1
|
Moodie JE, Buchanan C, Furtjes A, Conole E, Stolicyn A, Corley J, Ferguson K, Hernandez MV, Maniega SM, Russ TC, Luciano M, Whalley H, Bastin ME, Wardlaw J, Deary I, Cox S. Brain maps of general cognitive function and spatial correlations with neurobiological cortical profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628670. [PMID: 39764021 PMCID: PMC11702631 DOI: 10.1101/2024.12.17.628670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
In this paper, we attempt to answer two questions: 1) which regions of the human brain, in terms of morphometry, are most strongly related to individual differences in domain-general cognitive functioning (g)? and 2) what are the underlying neurobiological properties of those regions? We meta-analyse vertex-wise g-cortical morphometry (volume, surface area, thickness, curvature and sulcal depth) associations using data from 3 cohorts: the UK Biobank (UKB), Generation Scotland (GenScot), and the Lothian Birth Cohort 1936 (LBC1936), with the meta-analytic N = 38,379 (age range = 44 to 84 years old). These g-morphometry associations vary in magnitude and direction across the cortex (|β| range = -0.12 to 0.17 across morphometry measures) and show good cross-cohort agreement (mean spatial correlation r = 0.57, SD = 0.18). Then, to address (2), we bring together existing - and derive new - cortical maps of 33 neurobiological characteristics from multiple modalities (including neurotransmitter receptor densities, gene expression, functional connectivity, metabolism, and cytoarchitectural similarity). We discover that these 33 profiles spatially covary along four major dimensions of cortical organisation (accounting for 65.9% of the variance) and denote aspects of neurobiological scaffolding that underpin the spatial patterning of MRI-cognitive associations we observe (significant |r| range = 0.21 to 0.56). Alongside the cortical maps from these analyses, which we make openly accessible, we provide a compendium of cortex-wide and within-region spatial correlations among general and specific facets of brain cortical organisation and higher order cognitive functioning, which we hope will serve as a framework for analysing other aspects of behaviour-brain MRI associations.
Collapse
Affiliation(s)
- Joanna E. Moodie
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Colin Buchanan
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Anna Furtjes
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Eleanor Conole
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Aleks Stolicyn
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Janie Corley
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Karen Ferguson
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Maria Valdes Hernandez
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
- Row Fogo Centre for Research into Small Vessel Diseases
| | - Susana Munoz Maniega
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Tom C. Russ
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, UK
- Dementia Network, NHS Research Scotland
| | | | - Heather Whalley
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - Mark E. Bastin
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
- UK Dementia Research Institute
- Row Fogo Centre for Research into Small Vessel Diseases
| | - Ian Deary
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| | - Simon Cox
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| |
Collapse
|
2
|
Nieuwenhuys R, Glasser MF. A Comparison of two Maps of the Human Neocortex: the multimodal MRI-based parcellation of Glasser et al. (2016a), and the myeloarchitectonic parcellation of Nieuwenhuys and Broere (2023), as a first step toward a unified, canonical map. Brain Struct Funct 2024; 229:2509-2521. [PMID: 39576342 PMCID: PMC11611935 DOI: 10.1007/s00429-024-02860-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/05/2024] [Indexed: 12/06/2024]
Abstract
The first, introductory part of this paper presents an overview of the long quest for a universal map of the human cortex, useful as a standard reference for all remaining studies on this brain part. It is pointed out that such a map does still not exist, but that systematic comparison of some recently produced 3D maps may well be conducive toward this important goal. Hence, the second part of this article is devoted to a detailed comparison of two of such maps, the multimodal MRI-based parcellation of Glasser et al. (Nature 536:171-178, 2016) and the myeloarchitectonic parcellation presented by Nieuwenhuys and Broere (Brain Struct Funct 228:1549-1559, 2023), with the specific aim to detect areal concordances between these two maps. In the search for these concordances, the following three criteria were used: (1) the relative or topological position of the various areas, (2) the relation of the areas to particular invariant sulci, and (3) the overall myelin content of the areas. In total 61 concordances were detected, most of which were located in the frontal and parietal lobes. These concordances were recorded in standard views of the two maps compared (Figs. 5, 6, 7, 8), as well as in Table 1. We consider these findings as a first step towards the creation of a unified, consensus (canonical) parcellation of the human neocortex.
