synaptic strength of CA1 pyramidal neurons in both mouse and rat tissue cultures, but a higher stimulation intensity was required for the induction of rMS-induced synaptic plasticity in rat tissue cultures. Through systematic comparison of neuronal structural and functional properties and computational modeling, we found that morphological parameters of CA1 pyramidal neurons alone are insufficient to explain the observed differences between the groups. However, axon morphologies of individual cells played a significant role in determining activation thresholds. Notably, differences in intrinsic cellular properties were sufficient to account for the 10 % higher intensity required for the induction of synaptic plasticity in the rat tissue cultures. These findings demonstrate the critical importance of axon morphology and intrinsic cellular properties in predicting the plasticity effects of rTMS, carrying valuable implications for the development of computer models aimed at predicting and standardizing the biological effects of rTMS.
Collapse
|
22
|
Zhou L, Jin Y, Wu D, Cun Y, Zhang C, Peng Y, Chen N, Yang X, Zhang S, Ning R, Kuang P, Wang Z, Zhang P. Current evidence, clinical applications, and future directions of transcranial magnetic stimulation as a treatment for ischemic stroke. Front Neurosci 2023; 17:1177283. [PMID: 37534033 PMCID: PMC10390744 DOI: 10.3389/fnins.2023.1177283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive brain neurostimulation technique that can be used as one of the adjunctive treatment techniques for neurological recovery after stroke. Animal studies have shown that TMS treatment of rats with middle cerebral artery occlusion (MCAO) model reduced cerebral infarct volume and improved neurological dysfunction in model rats. In addition, clinical case reports have also shown that TMS treatment has positive neuroprotective effects in stroke patients, improving a variety of post-stroke neurological deficits such as motor function, swallowing, cognitive function, speech function, central post-stroke pain, spasticity, and other post-stroke sequelae. However, even though numerous studies have shown a neuroprotective effect of TMS in stroke patients, its possible neuroprotective mechanism is not clear. Therefore, in this review, we describe the potential mechanisms of TMS to improve neurological function in terms of neurogenesis, angiogenesis, anti-inflammation, antioxidant, and anti-apoptosis, and provide insight into the current clinical application of TMS in multiple neurological dysfunctions in stroke. Finally, some of the current challenges faced by TMS are summarized and some suggestions for its future research directions are made.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yaju Jin
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Danli Wu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yongdan Cun
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Chengcai Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yicheng Peng
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Na Chen
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xichen Yang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Simei Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Rong Ning
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Peng Kuang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zuhong Wang
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
23
|
Eichler A, Kleidonas D, Turi Z, Fliegauf M, Kirsch M, Pfeifer D, Masuda T, Prinz M, Lenz M, Vlachos A. Microglial Cytokines Mediate Plasticity Induced by 10 Hz Repetitive Magnetic Stimulation. J Neurosci 2023; 43:3042-3060. [PMID: 36977586 PMCID: PMC10146500 DOI: 10.1523/jneurosci.2226-22.2023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Microglia, the resident immune cells of the CNS, sense the activity of neurons and regulate physiological brain functions. They have been implicated in the pathology of brain diseases associated with alterations in neural excitability and plasticity. However, experimental and therapeutic approaches that modulate microglia function in a brain region-specific manner have not been established. In this study, we tested for the effects of repetitive transcranial magnetic stimulation (rTMS), a clinically used noninvasive brain stimulation technique, on microglia-mediated synaptic plasticity; 10 Hz electromagnetic stimulation triggered a release of plasticity-promoting cytokines from microglia in mouse organotypic brain tissue cultures of both sexes, while no significant changes in microglial morphology or microglia dynamics were observed. Indeed, substitution of tumor necrosis factor α (TNFα) and interleukin 6 (IL6) preserved synaptic plasticity induced by 10 Hz stimulation in the absence of microglia. Consistent with these findings, in vivo depletion of microglia abolished rTMS-induced changes in neurotransmission in the mPFC of anesthetized mice of both sexes. We conclude that rTMS affects neural excitability and plasticity by modulating the release of cytokines from microglia.SIGNIFICANCE STATEMENT Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that induces cortical plasticity. Despite its wide use in neuroscience and clinical practice (e.g., depression treatment), the cellular and molecular mechanisms of rTMS-mediated plasticity remain not well understood. Herein, we report an important role of microglia and plasticity-promoting cytokines in synaptic plasticity induced by 10 Hz rTMS in organotypic slice cultures and anesthetized mice, thereby identifying microglia-mediated synaptic adaptation as a target of rTMS-based interventions.
Collapse
Affiliation(s)
- Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Dimitrios Kleidonas
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Zsolt Turi
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Maximilian Fliegauf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias Kirsch
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Takahiro Masuda
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
24
|
Lin SHN, Lien YR, Shibata K, Sasaki Y, Watanabe T, Lin CP, Chang LH. The phase of plasticity-induced neurochemical changes of high-frequency repetitive transcranial magnetic stimulation are different from visual perceptual learning. Sci Rep 2023; 13:5720. [PMID: 37029245 PMCID: PMC10082079 DOI: 10.1038/s41598-023-32985-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 04/09/2023] Open
Abstract
Numerous studies have found that repetitive transcranial magnetic stimulation (rTMS) modulates plasticity. rTMS has often been used to change neural networks underlying learning, often under the assumption that the mechanism of rTMS-induced plasticity should be highly similar to that associated with learning. The presence of visual perceptual learning (VPL) reveals the plasticity of early visual systems, which is formed through multiple phases. Hence, we tested how high-frequency (HF) rTMS and VPL modulate the effect of visual plasticity by investigating neurometabolic changes in early visual areas. We employed an excitatory-to-inhibitory (E/I) ratio, which refers to glutamate concentration divided by GABA+ concentration, as an index of the degree of plasticity. We compared neurotransmitter concentration changes after applying HF rTMS to the visual cortex with those after training in a visual task, in otherwise identical procedures. Both the time courses of the E/I ratios and neurotransmitter contributions to the E/I ratio significantly differed between HF rTMS and training conditions. The peak E/I ratio occurred 3.5 h after HF rTMS with decreased GABA+, whereas the peak E/I ratio occurred 0.5 h after visual training with increased glutamate. Furthermore, HF rTMS temporally decreased the thresholds for detecting phosphene and perceiving low-contrast stimuli, indicating increased visual plasticity. These results suggest that plasticity in early visual areas induced by HF rTMS is not as involved in the early phase of development of VPL that occurs during and immediately after training.
