1
|
Li Y, Que M, Wang X, Zhan G, Zhou Z, Luo X, Li S. Exploring Astrocyte-Mediated Mechanisms in Sleep Disorders and Comorbidity. Biomedicines 2023; 11:2476. [PMID: 37760916 PMCID: PMC10525869 DOI: 10.3390/biomedicines11092476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes, the most abundant cells in the brain, are integral to sleep regulation. In the context of a healthy neural environment, these glial cells exert a profound influence on the sleep-wake cycle, modulating both rapid eye movement (REM) and non-REM sleep phases. However, emerging literature underscores perturbations in astrocytic function as potential etiological factors in sleep disorders, either as protopathy or comorbidity. As known, sleep disorders significantly increase the risk of neurodegenerative, cardiovascular, metabolic, or psychiatric diseases. Meanwhile, sleep disorders are commonly screened as comorbidities in various neurodegenerative diseases, epilepsy, and others. Building on existing research that examines the role of astrocytes in sleep disorders, this review aims to elucidate the potential mechanisms by which astrocytes influence sleep regulation and contribute to sleep disorders in the varied settings of brain diseases. The review emphasizes the significance of astrocyte-mediated mechanisms in sleep disorders and their associated comorbidities, highlighting the need for further research.
Collapse
Affiliation(s)
- Yujuan Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Mengxin Que
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Xuan Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Gaofeng Zhan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Zhiqiang Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shiyong Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| |
Collapse
|
2
|
Low ZXB, Lee XR, Soga T, Goh BH, Alex D, Kumari Y. Cannabinoids: Emerging sleep modulator. Biomed Pharmacother 2023; 165:115102. [PMID: 37406510 DOI: 10.1016/j.biopha.2023.115102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
Sleep is an essential biological phase of our daily life cycle and is necessary for maintaining homeostasis, alertness, metabolism, cognition, and other key functions across the animal kingdom. Dysfunctional sleep leads to deleterious effects on health, mood, and cognition, including memory deficits and an increased risk of diabetes, stroke, and neurological disorders. Sleep is regulated by several brain neuronal circuits, neuromodulators, and neurotransmitters, where cannabinoids have been increasingly found to play a part in its modulation. Cannabinoids, a group of lipid metabolites, are regulatory molecules that bind mainly to cannabinoid receptors (CB1 and CB2). Much evidence supports the role of cannabinoid receptors in the modulation of sleep, where their alteration exhibits sleep-promoting effects, including an increase in non-rapid-eye movement sleep and a reduction in sleep latency. However, the pharmacological alteration of CB1 receptors is associated with adverse psychotropic effects, which are not exhibited in CB2 receptor alteration. Hence, selective alteration of CB2 receptors is also of clinical importance, where it could potentially be used in treating sleep disorders. Thus, it is crucial to understand the neurobiological basis of cannabinoids in sleep physiology. In this review article, the alteration of the endocannabinoid system by various cannabinoids and their respective effects on the sleep-wake cycle are discussed based on recent findings. The mechanisms of the cannabinoid receptors on sleep and wakefulness are also explored for their clinical implications and potential therapeutic use on sleep disorders.
Collapse
Affiliation(s)
- Zhen Xuen Brandon Low
- Neurological Disorder and Aging Research Group (NDA), Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Xin Ru Lee
- Neurological Disorder and Aging Research Group (NDA), Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Deepa Alex
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Yatinesh Kumari
- Neurological Disorder and Aging Research Group (NDA), Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia.