Collapse
Affiliation(s)
- Rudolf Nieuwenhuys
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Matthew F Glasser
- Departments of Radiology, Neuroscience, and Biomedical Engineering, Washington University Medical School, St. Louis, MO, USA.
| |
Collapse
|
3
|
Hoagey DA, Pongpipat EE, Rodrigue KM, Kennedy KM. Coupled aging of cyto- and myeloarchitectonic atlas-informed gray and white matter structural properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625295. [PMID: 39651116 PMCID: PMC11623663 DOI: 10.1101/2024.11.25.625295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
A key aspect of brain aging that remains poorly understood is its high regional heterogeneity and heterochronicity. A better understanding of how the structural organization of the brain shapes aging trajectories is needed. Neuroimaging tissue "types" are often collected and analyzed as separate acquisitions, an approach that cannot provide a holistic view of age-related change of the related portions of the neurons (cell bodies and axons). Because neuroimaging can only assess indirect features at the gross macrostructural level, incorporating post-mortem histological information may aid in better understanding of structural aging gradients. Longitudinal design, coupling of gray and white matter (GM, WM) properties, and a biologically informed approach to organizing neural properties are needed. Thus, we tested aging of the regional coupling between GM (cortical thickness, surface area, volume) and WM (fractional anisotropy, mean, axial, and radial diffusivities) structural metrics using linear mixed effects modeling in 102 healthy adults aged 20-94 years old, scanned on two occasions over a four-year period. The association between age-related within-person change in GM morphometry and the diffusion properties of the directly neighboring portion of white matter were assessed, capturing both aspects of neuronal health in one model. Additionally, we parcellated the brain utilizing the histological-staining informed von Economo-Koskinas atlas to consider regional cyto- and myelo-architecture. Results demonstrate several gradients of coupled association in the age-related decline of neighboring white and gray matter. Most notably, gradients of coupling along the heteromodal association to sensory axis were found for several areas (e.g., anterior frontal and lateral temporal cortices, vs pre- and post-central gyrus, occipital, and limbic areas), in line with heterochronicity and retrogenesis theories of aging. Further effort to bridge across data and measurement scales will enhance understanding of the mechanisms of the aging brain.
Collapse
|
4
|
Autio JA, Uematsu A, Ikeda T, Ose T, Hou Y, Magrou L, Kimura I, Ohno M, Murata K, Coalson T, Kennedy H, Glasser MF, Van Essen DC, Hayashi T. Charting cortical-layer specific area boundaries using Gibbs' ringing attenuated T1w/T2w-FLAIR myelin MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615294. [PMID: 39386722 PMCID: PMC11463467 DOI: 10.1101/2024.09.27.615294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cortical areas have traditionally been defined by their distinctive layer cyto- and/or myelo- architecture using postmortem histology. Recent studies have delineated many areas by measuring overall cortical myelin content and its spatial gradients using the T1w/T2w ratio MRI in living primates, including humans. While T1w/T2w studies of areal transitions might benefit from using the layer profile of this myelin-related contrast, a significant confound is Gibbs' ringing artefact, which produces signal fluctuations resembling cortical layers. Here, we address these issues with a novel approach using cortical layer thickness-adjusted T1w/T2w-FLAIR imaging, which effectively cancels out Gibbs' ringing artefacts while enhancing intra-cortical myelin contrast. Whole-brain MRI measures were mapped onto twelve equivolumetric layers, and layer-specific sharp myeloarchitectonic transitions were identified using spatial gradients resulting in a putative 182 area/subarea partition of the macaque cerebral cortex. The myelin maps exhibit notably high homology with those in humans, suggesting cortical myelin shares a similar developmental program across species. Comparison with histological Gallyas myelin stains explains over 80% of the variance in the laminar T1w/T2w-FLAIR profiles, substantiating the validity of the method. Altogether, our approach provides a novel, noninvasive means for precision mapping layer myeloarchitecture in the primate cerebral cortex, advancing the pioneering work of classical neuroanatomists.