Collapse
Affiliation(s)
- Shang-Hua N Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun R Lien
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Yuka Sasaki
- Department of Cognitive, Linguistics, and Psychological Sciences, Brown University, Providence, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistics, and Psychological Sciences, Brown University, Providence, USA
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hung Chang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
25
|
Jiang W, Isenhart R, Liu CY, Song D. A C-shaped miniaturized coil for transcranial magnetic stimulation in rodents. J Neural Eng 2023; 20:026022. [PMID: 36863013 PMCID: PMC10037933 DOI: 10.1088/1741-2552/acc097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 03/04/2023]
Abstract
Objective.Transcranial magnetic stimulation (TMS) is a non-invasive technique widely used for neuromodulation. Animal models are essential for investigating the underlying mechanisms of TMS. However, the lack of miniaturized coils hinders the TMS studies in small animals, since most commercial coils are designed for humans and thus incapable of focal stimulation in small animals. Furthermore, it is difficult to perform electrophysiological recordings at the TMS focal point using conventional coils.Approach.We designed, fabricated, and tested a novel miniaturized TMS coil (4-by-7 mm) that consisted of a C-shaped iron powder core and insulated copper wires (30 turns). The resulting magnetic and electric fields were characterized with experimental measurements and finite element modeling. The efficacy of this coil in neuromodulation was validated with electrophysiological recordings of single-unit activities (SUAs), somatosensory evoked potentials (SSEPs), and motor evoked potentials (MEPs) in rats (n= 32) following repetitive TMS (rTMS; 3 min, 10 Hz).Main results.This coil could generate a maximum magnetic field of 460 mT and an electric field of 7.2 V m-1in the rat brain according to our simulations. With subthreshold rTMS focally delivered over the sensorimotor cortex, mean firing rates of primary somatosensory and motor cortical neurons significantly increased (154±5% and 160±9% from the baseline level, respectively); MEP and SSEP amplitude significantly increased (136±9%) and decreased (74±4%), respectively.Significance.This miniaturized C-shaped coil enabled focal TMS and concurrent electrophysiological recording/stimulation at the TMS focal point. It provided a useful tool to investigate the neural responses and underlying mechanisms of TMS in small animal models. Using this paradigm, we for the first time observed distinct modulatory effects on SUAs, SSEPs, and MEPs with the same rTMS protocol in anesthetized rats. These results suggested that multiple neurobiological mechanisms in the sensorimotor pathways were differentially modulated by rTMS.
Collapse
Affiliation(s)
- Wenxuan Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Robert Isenhart
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States of America
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA, United States of America
| | - Charles Y Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States of America
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA, United States of America
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, United States of America
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
26
|
Anil S, Lu H, Rotter S, Vlachos A. Repetitive transcranial magnetic stimulation (rTMS) triggers dose-dependent homeostatic rewiring in recurrent neuronal networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533396. [PMID: 36993387 PMCID: PMC10055183 DOI: 10.1101/2023.03.20.533396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to induce neuronal plasticity in healthy individuals and patients. Designing effective and reproducible rTMS protocols poses a major challenge in the field as the underlying biomechanisms remain elusive. Current clinical protocol designs are often based on studies reporting rTMS-induced long-term potentiation or depression of synaptic transmission. Herein, we employed computational modeling to explore the effects of rTMS on long-term structural plasticity and changes in network connectivity. We simulated a recurrent neuronal network with homeostatic structural plasticity between excitatory neurons, and demonstrated that this mechanism was sensitive to specific parameters of the stimulation protocol (i.e., frequency, intensity, and duration of stimulation). The feedback-inhibition initiated by network stimulation influenced the net stimulation outcome and hindered the rTMS-induced homeostatic structural plasticity, highlighting the role of inhibitory networks. These findings suggest a novel mechanism for the lasting effects of rTMS, i.e., rTMS-induced homeostatic structural plasticity, and highlight the importance of network inhibition in careful protocol design, standardization, and optimization of stimulation.
Collapse
Affiliation(s)
- Swathi Anil
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Han Lu
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
27
|
Kweon J, Vigne MM, Jones RN, Carpenter LL, Brown JC. Practice makes plasticity: 10-Hz rTMS enhances LTP-like plasticity in musicians and athletes. Front Neural Circuits 2023; 17:1124221. [PMID: 37025991 PMCID: PMC10070804 DOI: 10.3389/fncir.2023.1124221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/24/2023] [Indexed: 04/08/2023] Open
Abstract
Motor skill learning has been linked to functional and structural changes in the brain. Musicians and athletes undergo intensive motor training through the practice of an instrument or sport and have demonstrated use-dependent plasticity that may be subserved by long-term potentiation (LTP) processes. We know less, however, about whether the brains of musicians and athletes respond to plasticity-inducing interventions, such as repetitive transcranial magnetic stimulation (rTMS), differently than those without extensive motor training. In a pharmaco-rTMS study, we evaluated motor cortex excitability before and after an rTMS protocol in combination with oral administration of D-cycloserine (DCS) or placebo. In a secondary covariate analysis, we compared results between self-identified musicians and athletes (M&As) and non-musicians and athletes (non-M&As). Three TMS measures of cortical physiology were used to evaluate plasticity. We found that M&As did not have higher baseline corticomotor excitability. However, a plasticity-inducing protocol (10-Hz rTMS in combination with DCS) strongly facilitated motor-evoked potentials (MEPs) in M&As, but only weakly in non-M&As. Placebo and rTMS produced modest facilitation in both groups. Our findings suggest that motor practice and learning create a neuronal environment more responsive to plasticity-inducing events, including rTMS. These findings may explain one factor contributing to the high inter-individual variability found with MEP data. Greater capacity for plasticity holds implications for learning paradigms, such as psychotherapy and rehabilitation, by facilitating LTP-like activation of key networks, including recovery from neurological/mental disorders.
Collapse
Affiliation(s)
- Jamie Kweon
- Neuromodulation Research Facility, TMS Clinic, Butler Hospital, Providence, RI, United States
| | - Megan M. Vigne
- Neuromodulation Research Facility, TMS Clinic, Butler Hospital, Providence, RI, United States
| | - Richard N. Jones
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, United States
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Linda L. Carpenter
- Neuromodulation Research Facility, TMS Clinic, Butler Hospital, Providence, RI, United States
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Joshua C. Brown
- Neuromodulation Research Facility, TMS Clinic, Butler Hospital, Providence, RI, United States
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, United States
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, United States
- *Correspondence: Joshua C. Brown
| |
Collapse
|
28
|
Pomytkin AN, Tikhonov DV, Kaleda VG. [Augmentation therapy of resistant schizophrenia with rhythmic transcranial magnetic stimulation]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:107-114. [PMID: 37655418 DOI: 10.17116/jnevro2023123081107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
OBJECTIVE To identify the clinical efficacy of rhythmic transcranial magnetic stimulation (rTMS) in resistant schizophrenia. MATERIAL AND METHODS The study included 44 male patients with resistant schizophrenia, divided into 4 groups: with depressive (group 1; n=11, 25.0%), with hallucinatory (group 2; n=12, 27.3%), with negative (group 3; n=11, 25.0%) and with delusional symptoms (group 4; n=10, 22.7%). Patients received rTMS, the parameters of which were determined depending on the typological variety, for 3 weeks (15 sessions). Psychometric assessment was carried with PANSS, CGI-S, CGI-I, SANS, CDSS, AHRS when included in the study (0 day), after stimulation (21 days) and by the end of the study (42 day) that allowed evaluation of both the severity of the therapeutic effect and its duration. RESULTS By the end of the course of stimulation, patients of the first three groups developed a distinct positive effect corresponding to a significant reduction in the total PANSS score: group 1 - 24.4% (p=0.002), group 2 - 8.3% (p=0.02), group 3 - 11.7% (p=0.001), which remained stable by day 42 in patients of the first (p=0.001) and second (p=0.005) groups. In patients with delusional symptoms (group 4), a subpsychotic state developed with a corresponding increase in the total PANSS score by 9.7% (p=0.007) requiring a course of relief therapy, which showed effectiveness by the end of the observation (day 42), indicating that resistance was overcome. CONCLUSION The study demonstrated the validity of rTMS as an adjuvant method of treatment in the resistant schizophrenia. To implement the potential of rTMS, it is necessary first of all to take into account the structural features of the condition, as well as to continue improving the stimulation technique itself (increasing the duration of the course, developing supportive courses).