| |
Collapse
|
3
|
Winters ND, Kondev V, Loomba N, Delpire E, Grueter BA, Patel S. Opposing retrograde and astrocyte-dependent endocannabinoid signaling mechanisms regulate lateral habenula synaptic transmission. Cell Rep 2023; 42:112159. [PMID: 36842084 PMCID: PMC10846612 DOI: 10.1016/j.celrep.2023.112159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/29/2022] [Accepted: 02/08/2023] [Indexed: 02/27/2023] Open
Abstract
The lateral habenula (LHb) encodes aversive states, and its dysregulation is implicated in neuropsychiatric disorders, including depression. The endocannabinoid (eCB) system is a neuromodulatory signaling system that broadly serves to counteract the adverse effects of stress; however, CB1 receptor signaling within the LHb can paradoxically promote anxiogenic- and depressive-like effects. Current reports of synaptic actions of eCBs in the LHb are conflicting and lack systematic investigation of eCB regulation of excitatory and inhibitory transmission. Here, we report that eCBs differentially regulate glutamatergic and GABAergic transmission in the LHb, exhibiting canonical and circuit-specific inhibition of both systems and an opposing potentiation of synaptic glutamate release mediated via activation of CB1 receptors on astrocytes. Moreover, simultaneous depression of GABA and potentiation of glutamate release increases the net excitation-inhibition ratio onto LHb neurons, suggesting a potential cellular mechanism by which cannabinoids may promote LHb activity and subsequent anxious- and depressive-like aversive states.
Collapse
Affiliation(s)
- Nathan D Winters
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Veronika Kondev
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Niharika Loomba
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Eric Delpire
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Brad A Grueter
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Serrat R, Covelo A, Kouskoff V, Delcasso S, Ruiz-Calvo A, Chenouard N, Stella C, Blancard C, Salin B, Julio-Kalajzić F, Cannich A, Massa F, Varilh M, Deforges S, Robin LM, De Stefani D, Busquets-Garcia A, Gambino F, Beyeler A, Pouvreau S, Marsicano G. Astroglial ER-mitochondria calcium transfer mediates endocannabinoid-dependent synaptic integration. Cell Rep 2021; 37:110133. [PMID: 34936875 DOI: 10.1016/j.celrep.2021.110133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/08/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022] Open
Abstract
Intracellular calcium signaling underlies the astroglial control of synaptic transmission and plasticity. Mitochondria-endoplasmic reticulum contacts (MERCs) are key determinants of calcium dynamics, but their functional impact on astroglial regulation of brain information processing is unexplored. We found that the activation of astrocyte mitochondrial-associated type-1 cannabinoid (mtCB1) receptors determines MERC-dependent intracellular calcium signaling and synaptic integration. The stimulation of mtCB1 receptors promotes calcium transfer from the endoplasmic reticulum to mitochondria through a specific molecular cascade, involving the mitochondrial calcium uniporter (MCU). Physiologically, mtCB1-dependent mitochondrial calcium uptake determines the dynamics of cytosolic calcium events in astrocytes upon endocannabinoid mobilization. Accordingly, electrophysiological recordings in hippocampal slices showed that conditional genetic exclusion of mtCB1 receptors or dominant-negative MCU expression in astrocytes blocks lateral synaptic potentiation, through which astrocytes integrate the activity of distant synapses. Altogether, these data reveal an endocannabinoid link between astroglial MERCs and the regulation of brain network functions.
Collapse
Affiliation(s)
- Roman Serrat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France; INRAE, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Ana Covelo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Vladimir Kouskoff
- University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - Sebastien Delcasso
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France; Institut de Biochimie et Genetique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Andrea Ruiz-Calvo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Nicolas Chenouard
- University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - Carol Stella
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Corinne Blancard
- University of Bordeaux, 33077 Bordeaux, France; Institut de Biochimie et Genetique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Benedicte Salin
- University of Bordeaux, 33077 Bordeaux, France; Institut de Biochimie et Genetique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Francisca Julio-Kalajzić
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Astrid Cannich
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Federico Massa
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Marjorie Varilh
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Severine Deforges
- University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - Laurie M Robin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Arnau Busquets-Garcia
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Frederic Gambino
- University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - Anna Beyeler
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Sandrine Pouvreau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France.
| | - Giovanni Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France.