Collapse
Affiliation(s)
- Joonas A Autio
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Akiko Uematsu
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takuro Ikeda
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takayuki Ose
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yujie Hou
- Université Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Loïc Magrou
- Université Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
- Center for Neural Science, New York University, New York, NY, United States
| | - Ikko Kimura
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masahiro Ohno
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | | | - Tim Coalson
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri USA
| | - Henry Kennedy
- Université Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS) Key Laboratory of Primate Neurobiology, Shanghai 200031, China
| | - Matthew F Glasser
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri USA
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - David C Van Essen
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri USA
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
5
|
Gopinath K, Hoopes A, Alexander DC, Arnold SE, Balbastre Y, Billot B, Casamitjana A, Cheng Y, Chua RYZ, Edlow BL, Fischl B, Gazula H, Hoffmann M, Keene CD, Kim S, Kimberly WT, Laguna S, Larson KE, Van Leemput K, Puonti O, Rodrigues LM, Rosen MS, Tregidgo HFJ, Varadarajan D, Young SI, Dalca AV, Iglesias JE. Synthetic data in generalizable, learning-based neuroimaging. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-22. [PMID: 39850547 PMCID: PMC11752692 DOI: 10.1162/imag_a_00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 01/25/2025]
Abstract
Synthetic data have emerged as an attractive option for developing machine-learning methods in human neuroimaging, particularly in magnetic resonance imaging (MRI)-a modality where image contrast depends enormously on acquisition hardware and parameters. This retrospective paper reviews a family of recently proposed methods, based on synthetic data, for generalizable machine learning in brain MRI analysis. Central to this framework is the concept of domain randomization, which involves training neural networks on a vastly diverse array of synthetically generated images with random contrast properties. This technique has enabled robust, adaptable models that are capable of handling diverse MRI contrasts, resolutions, and pathologies, while working out-of-the-box, without retraining. We have successfully applied this method to tasks such as whole-brain segmentation (SynthSeg), skull-stripping (SynthStrip), registration (SynthMorph, EasyReg), super-resolution, and MR contrast transfer (SynthSR). Beyond these applications, the paper discusses other possible use cases and future work in our methodology. Neural networks trained with synthetic data enable the analysis of clinical MRI, including large retrospective datasets, while greatly alleviating (and sometimes eliminating) the need for substantial labeled datasets, and offer enormous potential as robust tools to address various research goals.
Collapse
Affiliation(s)
- Karthik Gopinath
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrew Hoopes
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - Steven E. Arnold
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yael Balbastre
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Benjamin Billot
- Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - You Cheng
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Russ Yue Zhi Chua
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Brian L. Edlow
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Bruce Fischl
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Malte Hoffmann
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - C. Dirk Keene
- University of Washington, Seattle, WA, United States
| | | | - W. Taylor Kimberly
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Kathleen E. Larson
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Koen Van Leemput
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Oula Puonti
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Copenhagen University Hospital, København, Denmark
| | - Livia M. Rodrigues
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Universidade Estadual de Campinas, São Paulo, Brazil
| | - Matthew S. Rosen
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Divya Varadarajan
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sean I. Young
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Adrian V. Dalca
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Juan Eugenio Iglesias
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Massachusetts Institute of Technology, Cambridge, MA, United States
- University College London, London, England
| |
Collapse
|
6
|
Wagstyl K, Adler S, Seidlitz J, Vandekar S, Mallard TT, Dear R, DeCasien AR, Satterthwaite TD, Liu S, Vértes PE, Shinohara RT, Alexander-Bloch A, Geschwind DH, Raznahan A. Transcriptional cartography integrates multiscale biology of the human cortex. eLife 2024; 12:RP86933. [PMID: 38324465 PMCID: PMC10945526 DOI: 10.7554/elife.86933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