Collapse
Affiliation(s)
| | | | - V G Kaleda
- Mental Health Research Center, Moscow, Russia
| |
Collapse
|
29
|
Brown JC, Higgins ES, George MS. Synaptic Plasticity 101: The Story of the AMPA Receptor for the Brain Stimulation Practitioner. Neuromodulation 2022; 25:1289-1298. [PMID: 35088731 PMCID: PMC10479373 DOI: 10.1016/j.neurom.2021.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/10/2021] [Accepted: 09/08/2021] [Indexed: 02/04/2023]
Abstract
The fields of Neurobiology and Neuromodulation have never been closer. Consequently, the phrase "synaptic plasticity" has become very familiar to non-basic scientists, without actually being very familiar. We present the "Story of the AMPA receptor," an easy-to-understand "10,000 ft" narrative overview of synaptic plasticity, oriented toward the brain stimulation clinician or scientist without basic science training. Neuromodulation is unparalleled in its capacity to both modulate and probe plasticity, yet many are not comfortable with their grasp of the topic. Here, we describe the seminal discoveries that defined the canonical mechanisms of long-term potentiation (LTP), long-term depression (LTD), and homeostatic plasticity. We then provide a conceptual framework for how plasticity at the synapse is accomplished, describing the functional roles of N-methyl-d-aspartate (NMDA) receptors and calcium, their effect on calmodulin, phosphatases (ie, calcineurin), kinases (ie, calcium/calmodulin-dependent protein kinase [CaMKII]), and structural "scaffolding" proteins (ie, post-synaptic density protein [PSD-95]). Ultimately, we describe how these affect the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor. More specifically, AMPA receptor delivery to (LTP induction), removal from (LTD), or recycling within (LTP maintenance) the synapse is determined by the status of phosphorylation and protein binding at specific sites on the tails of AMPA receptor subunits: GluA1 and GluA2. Finally, we relate these to transcranial magnetic stimulation (TMS) treatment, highlighting evidences for LTP as the basis of high-frequency TMS therapy, and briefly touch on the role of plasticity for other brain stimulation modalities. In summary, we present Synaptic Plasticity 101 as a singular introductory reference for those less familiar with the mechanisms of synaptic plasticity.
Collapse
Affiliation(s)
- Joshua C Brown
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
| | - Edmund S Higgins
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Mark S George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA; Ralph Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
30
|
Jiang W, Isenhart R, Sutherland R, Lu Z, Xu H, Pace J, Bonaguidi MA, Lee DJ, Liu CY, Song D. Subthreshold repetitive transcranial magnetic stimulation suppresses ketamine-induced poly population spikes in rat sensorimotor cortex. Front Neurosci 2022; 16:998704. [PMCID: PMC9633989 DOI: 10.3389/fnins.2022.998704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical oscillations within or across brain regions play fundamental roles in sensory, motor, and memory functions. It can be altered by neuromodulations such as repetitive transcranial magnetic stimulation (rTMS) and pharmacological manipulations such as ketamine. However, the neurobiological basis of the effects of rTMS and ketamine, as well as their interactions, on cortical oscillations is not understood. In this study, we developed and applied a rodent model that enabled simultaneous rTMS treatment, pharmacological manipulations, and invasive electrophysiological recordings, which is difficult in humans. Specifically, a miniaturized C-shaped coil was designed and fabricated to deliver focal subthreshold rTMS above the primary somatosensory (S1) and motor (M1) cortex in rats. Multi-electrode arrays (MEA) were implanted to record local field potentials (LFPs) and single unit activities. A novel form of synchronized activities, poly population spikes (PPS), was discovered as the biomarker of ketamine in LFPs. Brief subthreshold rTMS effectively and reversibly suppressed PPS while increasing the firing rates of single unit activities. These results suggest that ketamine and rTMS have convergent but opposing effects on cortical oscillations and circuits. This highly robust phenomenon has important implications to understanding the neurobiological mechanisms of rTMS and ketamine as well as developing new therapeutic strategies involving both neuromodulation and pharmacological agents.
Collapse
Affiliation(s)
- Wenxuan Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Wenxuan Jiang,
| | - Robert Isenhart
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States
- Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
| | - Robert Sutherland
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Zhouxiao Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Huijing Xu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - John Pace
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Michael A. Bonaguidi
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
| | - Darrin J. Lee
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States
- Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, United States
| | - Charles Y. Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States
- Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, United States
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
- Dong Song,
| |
Collapse
|
31
|
Zhang T, Sui Y, Lu Q, Xu X, Zhu Y, Dai W, Shen Y, Wang T. Effects of rTMS treatment on global cognitive function in Alzheimer's disease: A systematic review and meta-analysis. Front Aging Neurosci 2022; 14:984708. [PMID: 36158564 PMCID: PMC9492846 DOI: 10.3389/fnagi.2022.984708] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Although repetitive transcranial magnetic stimulation (rTMS) has been extensively studied in patients with Alzheimer's disease (AD), the clinical evidence remains inconsistent. The purpose of this meta-analysis was to evaluate the effects of rTMS on global cognitive function in patients with AD. Methods An integrated literature search using 4 databases (PubMed, Web of Science, Embase, and Cochrane Library) was performed to identify English language articles published up to October 6, 2021. We pooled Mini-Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-Cog) scores using a random-effects model via RevMan 5.4 software. We calculated estimates of mean differences (MD) with 95% confidence intervals (CI). The primary outcomes were pre-post treatment changes in global cognition as measured using MMSE and ADAS-Cog immediately after rTMS treatment, and the secondary outcome was duration of cognitive improvement (1–1.5 and ≥3 months). Results Nine studies with 361 patients were included in this meta-analysis. The results showed that rTMS significantly improved global cognitive function immediately following rTMS treatment [(MD) 1.82, 95% confidence interval (CI) 1.41–2.22, p < 0.00001, MMSE; 2.72, 95% CI, 1.77–3.67, p < 0.00001, ADAS-Cog], and the therapeutic effects persisted for an extended duration (2.20, 95% CI, 0.93–3.47, p =0.0007, MMSE; 1.96, 95% CI, 0.96–2.95, p = 0.0001, ADAS-Cog). Subgroup analyses showed that high frequency rTMS targeted to the left dorsolateral prefrontal cortex (DLPFC) for over 20 sessions induced the greatest cognitive improvement, with effects lasting for more than 1 month after the final treatment. There were no significant differences in dropout rate (p > 0.05) or adverse effect rate (p > 0.05) between the rTMS and control groups. Conclusions Repetitive TMS is a potentially effective treatment for cognitive impairment in AD that is safe and can induce long-lasting effects. Our results also showed that ADAS-cog and MMSE differed in determination of global cognitive impairment. Systematic review registration http://www.crd.york.ac.uk/PROSPERO, PROSPERO CRD42022315545.
Collapse
Affiliation(s)
- Tianjiao Zhang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Youxin Sui
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Lu
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Xingjun Xu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjun Dai
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Ying Shen
| | - Tong Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Tong Wang
| |
Collapse
|
32
|
Michel-Flutot P, Vinit S. La stimulation magnétique répétée pour le traitement des traumas spinaux. Med Sci (Paris) 2022; 38:679-685. [DOI: 10.1051/medsci/2022108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Les traumas spinaux induisent des déficits moteurs et sensoriels. La mise au point de thérapies visant à rétablir les fonctions altérées à la suite d’une lésion de la moelle épinière est donc nécessaire. La stimulation magnétique répétée (SMr) est une thérapie innovante et non invasive utilisée pour moduler l’activité de réseaux neuronaux dans diverses maladies neurologiques, telles que la maladie de Parkinson, ou psychiatriques, telles que le trouble bipolaire. Son utilisation chez les personnes atteintes de traumas spinaux pourrait avoir des effets fonctionnels bénéfiques. Des études réalisées in vitro, in vivo et ex vivo ont permis de comprendre en partie les mécanismes sous-jacents à la modulation de l’activité neuronale induite par les protocoles de SMr. Son utilisation dans des modèles précliniques de lésion médullaire a de plus montré des effets bénéfiques fonctionnels. Ainsi, la SMr pourrait potentialiser la récupération des fonctions perdues après un trauma spinal.