| |
Collapse
|
5
|
Novosadova E, Antonov S, Arsenyeva E, Kobylanskiy A, Vanyushina Y, Malova T, Khaspekov L, Bobrov M, Bezuglov V, Tarantul V, Illarioshkin S, Grivennikov I. Neuroprotective and neurotoxic effects of endocannabinoid-like compounds, N-arachidonoyl dopamine and N-docosahexaenoyl dopamine in differentiated cultures of induced pluripotent stem cells derived from patients with Parkinson's disease. Neurotoxicology 2020; 82:108-118. [PMID: 33248189 DOI: 10.1016/j.neuro.2020.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/29/2022]
Abstract
The prominent protective effects in diverse neuron injury paradigms exerted by cannabinoids and in particular their endogenously produced species render the endocannabinoid system a promising molecular target in the treatment of neurodegenerative diseases. However, the effects of individual endocannabinoids in human cells remain poorly investigated. Neural derivatives of human induced pluripotent stem cells (iPSC) offer unique opportunities for studying the neuroprotective compounds and development of patient-specific treatment. For the first time the cytotoxic and neuroprotective effects endocannabinoids N-arachidonoyl dopamine (N-ADA) and N-docosahexaenoyl dopamine (N-DDA) were assessed in human neural progenitors and dopamine neurons derived from iPSCs of healthy donors and patients with Parkinson's disease. While the short-term treatment with the investigated compounds in 0.1-10 μM concentration range exerted no toxicity in these cell types, the long-term exposure to 0.1-5 μM N-ADA or N-DDA reduced the survival of human neural progenitors. At the same time, both N-ADA and N-DDA protected neural progenitors and terminally differentiated neurons both from healthy donors and patients with Parkinson's disease against oxidative stress induced by hydrogen peroxide. The observed dramatic difference in the mode of action of N-acyl dopamines points on the possible existence of novel pathogenic mechanism of neurodegeneration induced by prolonged uncompensated production of these substances within neuronal tissue and should also be considered as a precaution in the future development of N-acyl dopamine-based therapeutic drugs.
Collapse
Affiliation(s)
- Ekaterina Novosadova
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| | - Stanislav Antonov
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| | - Elena Arsenyeva
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| | - Andrey Kobylanskiy
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| | - Yulia Vanyushina
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| | - Tatyana Malova
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| | | | - Mikhail Bobrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997 Moscow, Russia; Kulakov Recearh Center of Obstetrics, Gynecology and Perinatology of Ministry of Health of the Russian Federation 117997 Moscow, Russia.
| | - Vladimir Bezuglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997 Moscow, Russia.
| | - Vyacheslav Tarantul
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia
| | | | - Igor Grivennikov
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| |
Collapse
|
6
|
Perin P, Mabou Tagne A, Enrico P, Marino F, Cosentino M, Pizzala R, Boselli C. Cannabinoids, Inner Ear, Hearing, and Tinnitus: A Neuroimmunological Perspective. Front Neurol 2020; 11:505995. [PMID: 33329293 PMCID: PMC7719758 DOI: 10.3389/fneur.2020.505995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cannabis has been used for centuries for recreational and therapeutic purposes. Whereas, the recreative uses are based on the psychotropic effect of some of its compounds, its therapeutic effects range over a wide spectrum of actions, most of which target the brain or the immune system. Several studies have found cannabinoid receptors in the auditory system, both at peripheral and central levels, thus raising the interest in cannabinoid signaling in hearing, and especially in tinnitus, which is affected also by anxiety, memory, and attention circuits where cannabinoid effects are well described. Available studies on animal models of tinnitus suggest that cannabinoids are not likely to be helpful in tinnitus treatment and could even be harmful. However, the pharmacology of cannabinoids is very complex, and most studies focused on neural CB1R-based responses. Cannabinoid effects on the immune system (where CB2Rs predominate) are increasingly recognized as essential in understanding nervous system pathological responses, and data on immune cannabinoid targets have emerged in the auditory system as well. In addition, nonclassical cannabinoid targets (such as TRP channels) appear to play an important role in the auditory system as well. This review will focus on neuroimmunological mechanisms for cannabinoid effects and their possible use as protective and therapeutic agents in the ear and auditory system, especially in tinnitus.