The cerebral cortex underlies many of our unique strengths and vulnerabilities, but efforts to understand human cortical organization are challenged by reliance on incompatible measurement methods at different spatial scales. Macroscale features such as cortical folding and functional activation are accessed through spatially dense neuroimaging maps, whereas microscale cellular and molecular features are typically measured with sparse postmortem sampling. Here, we integrate these distinct windows on brain organization by building upon existing postmortem data to impute, validate, and analyze a library of spatially dense neuroimaging-like maps of human cortical gene expression. These maps allow spatially unbiased discovery of cortical zones with extreme transcriptional profiles or unusually rapid transcriptional change which index distinct microstructure and predict neuroimaging measures of cortical folding and functional activation. Modules of spatially coexpressed genes define a family of canonical expression maps that integrate diverse spatial scales and temporal epochs of human brain organization - ranging from protein-protein interactions to large-scale systems for cognitive processing. These module maps also parse neuropsychiatric risk genes into subsets which tag distinct cyto-laminar features and differentially predict the location of altered cortical anatomy and gene expression in patients. Taken together, the methods, resources, and findings described here advance our understanding of human cortical organization and offer flexible bridges to connect scientific fields operating at different spatial scales of human brain research.
Collapse
Affiliation(s)
- Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, University College LondonLondonUnited Kingdom
| | - Sophie Adler
- UCL Great Ormond Street Institute for Child HealthHolbornUnited Kingdom
| | - Jakob Seidlitz
- Department of Psychiatry, University of PennsylvaniaPhiladelphiaUnited States
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Simon Vandekar
- Department of Biostatistics, Vanderbilt UniversityNashvilleUnited States
| | - Travis T Mallard
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Psychiatry, Harvard Medical SchoolBostonUnited States
| | - Richard Dear
- Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Alex R DeCasien
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Theodore D Satterthwaite
- Department of Psychiatry, University of PennsylvaniaPhiladelphiaUnited States
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania School of MedicinePhiladelphiaUnited States
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Petra E Vértes
- Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Aaron Alexander-Bloch
- Department of Psychiatry, University of PennsylvaniaPhiladelphiaUnited States
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Daniel H Geschwind
- Center for Autism Research and Treatment, Semel Institute, Program in Neurogenetics, Department of Neurology and Department of Human Genetics, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| |
Collapse
|
7
|
Zhang S, Yang X, Tan Q, Sun H, Chen D, Chen Y, Zhang H, Yang Y, Gong Q, Yue Q. Cortical myelin and thickness mapping provide insights into whole-brain tumor burden in diffuse midline glioma. Cereb Cortex 2024; 34:bhad491. [PMID: 38112602 PMCID: PMC10793579 DOI: 10.1093/cercor/bhad491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Systemic infiltration is a hallmark of diffuse midline glioma pathogenesis, which can trigger distant disturbances in cortical structure. However, the existence and effects of these changes have been underexamined. This study aimed to investigate whole-brain cortical myelin and thickness alternations induced by diffuse midline glioma. High-resolution T1- and T2-weighted images were acquired from 90 patients with diffuse midline glioma with H3 K27-altered and 64 patients with wild-type and 86 healthy controls. Cortical thickness and myelin content was calculated using Human Connectome Project pipeline. Significant differences in cortical thickness and myelin content were detected among groups. Short-term survival prediction model was constructed using automated machine learning. Compared with healthy controls, diffuse midline glioma with H3 K27-altered patients showed significantly reduced cortical myelin in bilateral precentral gyrus, postcentral gyrus, insular, parahippocampal gyrus, fusiform gyrus, and cingulate gyrus, whereas diffuse midline glioma with H3 K27 wild-type patients exhibited well-preserved myelin content. Furtherly, when comparing diffuse midline glioma with H3 K27-altered and diffuse midline glioma with H3 K27 wild-type, the decreased cortical thickness in parietal and occipital regions along with demyelination in medial orbitofrontal cortex was observed in diffuse midline glioma with H3 K27-altered. Notably, a combination of cortical features and tumor radiomics allowed short-term survival prediction with accuracy 0.80 and AUC 0.84. These findings may aid clinicians in tailoring therapeutic approaches based on cortical characteristics, potentially enhancing the efficacy of current and future treatment modalities.