Collapse
|
33
|
Boyer M, Baudin P, Stengel C, Valero-Cabré A, Lohof AM, Charpier S, Sherrard RM, Mahon S. In vivo low-intensity magnetic pulses durably alter neocortical neuron excitability and spontaneous activity. J Physiol 2022; 600:4019-4037. [PMID: 35899578 DOI: 10.1113/jp283244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Repetitive transcranial magnetic stimulation (rTMS) is a promising technique to alleviate neurological and psychiatric disorders caused by alterations in cortical activity. Our knowledge of the cellular mechanisms underlying rTMS-based therapies remains limited. We combined in vivo focal application of low-intensity rTMS (LI-rTMS) to the rat somatosensory cortex with intracellular recordings of subjacent pyramidal neurons to characterize the effects of weak magnetic fields at single cell level. Ten minutes of LI-rTMS delivered at 10 Hz reliably evoked action potentials in cortical neurons during the stimulation period, and induced durable attenuation of their intrinsic excitability, synaptic activity, and spontaneous firing. These results help us better understand the mechanisms of weak magnetic stimulation and should allow optimizing the effectiveness of stimulation protocols for clinical use. ABSTRACT Magnetic brain stimulation is a promising treatment for neurological and psychiatric disorders. However, a better understanding of its effects at the individual neuron level is essential to improve its clinical application. We combined focal low-intensity repetitive transcranial magnetic stimulation (LI-rTMS) to the rat somatosensory cortex with intracellular recordings of subjacent pyramidal neurons in vivo. Continuous 10 Hz LI-rTMS reliably evoked firing at ∼4-5 Hz during the stimulation period and induced durable attenuation of synaptic activity and spontaneous firing in cortical neurons, through membrane hyperpolarization and a reduced intrinsic excitability. However, inducing firing in individual neurons by repeated intracellular current injection did not reproduce LI-rTMS effects on neuronal properties. These data provide novel understanding of mechanisms underlying magnetic brain stimulation showing that, in addition to inducing biochemical plasticity, even weak magnetic fields can activate neurons and enduringly modulate their excitability. Abstract figure legend We examined by means of in vivo intracellular recordings in the rodent the effects of low-intensity (10 mT) repetitive transcranial magnetic stimulation (LI-rTMS) on the functional properties of primary somatosensory cortex pyramidal neurons. After a baseline period, during which cortical spontaneous activity and excitability were measured (Pre), LI-rTMS was applied at 10 Hz for 10 minutes. Despite their low intensity, magnetic pulses reliably evoked action potentials in cortical neurons. Ten minutes of LI-rTMS induced a progressive and long-lasting hyperpolarization of the neuronal membrane and a marked decrease in cell firing rate (Post). This was associated with an altered intrinsic neuronal excitability, characterized by reduced membrane input resistance and increased minimal current required to induce neuronal firing. A portion of this figure was created with biorender.com. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Manon Boyer
- IBPS-B2A, UMR 8256 Biological Adaptation and Ageing, Sorbonne Université & CNRS, Paris, 75005, France.,Paris Brain Institute-ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, team 'Network Dynamics and cellular excitability', Sorbonne Université, Paris, France, 75013
| | - Paul Baudin
- Paris Brain Institute-ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, team 'Network Dynamics and cellular excitability', Sorbonne Université, Paris, France, 75013
| | - Chloé Stengel
- Paris Brain Institute-ICM, INSERM, CNRS, Pitié-Salpêtrière Hospital, team Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, Sorbonne Université, Paris, 75013, France
| | - Antoni Valero-Cabré
- Paris Brain Institute-ICM, INSERM, CNRS, Pitié-Salpêtrière Hospital, team Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, Sorbonne Université, Paris, 75013, France
| | - Ann M Lohof
- IBPS-B2A, UMR 8256 Biological Adaptation and Ageing, Sorbonne Université & CNRS, Paris, 75005, France
| | - Stéphane Charpier
- Paris Brain Institute-ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, team 'Network Dynamics and cellular excitability', Sorbonne Université, Paris, France, 75013
| | - Rachel M Sherrard
- IBPS-B2A, UMR 8256 Biological Adaptation and Ageing, Sorbonne Université & CNRS, Paris, 75005, France
| | - Séverine Mahon
- Paris Brain Institute-ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, team 'Network Dynamics and cellular excitability', Sorbonne Université, Paris, France, 75013
| |
Collapse
|
34
|
Moretti J, Marinovic W, Harvey AR, Rodger J, Visser TAW. Offline Parietal Intermittent Theta Burst Stimulation or Alpha Frequency Transcranial Alternating Current Stimulation Has No Effect on Visuospatial or Temporal Attention. Front Neurosci 2022; 16:903977. [PMID: 35774555 PMCID: PMC9237453 DOI: 10.3389/fnins.2022.903977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Non-invasive brain stimulation is a growing field with potentially wide-ranging clinical and basic science applications due to its ability to transiently and safely change brain excitability. In this study we include two types of stimulation: repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS). Single session stimulations with either technique have previously been reported to induce changes in attention. To better understand and compare the effectiveness of each technique and the basis of their effects on cognition we assessed changes to both temporal and visuospatial attention using an attentional blink task and a line bisection task following offline stimulation with an intermittent theta burst (iTBS) rTMS protocol or 10 Hz tACS. Additionally, we included a novel rTMS stimulation technique, low-intensity (LI-)rTMS, also using an iTBS protocol, which uses stimulation intensities an order of magnitude below conventional rTMS. Animal models show that low-intensity rTMS modulates cortical excitability despite sub-action potential threshold stimulation. Stimulation was delivered in healthy participants over the right posterior parietal cortex (rPPC) using a within-subjects design (n = 24). Analyses showed no evidence for an effect of any stimulation technique on spatial biases in the line bisection task or on magnitude of the attentional blink. Our results suggests that rTMS and LI-rTMS using iTBS protocol and 10 Hz tACS over rPPC do not modulate performance in tasks assessing visuospatial or temporal attention.
