1
|
Zhang C, Ni P, Liu Y, Tian Y, Wei J, Xiang B, Zhao L, Li X, Ma X, Deng W, Guo W, Ni R, Zhang Y, Wang Q, Huang H, Zhang N, Li T. GABAergic Abnormalities Associated with Sensorimotor Cortico-striatal Community Structural Deficits in ErbB4 Knockout Mice and First-Episode Treatment-Naïve Patients with Schizophrenia. Neurosci Bull 2019; 36:97-109. [PMID: 31388929 DOI: 10.1007/s12264-019-00416-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/01/2019] [Indexed: 02/05/2023] Open
Abstract
The current study was designed to explore how disruption of specific molecular circuits in the cerebral cortex may cause sensorimotor cortico-striatal community structure deficits in both a mouse model and patients with schizophrenia. We used prepulse inhibition (PPI) and brain structural and diffusion MRI scans in 23 mice with conditional ErbB4 knockout in parvalbumin interneurons and 27 matched controls. Quantitative real-time PCR was used to assess the differential levels of GABA-related transcripts in brain regions. Concurrently, we measured structural and diffusion MRI and the cumulative contribution of risk alleles in the GABA pathway genes in first-episode treatment-naïve schizophrenic patients (n = 117) and in age- and sex-matched healthy controls (n = 86). We present the first evidence of gray and white matter impairment of right sensorimotor cortico-striatal networks and reproduced the sensorimotor gating deficit in a mouse model of schizophrenia. Significant correlations between gray matter volumes (GMVs) in the somatosensory cortex and PPI as well as glutamate decarboxylase 1 mRNA expression were found in controls but not in knockout mice. Furthermore, these findings were confirmed in a human sample in which we found significantly decreased gray and white matter in sensorimotor cortico-striatal networks in schizophrenic patients. The psychiatric risk alleles of the GABA pathway also displayed a significant negative correlation with the GMVs of the somatosensory cortex in patients. Our study identified that ErbB4 ablation in parvalbumin interneurons induced GABAergic dysregulation, providing valuable mechanistic insights into the sensorimotor cortico-striatal community structure deficits associated with schizophrenia.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Peiyan Ni
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yikang Liu
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yang Tian
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jinxue Wei
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Bo Xiang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiaojing Li
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wei Deng
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wanjun Guo
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Rongjun Ni
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yamin Zhang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02141, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Tao Li
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China. .,West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Batista-Brito R, Vinck M, Ferguson KA, Chang JT, Laubender D, Lur G, Mossner JM, Hernandez VG, Ramakrishnan C, Deisseroth K, Higley MJ, Cardin JA. Developmental Dysfunction of VIP Interneurons Impairs Cortical Circuits. Neuron 2017; 95:884-895.e9. [PMID: 28817803 DOI: 10.1016/j.neuron.2017.07.034] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 07/08/2017] [Accepted: 07/27/2017] [Indexed: 02/01/2023]
Abstract
GABAergic interneurons play important roles in cortical circuit development. However, there are multiple populations of interneurons and their respective developmental contributions remain poorly explored. Neuregulin 1 (NRG1) and its interneuron-specific receptor ERBB4 are critical genes for interneuron maturation. Using a conditional ErbB4 deletion, we tested the role of vasoactive intestinal peptide (VIP)-expressing interneurons in the postnatal maturation of cortical circuits in vivo. ErbB4 removal from VIP interneurons during development leads to changes in their activity, along with severe dysregulation of cortical temporal organization and state dependence. These alterations emerge during adolescence, and mature animals in which VIP interneurons lack ErbB4 exhibit reduced cortical responses to sensory stimuli and impaired sensory learning. Our data support a key role for VIP interneurons in cortical circuit development and suggest a possible contribution to pathophysiology in neurodevelopmental disorders. These findings provide a new perspective on the role of GABAergic interneuron diversity in cortical development. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Renata Batista-Brito
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Martin Vinck
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany
| | - Katie A Ferguson
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Jeremy T Chang
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - David Laubender
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Gyorgy Lur
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - James M Mossner
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Victoria G Hernandez
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; HHMI, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Michael J Higley
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Jessica A Cardin
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA.
| |
Collapse
|