Collapse
Affiliation(s)
- Paola Perin
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | | | | | | | | | - Roberto Pizzala
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Garofalo S, Picard K, Limatola C, Nadjar A, Pascual O, Tremblay MÈ. Role of Glia in the Regulation of Sleep in Health and Disease. Compr Physiol 2020; 10:687-712. [PMID: 32163207 DOI: 10.1002/cphy.c190022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sleep is a naturally occurring physiological state that is required to sustain physical and mental health. Traditionally viewed as strictly regulated by top-down control mechanisms, sleep is now known to also originate locally. Glial cells are emerging as important contributors to the regulation of sleep-wake cycles, locally and among dedicated neural circuits. A few pioneering studies revealed that astrocytes and microglia may influence sleep pressure, duration as well as intensity, but the precise involvement of these two glial cells in the regulation of sleep remains to be fully addressed, across contexts of health and disease. In this overview article, we will first summarize the literature pertaining to the role of astrocytes and microglia in the regulation of sleep under normal physiological conditions. Afterward, we will discuss the beneficial and deleterious consequences of glia-mediated neuroinflammation, whether it is acute, or chronic and associated with brain diseases, on the regulation of sleep. Sleep disturbances are a main comorbidity in neurodegenerative diseases, and in several brain diseases that include pain, epilepsy, and cancer. Identifying the relationships between glia-mediated neuroinflammation, sleep-wake rhythm disruption and brain diseases may have important implications for the treatment of several disorders. © 2020 American Physiological Society. Compr Physiol 10:687-712, 2020.
Collapse
Affiliation(s)
- Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Katherine Picard
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique, Bordeaux University, Bordeaux, France.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Agnès Nadjar
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique, Bordeaux University, Bordeaux, France
| | - Olivier Pascual
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Université Claude Bernard Lyon, Lyon, France
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada.,Départment de médecine moleculaire, Faculté de médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
8
|
Pal B. Response to "Concerns regarding Baksa et al., Cell Molec. Life Sci., 2019." by Edgar Garcia-Rill and Francisco J. Urbano (CMLS-D-18-0156R1). Cell Mol Life Sci 2019; 76:4583-4587. [PMID: 31691836 PMCID: PMC11105466 DOI: 10.1007/s00018-019-03308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Balazs Pal
- Department of Physiology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary.
| |
Collapse
|
9
|
Orexinergic actions modify occurrence of slow inward currents on neurons in the pedunculopontine nucleus. Neuroreport 2019; 30:933-938. [PMID: 31469725 DOI: 10.1097/wnr.0000000000001298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Orexins are neuromodulatory peptides of the lateral hypothalamus which regulate homeostatic mechanisms including sleep-wakefulness cycles. Orexinergic actions stabilize wakefulness by acting on the nuclei of the reticular activating system, including the pedunculopontine nucleus. Orexin application to pedunculopontine neurons produces a noisy tonic inward current and an increase in the frequency and amplitudes of excitatory postsynaptic currents. In the present project, we investigated orexinergic neuromodulatory actions on astrocyte-mediated neuronal slow inward currents of pedunculopontine neurons and their relationships with tonic currents by using slice electrophysiology on preparations from mice. We demonstrated that, in contrast to several other neuromodulatory actions and in line with literature data, orexin predominantly elicited a tonic inward current. A subpopulation of the pedunculopontine neurons possessed slow inward currents. Independently from the tonic currents, actions on slow inward currents were also detected, which resembled other neuromodulatory actions: if slow inward currents were almost absent on the neuron, orexin induced an increase of the charge movements by slow inward currents, whereas if slow inward current activity was abundant on the neurons, orexin exerted inhibitory action on it. Our data support the previous findings that orexin elicits only inward currents in contrast with cannabinoid, cholinergic or serotonergic actions. Similar to the aforementioned neuromodulatory actions, orexin influences slow inward currents in a way depending on control slow inward current activity. Furthermore, we found that orexinergic actions on slow inward currents are similarly independent from its actions on tonic currents, as it was previously found with other neuromodulatory agonists.