Collapse
Affiliation(s)
- Jessica Moretti
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Welber Marinovic
- School of Population Health, Curtin University, Perth, WA, Australia
| | - Alan R. Harvey
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute, Perth, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Troy A. W. Visser
- School of Psychological Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
35
|
Meng Q, Nguyen H, Vrana A, Baldwin S, Li CQ, Giles A, Wang J, Yang Y, Lu H. A high-density theta burst paradigm enhances the aftereffects of transcranial magnetic stimulation: Evidence from focal stimulation of rat motor cortex. Brain Stimul 2022; 15:833-842. [DOI: 10.1016/j.brs.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
|
36
|
Effects of Chronic High-Frequency rTMS Protocol on Respiratory Neuroplasticity Following C2 Spinal Cord Hemisection in Rats. BIOLOGY 2022; 11:biology11030473. [PMID: 35336846 PMCID: PMC8945729 DOI: 10.3390/biology11030473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary High spinal cord injuries (SCIs) are known to lead to permanent diaphragmatic paralysis, and to induce deleterious post-traumatic inflammatory processes following cervical spinal cord injury. We used a noninvasive therapeutic tool (repetitive transcranial magnetic stimulation (rTMS)), to harness plasticity in spared descending respiratory circuit and reduce the inflammatory processes. Briefly, the results obtained in this present study suggest that chronic high-frequency rTMS can ameliorate respiratory dysfunction and elicit neuronal plasticity with a reduction in deleterious post-traumatic inflammatory processes in the cervical spinal cord post-SCI. Thus, this therapeutic tool could be adopted and/or combined with other therapeutic interventions in order to further enhance beneficial outcomes. Abstract High spinal cord injuries (SCIs) lead to permanent diaphragmatic paralysis. The search for therapeutics to induce functional motor recovery is essential. One promising noninvasive therapeutic tool that could harness plasticity in a spared descending respiratory circuit is repetitive transcranial magnetic stimulation (rTMS). Here, we tested the effect of chronic high-frequency (10 Hz) rTMS above the cortical areas in C2 hemisected rats when applied for 7 days, 1 month, or 2 months. An increase in intact hemidiaphragm electromyogram (EMG) activity and excitability (diaphragm motor evoked potentials) was observed after 1 month of rTMS application. Interestingly, despite no real functional effects of rTMS treatment on the injured hemidiaphragm activity during eupnea, 2 months of rTMS treatment strengthened the existing crossed phrenic pathways, allowing the injured hemidiaphragm to increase its activity during the respiratory challenge (i.e., asphyxia). This effect could be explained by a strengthening of respiratory descending fibers in the ventrolateral funiculi (an increase in GAP-43 positive fibers), sustained by a reduction in inflammation in the C1–C3 spinal cord (reduction in CD68 and Iba1 labeling), and acceleration of intracellular plasticity processes in phrenic motoneurons after chronic rTMS treatment. These results suggest that chronic high-frequency rTMS can ameliorate respiratory dysfunction and elicit neuronal plasticity with a reduction in deleterious post-traumatic inflammatory processes in the cervical spinal cord post-SCI. Thus, this therapeutic tool could be adopted and/or combined with other therapeutic interventions in order to further enhance beneficial outcomes.
Collapse
|
37
|
Moretti J, Rodger J. A little goes a long way: Neurobiological effects of low intensity rTMS and implications for mechanisms of rTMS. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100033. [PMID: 36685761 PMCID: PMC9846462 DOI: 10.1016/j.crneur.2022.100033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 01/25/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a widespread technique in neuroscience and medicine, however its mechanisms are not well known. In this review, we consider intensity as a key therapeutic parameter of rTMS, and review the studies that have examined the biological effects of rTMS using magnetic fields that are orders of magnitude lower that those currently used in the clinic. We discuss how extensive characterisation of "low intensity" rTMS has set the stage for translation of new rTMS parameters from a mechanistic evidence base, with potential for innovative and effective therapeutic applications. Low-intensity rTMS demonstrates neurobiological effects across healthy and disease models, which include depression, injury and regeneration, abnormal circuit organisation, tinnitus etc. Various short and long-term changes to metabolism, neurotransmitter release, functional connectivity, genetic changes, cell survival and behaviour have been investigated and we summarise these key changes and the possible mechanisms behind them. Mechanisms at genetic, molecular, cellular and system levels have been identified with evidence that low-intensity rTMS and potentially rTMS in general acts through several key pathways to induce changes in the brain with modulation of internal calcium signalling identified as a major mechanism. We discuss the role that preclinical models can play to inform current clinical research as well as uncover new pathways for investigation.
Collapse
Affiliation(s)
- Jessica Moretti
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia,Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia,Perron Institute for Neurological and Translational Science, Perth, WA, Australia,Corresponding author. School of Biological Sciences M317, The University of Western Australia, 35 Stirling Highway, Crawley WA, 6009, Australia.
| |
Collapse
|
38
|
Heath AM, Brewer M, Yesavage J, McNerney MW. Improved object recognition memory using post-encoding repetitive transcranial magnetic stimulation. Brain Stimul 2022; 15:78-86. [PMID: 34785386 PMCID: PMC10612530 DOI: 10.1016/j.brs.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Brain stimulation is known to affect canonical pathways and proteins involved in memory. However, there are conflicting results on the ability of brain stimulation to improve to memory, which may be due to variations in timing of stimulation. HYPOTHESIS We hypothesized that repetitive transcranial magnetic stimulation (rTMS) given following a learning task and within the time period before retrieval could help improve memory. METHODS We implanted male B6129SF2/J mice (n = 32) with a cranial attachment to secure the rTMS coil so that the mice could be given consistent stimulation to the frontal area whilst freely moving. Mice then underwent the object recognition test sampling phase and given treatment +3, +24, +48 h following the test. Treatment consisted of 10 min 10 Hz rTMS stimulation (TMS, n = 10), sham treatment (SHAM, n = 11) or a control group which did not do the behavior test or receive rTMS (CONTROL n = 11). At +72 h mice were tested for their exploration of the novel vs familiar object. RESULTS At 72-h's, only the mice which received rTMS had greater exploration of the novel object than the familiar object. We further show that promoting synaptic GluR2 and maintaining synaptic connections in the perirhinal cortex and hippocampal CA1 are important for this effect. In addition, we found evidence that these changes were linked to CAMKII and CREB pathways in hippocampal neurons. CONCLUSION By linking the known biological effects of rTMS to memory pathways we provide evidence that rTMS is effective in improving memory when given during the consolidation and maintenance phases.
Collapse
Affiliation(s)
- A M Heath
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA, 94304, USA.
| | - M Brewer
- Stanford University, Stanford, CA, 94305, USA
| | - J Yesavage
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA, 94304, USA
| | - M W McNerney
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA, 94304, USA
| |
Collapse
|
39
|
Halawa I, Reichert K, Aberra AS, Sommer M, Peterchev AV, Paulus W. Effect of Pulse Duration and Direction on Plasticity Induced by 5 Hz Repetitive Transcranial Magnetic Stimulation in Correlation With Neuronal Depolarization. Front Neurosci 2021; 15:773792. [PMID: 34899173 PMCID: PMC8661453 DOI: 10.3389/fnins.2021.773792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction: High frequency repetitive transcranial magnetic stimulation applied to the motor cortex causes an increase in the amplitude of motor evoked potentials (MEPs) that persists after stimulation. Here, we focus on the aftereffects generated by high frequency controllable pulse TMS (cTMS) with different directions, intensities, and pulse durations. Objectives: To investigate the influence of pulse duration, direction, and amplitude in correlation to induced depolarization on the excitatory plastic aftereffects of 5 Hz repetitive transcranial magnetic stimulation (rTMS) using bidirectional cTMS pulses. Methods: We stimulated the hand motor cortex with 5 Hz rTMS applying 1,200 bidirectional pulses with the main component durations of 80, 100, and 120 μs using a controllable pulse stimulator TMS (cTMS). Fourteen healthy subjects were investigated in nine sessions with 80% resting motor threshold (RMT) for posterior-anterior (PA) and 80 and 90% RMT anterior-posterior (AP) induced current direction. We used a model approximating neuronal membranes as a linear first order low-pass filter to estimate the strength–duration time constant and to simulate the membrane polarization produced by each waveform. Results: PA and AP 5 Hz rTMS at 80% RMT produced no significant excitation. An exploratory analysis indicated that 90% RMT AP stimulation with 100 and 120 μs pulses but not 80 μs pulses led to significant excitation. We found a positive correlation between the plastic outcome of each session and the simulated peak neural membrane depolarization for time constants >100 μs. This correlation was strongest for neural elements that are depolarized by the main phase of the AP pulse, suggesting the effects were dependent on pulse direction. Conclusions: Among the tested conditions, only 5 Hz rTMS with higher intensity and wider pulses appeared to produce excitatory aftereffects. This correlated with the greater depolarization of neural elements with time constants slower than the directly activated neural elements responsible for producing the motor output (e.g., somatic or dendritic membrane). Significance: Higher intensities and wider pulses seem to be more efficient in inducing excitation. If confirmed, this observation could lead to better results in future clinical studies performed with wider pulses.