Collapse
Affiliation(s)
- Simin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Xibiao Yang
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiaoyue Tan
- Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Di Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Yinying Chen
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hongjing Zhang
- Huaxi Glioma Center, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Radiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610065, China
| | - Yuan Yang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 610041, China
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Huaxi Glioma Center, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Nieuwenhuys R, Broere CAJ. A new 3D myeloarchitectonic map of the human neocortex based on data from the Vogt-Vogt school. Brain Struct Funct 2023; 228:1549-1559. [PMID: 37378856 PMCID: PMC10751253 DOI: 10.1007/s00429-023-02671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
During the period extending from 1900 to 1970, Oskar and Cécile Vogt and their numerous collaborators ('the Vogt-Vogt school') published a large number of studies on the myeloarchitecture of the human cerebral cortex. During the last decade, we have concerned ourselves with a detailed meta-analysis of these now almost totally forgotten studies, with the aim to bringing them into the modern era of science. This scrutiny yielded inter alia a myeloarchitectonic map of the human neocortex, showing a parcellation into 182 areas (Nieuwenhuys et al. in Brain Struct Funct 220:2551-2573, 2015; Erratum in Brain Struct Funct 220: 3753-3755, 2015). This map, termed 2D'15, which is based on data derived from all of the 20 publications constituting the myeloarchitectonic legacy of the Vogt-Vogt school, has the limitation that it is two-dimensional i.e. it shows only the parts of the cortex exposed at the free surface of the cerebral hemispheres and not the extensive stretches of cortex hidden in the cortical sulci. However, a limited set of data, derived from four of the 20 publications available, has enabled us to create a 3D map, showing the myeloarchitectonic parcellation of the entire human neocortex. This map, designated as 3D'23, contains 182 areas: 64 frontal, 30 parietal, 6 insular, 19 occipital and 63 temporal. We have also prepared a 2D version (2D'23), of this 3D'23 map to serve as a link between the latter and our original 2D'15 map. Detailed comparison of the parcellations visualized in our three maps (2D'15, 2D'23 and 3D'23) warrants the conclusion that our new 3D'23 map may be considered as representative for the entire myeloarchitectural legacy of the Vogt-Vogt School. Hence it is now possible to compare the rich amount of myeloarchitectonic data assembled by that school directly with the results of current 3D analyses of the architecture of the human cortex, such as the meticulous quantitative cyto- and receptor architectonic studies of Zilles, Amunts and their numerous associates (Amunts et al. in Science 369:988-992, 2020), and the multimodal parcellation of the human cortex based on magnetic resonance images from the Human Connectome Project, performed by Glasser et al. in Nature 536:171-178, 2016).
Collapse
Affiliation(s)
- Rudolf Nieuwenhuys
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Postbus 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Cees A J Broere
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Guo Y, Dong D, Wu H, Xue Z, Zhou F, Zhao L, Li Z, Feng T. The intracortical myelin content of impulsive choices: results from T1- and T2-weighted MRI myelin mapping. Cereb Cortex 2023; 33:7163-7174. [PMID: 36748995 PMCID: PMC10422924 DOI: 10.1093/cercor/bhad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
Delay discounting (DD) refers to a phenomenon that humans tend to choose small-sooner over large-later rewards during intertemporal choices. Steep discounting of delayed outcome is related to a variety of maladaptive behaviors and is considered as a transdiagnostic process across psychiatric disorders. Previous studies have investigated the association between brain structure (e.g. gray matter volume) and DD; however, it is unclear whether the intracortical myelin (ICM) influences DD. Here, based on a sample of 951 healthy young adults drawn from the Human Connectome Project, we examined the relationship between ICM, which was measured by the contrast of T1w and T2w images, and DD and further tested whether the identified associations were mediated by the regional homogeneity (ReHo) of brain spontaneous activity. Vertex-wise regression analyses revealed that steeper DD was significantly associated with lower ICM in the left temporoparietal junction (TPJ) and right middle-posterior cingulate cortex. Region-of-interest analysis revealed that the ReHo values in the left TPJ partially mediated the association of its myelin content with DD. Our findings provide the first evidence that cortical myelination is linked with individual differences in decision impulsivity and suggest that the myelin content affects cognitive performances partially through altered local brain synchrony.