Collapse
|
10
|
Affiliation(s)
- Jing Wang
- Key Laboratory of Orthopedics Disease of Gansu Province, the Second Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| |
Collapse
|
11
|
Pál B. Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell Mol Life Sci 2018; 75:2917-2949. [PMID: 29766217 PMCID: PMC11105518 DOI: 10.1007/s00018-018-2837-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/27/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Glutamate is the most abundant neurotransmitter of the central nervous system, as the majority of neurons use glutamate as neurotransmitter. It is also well known that this neurotransmitter is not restricted to synaptic clefts, but found in the extrasynaptic regions as ambient glutamate. Extrasynaptic glutamate originates from spillover of synaptic release, as well as from astrocytes and microglia. Its concentration is magnitudes lower than in the synaptic cleft, but receptors responding to it have higher affinity for it. Extrasynaptic glutamate receptors can be found in neuronal somatodendritic location, on astroglia, oligodendrocytes or microglia. Activation of them leads to changes of neuronal excitability with different amplitude and kinetics. Extrasynaptic glutamate is taken up by neurons and astrocytes mostly via EAAT transporters, and astrocytes, in turn metabolize it to glutamine. Extrasynaptic glutamate is involved in several physiological phenomena of the central nervous system. It regulates neuronal excitability and synaptic strength by involving astroglia; contributing to learning and memory formation, neurosecretory and neuromodulatory mechanisms, as well as sleep homeostasis.The extrasynaptic glutamatergic system is affected in several brain pathologies related to excitotoxicity, neurodegeneration or neuroinflammation. Being present in dementias, neurodegenerative and neuropsychiatric diseases or tumor invasion in a seemingly uniform way, the system possibly provides a common component of their pathogenesis. Although parts of the system are extensively discussed by several recent reviews, in this review I attempt to summarize physiological actions of the extrasynaptic glutamate on neuronal excitability and provide a brief insight to its pathology for basic understanding of the topic.
Collapse
Affiliation(s)
- Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4012, Hungary.
| |
Collapse
|
12
|
Gutiérrez-Rodríguez A, Bonilla-Del Río I, Puente N, Gómez-Urquijo SM, Fontaine CJ, Egaña-Huguet J, Elezgarai I, Ruehle S, Lutz B, Robin LM, Soria-Gómez E, Bellocchio L, Padwal JD, van der Stelt M, Mendizabal-Zubiaga J, Reguero L, Ramos A, Gerrikagoitia I, Marsicano G, Grandes P. Localization of the cannabinoid type-1 receptor in subcellular astrocyte compartments of mutant mouse hippocampus. Glia 2018; 66:1417-1431. [PMID: 29480581 DOI: 10.1002/glia.23314] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 11/07/2022]
Abstract
Astroglial type-1 cannabinoid (CB1 ) receptors are involved in synaptic transmission, plasticity and behavior by interfering with the so-called tripartite synapse formed by pre- and post-synaptic neuronal elements and surrounding astrocyte processes. However, little is known concerning the subcellular distribution of astroglial CB1 receptors. In particular, brain CB1 receptors are mostly localized at cells' plasmalemma, but recent evidence indicates their functional presence in mitochondrial membranes. Whether CB1 receptors are present in astroglial mitochondria has remained unknown. To investigate this issue, we included conditional knock-out mice lacking astroglial CB1 receptor expression specifically in glial fibrillary acidic protein (GFAP)-containing astrocytes (GFAP-CB1 -KO mice) and also generated genetic rescue mice to re-express CB1 receptors exclusively in astrocytes (GFAP-CB1 -RS). To better identify astroglial structures by immunoelectron microscopy, global CB1 knock-out (CB1 -KO) mice and wild-type (CB1 -WT) littermates were intra-hippocampally injected with an adeno-associated virus expressing humanized renilla green fluorescent protein (hrGFP) under the control of human GFAP promoter to generate GFAPhrGFP-CB1 -KO and -WT mice, respectively. Furthermore, double immunogold (for CB1 ) and immunoperoxidase (for GFAP or hrGFP) revealed that CB1 receptors are present in astroglial mitochondria from different hippocampal regions of CB1 -WT, GFAP-CB1 -RS and GFAPhrGFP-CB1 -WT mice. Only non-specific gold particles were detected in mouse hippocampi lacking CB1 receptors. Altogether, we demonstrated the existence of a precise molecular architecture of the CB1 receptor in astrocytes that will have to be taken into account in evaluating the functional activity of cannabinergic signaling at the tripartite synapse.