Collapse
Affiliation(s)
- Islam Halawa
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,Medical Research Division, National Research Center, Cairo, Egypt
| | - Katharina Reichert
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Aman S Aberra
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Martin Sommer
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Angel V Peterchev
- Department of Biomedical Engineering, Duke University, Durham, NC, United States.,Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States.,Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States.,Department of Neurosurgery, Duke University, Durham, NC, United States
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,Department of Neurology, Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
40
|
Lehmann SJ, Corneil BD. Completing the puzzle: Why studies in non-human primates are needed to better understand the effects of non-invasive brain stimulation. Neurosci Biobehav Rev 2021; 132:1074-1085. [PMID: 34742722 DOI: 10.1016/j.neubiorev.2021.10.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/29/2021] [Accepted: 10/31/2021] [Indexed: 11/27/2022]
Abstract
Brain stimulation is a core method in neuroscience. Numerous non-invasive brain stimulation (NIBS) techniques are currently in use in basic and clinical research, and recent advances promise the ability to non-invasively access deep brain structures. While encouraging, there is a surprising gap in our understanding of precisely how NIBS perturbs neural activity throughout an interconnected network, and how such perturbed neural activity ultimately links to behaviour. In this review, we will consider why non-human primate (NHP) models of NIBS are ideally situated to address this gap in knowledge, and why the oculomotor network that moves our line of sight offers a particularly valuable platform in which to empirically test hypothesis regarding NIBS-induced changes in brain and behaviour. NHP models of NIBS will enable investigation of the complex, dynamic effects of brain stimulation across multiple hierarchically interconnected brain areas, networks, and effectors. By establishing such links between brain and behavioural output, work in NHPs can help optimize experimental and therapeutic approaches, improve NIBS efficacy, and reduce side-effects of NIBS.
Collapse
Affiliation(s)
- Sebastian J Lehmann
- Department of Physiology and Pharmacology, Western University, London, Ontario, N6A 5B7, Canada.
| | - Brian D Corneil
- Department of Physiology and Pharmacology, Western University, London, Ontario, N6A 5B7, Canada; Department of Psychology, Western University, London, Ontario, N6A 5B7, Canada; Robarts Research Institute, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
41
|
Shirinpour S, Hananeia N, Rosado J, Tran H, Galanis C, Vlachos A, Jedlicka P, Queisser G, Opitz A. Multi-scale modeling toolbox for single neuron and subcellular activity under Transcranial Magnetic Stimulation. Brain Stimul 2021; 14:1470-1482. [PMID: 34562659 PMCID: PMC8608742 DOI: 10.1016/j.brs.2021.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Transcranial Magnetic Stimulation (TMS) is a widely used non-invasive brain stimulation method. However, its mechanism of action and the neural response to TMS are still poorly understood. Multi-scale modeling can complement experimental research to study the subcellular neural effects of TMS. At the macroscopic level, sophisticated numerical models exist to estimate the induced electric fields. However, multi-scale computational modeling approaches to predict TMS cellular and subcellular responses, crucial to understanding TMS plasticity inducing protocols, are not available so far. OBJECTIVE We develop an open-source multi-scale toolbox Neuron Modeling for TMS (NeMo-TMS) to address this problem. METHODS NeMo-TMS generates accurate neuron models from morphological reconstructions, couples them to the external electric fields induced by TMS, and simulates the cellular and subcellular responses of single-pulse and repetitive TMS. RESULTS We provide examples showing some of the capabilities of the toolbox. CONCLUSION NeMo-TMS toolbox allows researchers a previously not available level of detail and precision in realistically modeling the physical and physiological effects of TMS.
Collapse
Affiliation(s)
- Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA.
| | - Nicholas Hananeia
- Faculty of Medicine, ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Justus-Liebig-University, Giessen, Germany
| | - James Rosado
- Department of Mathematics, Temple University, Philadelphia, USA
| | - Harry Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA
| | - Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany; Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany; Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Jedlicka
- Faculty of Medicine, ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Justus-Liebig-University, Giessen, Germany
| | | | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
42
|
Tang AD, Bennett W, Bindoff AD, Bolland S, Collins J, Langley RC, Garry MI, Summers JJ, Hinder MR, Rodger J, Canty AJ. Subthreshold repetitive transcranial magnetic stimulation drives structural synaptic plasticity in the young and aged motor cortex. Brain Stimul 2021; 14:1498-1507. [PMID: 34653682 DOI: 10.1016/j.brs.2021.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive tool commonly used to drive neural plasticity in the young adult and aged brain. Recent data from mouse models have shown that even at subthreshold intensities (0.12 T), rTMS can drive neuronal and glial plasticity in the motor cortex. However, the physiological mechanisms underlying subthreshold rTMS induced plasticity and whether these are altered with normal ageing are unclear. OBJECTIVE To assess the effect of subthreshold rTMS, using the intermittent theta burst stimulation (iTBS) protocol on structural synaptic plasticity in the mouse motor cortex of young and aged mice. METHODS Longitudinal in vivo 2-photon microscopy was used to measure changes to the structural plasticity of pyramidal neuron dendritic spines in the motor cortex following a single train of subthreshold rTMS (in young adult and aged animals) or the same rTMS train administered on 4 consecutive days (in young adult animals only). Data were analysed with Bayesian hierarchical generalized linear regression models and interpreted with the aid of Bayes Factors (BF). RESULTS We found strong evidence (BF > 10) that subthreshold rTMS altered the rate of dendritic spine losses and gains, dependent on the number of stimulation sessions and that a single session of subthreshold rTMS was effective in driving structural synaptic plasticity in both young adult and aged mice. CONCLUSION These findings provide further evidence that rTMS drives synaptic plasticity in the brain and uncovers structural synaptic plasticity as a key mechanism of subthreshold rTMS induced plasticity.
Collapse
Affiliation(s)
- Alexander D Tang
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, 35 Stirling Highway (M317), Crawley, 6009, WA, Australia; Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, 6008, WA, Australia.
| | - William Bennett
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Aidan D Bindoff
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Samuel Bolland
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, 35 Stirling Highway (M317), Crawley, 6009, WA, Australia; Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, 6008, WA, Australia
| | - Jessica Collins
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Ross C Langley
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| | - Michael I Garry
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia. Private Bag 30, Hobart, 7001, TAS, Australia
| | - Jeffery J Summers
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia. Private Bag 30, Hobart, 7001, TAS, Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom Street, L3 3AF, Liverpool, United Kingdom
| | - Mark R Hinder
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia. Private Bag 30, Hobart, 7001, TAS, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, 35 Stirling Highway (M317), Crawley, 6009, WA, Australia; Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, 6008, WA, Australia
| | - Alison J Canty
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Private Bag 143, Hobart, 7001, TAS, Australia
| |
Collapse
|
43
|
High frequency repetitive Transcranial Magnetic Stimulation promotes long lasting phrenic motoneuron excitability via GABAergic networks. Respir Physiol Neurobiol 2021; 292:103704. [PMID: 34058433 DOI: 10.1016/j.resp.2021.103704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a promising, innovative, and non-invasive therapy used clinically. Efficacy of rTMS has been demonstrated to ameliorate psychiatric disorders and neuropathic pain through neuromodulation of affected neural circuits. However, little is known about the mechanisms and the specific neural circuits via which rTMS facilitates these functional effects. The aim of this study was to begin revealing the mechanisms by which rTMS may tap into existing neural circuits, by using a well characterized spinal motor circuit - the phrenic circuit. Here we hypothesized that rTMS can be used to enhance phrenic motoneuron excitability in anesthetized Sprague Dawley rats. Multiple acute rTMS protocols were used revealing 10 Hz rTMS protocol induced a robust, long-lasting increase in phrenic motoneuron excitability, functionally evaluated by diaphragm motor evoked potentials (59.1 ± 21.1 % of increase compared to baseline 60 min after 10 Hz protocol against 6.0 ± 5.8 % (p = 0.007) for Time Control, -5.8 ± 7.4 % (p < 0.001) for 3 Hz, and 5.2 ± 12.5 % (p = 0.008) for 30 Hz protocols). A deeper analyze allowed to discriminate "responder" and "non-responder" subgroups among 10 Hz rTMS treated animals. Intravenous injections of GABAA and GABAB receptor agonists prior to 10 Hz rTMS treatment, abolished the enhanced phrenic motoneuron excitability, suggesting GABAergic input plays a mechanistic role in rTMS-induced phrenic excitability. These data demonstrate that a single high frequency rTMS protocol at 10 Hz increases phrenic motoneuron excitability, mediated by a local GABAergic "disinhibition". By understanding how rTMS can be used to affect neural circuits non-invasively we can begin to harness the therapeutic potential of this neuromodulatory strategy to promote recovery after disease or injury to the central nervous system.
Collapse
|
44
|
Voineskos D, Blumberger DM, Rogasch NC, Zomorrodi R, Farzan F, Foussias G, Rajji TK, Daskalakis ZJ. Neurophysiological effects of repetitive transcranial magnetic stimulation (rTMS) in treatment resistant depression. Clin Neurophysiol 2021; 132:2306-2316. [PMID: 34167891 DOI: 10.1016/j.clinph.2021.05.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) is effective for treatment resistant depression (TRD), but little is known about rTMS' effects on neurophysiological markers. We previously identified neurophysiological markers in depression (N45 and N100) of GABA receptor mediated inhibition. Here, we indexed TMS-electroencephalographic (TMS-EEG) effects of rTMS. METHODS TMS-EEG data was analyzed from a double blind 2:1 randomized active (10 Hz left/bilateral):sham rTMS TRD trial. Participants underwent TMS-EEG over left dorsolateral prefrontal cortex (DLPFC) before and after 6 weeks of rTMS. 30 had useable datasets. TMS-evoked potentials (TEP) and components (N45, N100, P60) were examined with global mean field analysis (GMFA) and locally in DLPFC regions of interest. RESULTS The N45 amplitude differed between active and sham groups over time, N100 amplitude did not. N45 (t = 2.975, p = 0.007) and N100 amplitudes (t = 2.177, p = 0.042) decreased after active rTMS, demonstrating alterations in cortical inhibition. TEP amplitudes decreased after active rTMS in left (t = 4.887, p < 0.001) and right DLPFC (t = 4.403, p < 0.001) not sham rTMS, demonstrating alterations in cortical excitability. CONCLUSIONS Our results provide important new knowledge regarding rTMS effects on TMS-EEG measures in TRD, suggesting rTMS reduces neurophysiological markers of inhibition and excitability. SIGNIFICANCE These findings uncover potentially important neurophysiological mechanisms of rTMS action.
Collapse
Affiliation(s)
- Daphne Voineskos
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Nigel C Rogasch
- Monash Alfred Psychiatry Research Centre, Alfred and Monash University Central Clinical School, Victoria, Australia
| | - Reza Zomorrodi
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Faranak Farzan
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - George Foussias
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States.
| |
Collapse
|
45
|
Goldsworthy MR, Hordacre B, Rothwell JC, Ridding MC. Effects of rTMS on the brain: is there value in variability? Cortex 2021; 139:43-59. [PMID: 33827037 DOI: 10.1016/j.cortex.2021.02.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 01/02/2023]
Abstract
The ability of repetitive transcranial magnetic stimulation (rTMS) to non-invasively induce neuroplasticity in the human cortex has opened exciting possibilities for its application in both basic and clinical research. Changes in the amplitude of motor evoked potentials (MEPs) elicited by single-pulse transcranial magnetic stimulation has so far provided a convenient model for exploring the neurophysiology of rTMS effects on the brain, influencing the ways in which these stimulation protocols have been applied therapeutically. However, a growing number of studies have reported large inter-individual variability in the mean MEP response to rTMS, raising legitimate questions about the usefulness of this model for guiding therapy. Although the increasing application of different neuroimaging approaches has made it possible to probe rTMS-induced neuroplasticity outside the motor cortex to measure changes in neural activity that impact other aspects of human behaviour, the high variability of rTMS effects on these measurements remains an important issue for the field to address. In this review, we seek to move away from the conventional facilitation/inhibition dichotomy that permeates much of the rTMS literature, presenting a non-standard approach for measuring rTMS-induced neuroplasticity. We consider the evidence that rTMS is able to modulate an individual's moment-to-moment variability of neural activity, and whether this could have implications for guiding the therapeutic application of rTMS.
Collapse
Affiliation(s)
- Mitchell R Goldsworthy
- Lifespan Human Neurophysiology Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Michael C Ridding
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| |
Collapse
|
46
|
Turi Z, Normann C, Domschke K, Vlachos A. Transcranial Magnetic Stimulation in Psychiatry: Is There a Need for Electric Field Standardization? Front Hum Neurosci 2021; 15:639640. [PMID: 33767616 PMCID: PMC7985083 DOI: 10.3389/fnhum.2021.639640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/16/2021] [Indexed: 01/29/2023] Open
Abstract
Single-pulse and repetitive transcranial magnetic stimulation (rTMS) are used in clinical practice for diagnostic and therapeutic purposes. However, rTMS-based therapies that lead to a significant and sustained reduction in neuropsychiatric symptoms remain scarce. While it is generally accepted that the stimulation frequency plays a crucial role in producing the therapeutic effects of rTMS, less attention has been dedicated to determining the role of the electric field strength. Conventional threshold-based intensity selection approaches, such as the resting motor threshold, produce variable stimulation intensities and electric fields across participants and cortical regions. Insufficient standardization of electric field strength may contribute to the variability of rTMS effects and thus therapeutic success. Computational approaches that can prospectively optimize the electric field and standardize it across patients and cortical targets may overcome some of these limitations. Here, we discuss these approaches and propose that electric field standardization will be instrumental for translational science frameworks (e.g., multiscale modeling and basic science approaches) aimed at deciphering the subcellular, cellular, and network mechanisms of rTMS. Advances in understanding these mechanisms will be important for optimizing rTMS-based therapies in psychiatry.
Collapse
Affiliation(s)
- Zsolt Turi
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center—Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center—Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| |
Collapse
|
47
|
Monitoring and Modulating Inflammation-Associated Alterations in Synaptic Plasticity: Role of Brain Stimulation and the Blood-Brain Interface. Biomolecules 2021; 11:biom11030359. [PMID: 33652912 PMCID: PMC7996828 DOI: 10.3390/biom11030359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammation of the central nervous system can be triggered by endogenous and exogenous stimuli such as local or systemic infection, trauma, and stroke. In addition to neurodegeneration and cell death, alterations in physiological brain functions are often associated with neuroinflammation. Robust experimental evidence has demonstrated that inflammatory cytokines affect the ability of neurons to express plasticity. It has been well-established that inflammation-associated alterations in synaptic plasticity contribute to the development of neuropsychiatric symptoms. Nevertheless, diagnostic approaches and interventional strategies to restore inflammatory deficits in synaptic plasticity are limited. Here, we review recent findings on inflammation-associated alterations in synaptic plasticity and the potential role of the blood–brain interface, i.e., the blood–brain barrier, in modulating synaptic plasticity. Based on recent findings indicating that brain stimulation promotes plasticity and modulates vascular function, we argue that clinically employed non-invasive brain stimulation techniques, such as transcranial magnetic stimulation, could be used for monitoring and modulating inflammation-induced alterations in synaptic plasticity.