Collapse
Affiliation(s)
- Ana Gutiérrez-Rodríguez
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Nagore Puente
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Sonia M Gómez-Urquijo
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Christine J Fontaine
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Jon Egaña-Huguet
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Sabine Ruehle
- Institute of Physiological Chemistry and German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, 55128, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry and German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, 55128, Germany
| | - Laurie M Robin
- INSERM, U1215 Neurocentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, F-33077, France
- Université de Bordeaux, Bordeaux, F-33077, France
| | - Edgar Soria-Gómez
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Luigi Bellocchio
- INSERM, U1215 Neurocentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, F-33077, France
- Université de Bordeaux, Bordeaux, F-33077, France
| | - Jalindar D Padwal
- Department of Molecular Physiology, Leiden University, Einsteinweg 55, Leiden, CC, 2333, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden University, Einsteinweg 55, Leiden, CC, 2333, The Netherlands
| | - Juan Mendizabal-Zubiaga
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Leire Reguero
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Almudena Ramos
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Giovanni Marsicano
- INSERM, U1215 Neurocentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, F-33077, France
- Université de Bordeaux, Bordeaux, F-33077, France
| | - Pedro Grandes
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| |
Collapse
|
13
|
Mena-Segovia J, Bolam JP. Rethinking the Pedunculopontine Nucleus: From Cellular Organization to Function. Neuron 2017; 94:7-18. [PMID: 28384477 DOI: 10.1016/j.neuron.2017.02.027] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/03/2017] [Accepted: 02/15/2017] [Indexed: 12/21/2022]
Abstract
The pedunculopontine nucleus (PPN) has long been considered an interface between the basal ganglia and motor systems, and its ability to regulate arousal states puts the PPN in a key position to modulate behavior. Despite the large amount of data obtained over recent decades, a unified theory of its function is still incomplete. By putting together classical concepts and new evidence that dissects the influence of its different neuronal subtypes on their various targets, we propose that the PPN and, in particular, cholinergic neurons have a central role in updating the behavioral state as a result of changes in environmental contingencies. Such a function is accomplished by a combined mechanism that simultaneously restrains ongoing obsolete actions while it facilitates new contextual associations.
Collapse
Affiliation(s)
- Juan Mena-Segovia
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA.
| | - J Paul Bolam
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford OX1 3TH, UK
| |
Collapse
|
14
|
Kovács A, Pál B. Astrocyte-Dependent Slow Inward Currents (SICs) Participate in Neuromodulatory Mechanisms in the Pedunculopontine Nucleus (PPN). Front Cell Neurosci 2017; 11:16. [PMID: 28203147 PMCID: PMC5285330 DOI: 10.3389/fncel.2017.00016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/18/2017] [Indexed: 11/13/2022] Open
Abstract
Slow inward currents (SICs) are known as excitatory events of neurons caused by astrocytic glutamate release and consequential activation of neuronal extrasynaptic NMDA receptors. In the present article we investigate the role of these astrocyte-dependent excitatory events on a cholinergic nucleus of the reticular activating system (RAS), the pedunculopontine nucleus (PPN). It is well known about this and other elements of the RAS, that they do not only give rise to neuromodulatory innervation of several areas, but also targets neuromodulatory actions from other members of the RAS or factors providing the homeostatic drive for sleep. Using slice electrophysiology, optogenetics and morphological reconstruction, we revealed that SICs are present in a population of PPN neurons. The frequency of SICs recorded on PPN neurons was higher when the soma of the given neuron was close to an astrocytic soma. SICs do not appear simultaneously on neighboring neurons, thus it is unlikely that they synchronize neuronal activity in this structure. Occurrence of SICs is regulated by cannabinoid, muscarinic and serotonergic neuromodulatory mechanisms. In most cases, SICs occurred independently from tonic neuronal currents. SICs were affected by different neuromodulatory agents in a rather uniform way: if control SIC activity was low, the applied drugs increased it, but if SIC activity was increased in control, the same drugs lowered it. SICs of PPN neurons possibly represent a mechanism which elicits network-independent spikes on certain PPN neurons; forming an alternative, astrocyte-dependent pathway of neuromodulatory mechanisms.
Collapse
Affiliation(s)
- Adrienn Kovács
- Department of Physiology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| |
Collapse
|
15
|
Revealing the role of the endocannabinoid system modulators, SR141716A, URB597 and VDM-11, in sleep homeostasis. Neuroscience 2016; 339:433-449. [DOI: 10.1016/j.neuroscience.2016.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 01/16/2023]
|