Collapse
|
48
|
Clarke D, Beros J, Bates KA, Harvey AR, Tang AD, Rodger J. Low intensity repetitive magnetic stimulation reduces expression of genes related to inflammation and calcium signalling in cultured mouse cortical astrocytes. Brain Stimul 2020; 14:183-191. [PMID: 33359601 DOI: 10.1016/j.brs.2020.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a form of non-invasive brain stimulation frequently used to induce neuroplasticity in the brain. Even at low intensities, rTMS has been shown to modulate aspects of neuronal plasticity such as motor learning and structural reorganisation of neural tissue. However, the impact of low intensity rTMS on glial cells such as astrocytes remains largely unknown. This study investigated changes in RNA (qPCR array: 125 selected genes) and protein levels (immunofluorescence) in cultured mouse astrocytes following a single session of low intensity repetitive magnetic stimulation (LI-rMS - 18 mT). Purified neonatal cortical astrocyte cultures were stimulated with either 1Hz (600 pulses), 10Hz (600 or 6000 pulses) or sham (0 pulses) LI-rMS, followed by RNA extraction at 5 h post-stimulation, or fixation at either 5 or 24-h post-stimulation. LI-rMS resulted in a two-to-four-fold downregulation of mRNA transcripts related to calcium signalling (Stim1 and Orai3), inflammatory molecules (Icam1) and neural plasticity (Ncam1). 10Hz reduced expression of Stim1, Orai3, Kcnmb4, and Ncam1 mRNA, whereas 1Hz reduced expression of Icam1 mRNA and signalling-related genes. Protein levels followed a similar pattern for 10Hz rMS, with a significant reduction of STIM1, ORAI3, KCNMB4, and NCAM1 protein compared to sham, but 1Hz increased STIM1 and ORAI3 protein levels relative to sham. These findings demonstrate the ability of 1Hz and 10Hz LI-rMS to modulate specific aspects of astrocytic phenotype, potentially contributing to the known effects of low intensity rTMS on excitability and neuroplasticity.
Collapse
Affiliation(s)
- Darren Clarke
- Experimental and Regenerative Neuroscience, School of Biological Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
| | - Jamie Beros
- Experimental and Regenerative Neuroscience, School of Biological Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Kristyn A Bates
- Experimental and Regenerative Neuroscience, School of Biological Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Alan R Harvey
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia; School of Human Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Alexander D Tang
- Experimental and Regenerative Neuroscience, School of Biological Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neuroscience, School of Biological Sciences, The University of Western Australia, Nedlands, WA, 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| |
Collapse
|
49
|
Lenz M, Eichler A, Kruse P, Strehl A, Rodriguez-Rozada S, Goren I, Yogev N, Frank S, Waisman A, Deller T, Jung S, Maggio N, Vlachos A. Interleukin 10 Restores Lipopolysaccharide-Induced Alterations in Synaptic Plasticity Probed by Repetitive Magnetic Stimulation. Front Immunol 2020; 11:614509. [PMID: 33391287 PMCID: PMC7772211 DOI: 10.3389/fimmu.2020.614509] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
Systemic inflammation is associated with alterations in complex brain functions such as learning and memory. However, diagnostic approaches to functionally assess and quantify inflammation-associated alterations in synaptic plasticity are not well-established. In previous work, we demonstrated that bacterial lipopolysaccharide (LPS)-induced systemic inflammation alters the ability of hippocampal neurons to express synaptic plasticity, i.e., the long-term potentiation (LTP) of excitatory neurotransmission. Here, we tested whether synaptic plasticity induced by repetitive magnetic stimulation (rMS), a non-invasive brain stimulation technique used in clinical practice, is affected by LPS-induced inflammation. Specifically, we explored brain tissue cultures to learn more about the direct effects of LPS on neural tissue, and we tested for the plasticity-restoring effects of the anti-inflammatory cytokine interleukin 10 (IL10). As shown previously, 10 Hz repetitive magnetic stimulation (rMS) of organotypic entorhino-hippocampal tissue cultures induced a robust increase in excitatory neurotransmission onto CA1 pyramidal neurons. Furthermore, LPS-treated tissue cultures did not express rMS-induced synaptic plasticity. Live-cell microscopy in tissue cultures prepared from a novel transgenic reporter mouse line [C57BL/6-Tg(TNFa-eGFP)] confirms that ex vivo LPS administration triggers microglial tumor necrosis factor alpha (TNFα) expression, which is ameliorated in the presence of IL10. Consistent with this observation, IL10 hampers the LPS-induced increase in TNFα, IL6, IL1β, and IFNγ and restores the ability of neurons to express rMS-induced synaptic plasticity in the presence of LPS. These findings establish organotypic tissue cultures as a suitable model for studying inflammation-induced alterations in synaptic plasticity, thus providing a biological basis for the diagnostic use of transcranial magnetic stimulation in the context of brain inflammation.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Strehl
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Silvia Rodriguez-Rozada
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Itamar Goren
- Pharmazentrum Frankfurt/ZAFES, Goethe-University Frankfurt, Frankfurt, Germany
| | - Nir Yogev
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Dermatology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Stefan Frank
- Pharmazentrum Frankfurt/ZAFES, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Frankfurt, Germany
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Nicola Maggio
- Department of Neurology and Sagol Center for Neurosciences, Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Tel HaShomer, Israel
- Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
50
|
Yuan TF, Li WG, Zhang C, Wei H, Sun S, Xu NJ, Liu J, Xu TL. Targeting neuroplasticity in patients with neurodegenerative diseases using brain stimulation techniques. Transl Neurodegener 2020; 9:44. [PMID: 33280613 PMCID: PMC7720463 DOI: 10.1186/s40035-020-00224-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 11/19/2020] [Indexed: 01/17/2023] Open
Abstract
Deficits in synaptic transmission and plasticity are thought to contribute to the pathophysiology of Alzheimer’s disease (AD) and Parkinson’s disease (PD). Several brain stimulation techniques are currently available to assess or modulate human neuroplasticity, which could offer clinically useful interventions as well as quantitative diagnostic and prognostic biomarkers. In this review, we discuss several brain stimulation techniques, with a special emphasis on transcranial magnetic stimulation and deep brain stimulation (DBS), and review the results of clinical studies that applied these techniques to examine or modulate impaired neuroplasticity at the local and network levels in patients with AD or PD. The impaired neuroplasticity can be detected in patients at the earlier and later stages of both neurodegenerative diseases. However, current brain stimulation techniques, with a notable exception of DBS for PD treatment, cannot serve as adequate clinical tools to assist in the diagnosis, treatment, or prognosis of individual patients with AD or PD. Targeting the impaired neuroplasticity with improved brain stimulation techniques could offer a powerful novel approach for the treatment of AD and PD.
Collapse
Affiliation(s)
- Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China
| | - Wei-Guang Li
- Center for Brain Science, Shanghai Children's Medical Center, and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chencheng Zhang
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongjiang Wei
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Suya Sun
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Nan-Jie Xu
- Center for Brain Science, Shanghai Children's Medical Center, and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Tian-Le Xu
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|