Collapse
Affiliation(s)
- Yiqun Guo
- School of Innovation and Entrepreneurship education, Chongqing University of Posts and Telecommunications, Chongqing, China
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Huimin Wu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhiyuan Xue
- School of Humanities and Management, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Le Zhao
- Faculty of Psychology, Beijing Normal University, Zhuhai, China
| | - Zhangyong Li
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Henderson D, Bichoutar I, Moxham B, Faidherbe V, Plaisant O, Guédon A. Descriptive and functional anatomy of the Heschl Gyrus: historical review, manual labelling and current perspectives. Surg Radiol Anat 2023; 45:337-350. [PMID: 36859607 DOI: 10.1007/s00276-023-03114-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE The Heschl Gyrus (HG), which includes the Primary Auditory Cortex (PAC), lies on the upper surface of the superior temporal gyrus (T1). It has been the subject of growing interest in the fields of neuroscience over the past decade. Given the considerable interhemispheric and interindividual variability of its morphology, manual labelling remains the gold standard for its radio-anatomical study. The aim of this study was to revisit the original work of Richard L. Heschl, to provide a broad overview of the available anatomical knowledge and to propose a manually labelled 3D digital model. METHODS We reviewed existing works on the HG, from Heschl's original publication of 1878, Dejerine neuroanatomical atlas of 1895 to the most recent digital atlases (Julich-Brain Cytoarchitectonic Atlas, the Human Connectome Project). Our segmentation work was based on data from the BigBrain Project and used the MRIcron 2019 software. RESULTS The original publication by Heschl has been translated into French and English. We propose a correspondence of previous nomenclatures with the most recent ones, including the Terminologia Neuroanatomica. Finally, despite the notable anatomical variability of the HG, clear and coherent segmentation criteria allowed us to generate a 3D digital model of the HG. DISCUSSION AND CONCLUSION Heschl's work is still relevant and could impulse further anatomical and functional studies. The segmentation criteria could serve as a reference for manual labelling of the HG. Furthermore, a thorough, and historically based understanding of the morphological, microstructural and functional characteristics of the HG could be useful for manual segmentation.
Collapse
Affiliation(s)
| | - Ihsane Bichoutar
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Bernard Moxham
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
- Trans-European Anatomical Pedagogic Research Group (TEPARG), Barcelona, Spain
| | | | - Odile Plaisant
- Université Paris Cité, F-75006, Paris, France
- Trans-European Anatomical Pedagogic Research Group (TEPARG), Barcelona, Spain
| | - Alexis Guédon
- Université Paris Cité, F-75006, Paris, France.
- Trans-European Anatomical Pedagogic Research Group (TEPARG), Barcelona, Spain.
- Department of Interventional Neuroradiology, AP-HP Nord, Lariboisière Hospital, 2 rue Ambroise Paré, 75010, Paris, France.
- Université Paris Cité, Inserm, UMR_S 1140, Innovative Therapies in Haemostasis, F-75006, Paris, France.
| |
Collapse
|
11
|
Paquola C, Hong SJ. The Potential of Myelin-Sensitive Imaging: Redefining Spatiotemporal Patterns of Myeloarchitecture. Biol Psychiatry 2023; 93:442-454. [PMID: 36481065 DOI: 10.1016/j.biopsych.2022.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 02/07/2023]
Abstract
Recent advances in magnetic resonance imaging (MRI) have paved the way for approximation of myelin content in vivo. In this review, our main goal was to determine how to best capitalize on myelin-sensitive imaging. First, we briefly overview the theoretical and empirical basis for the myelin sensitivity of different MRI markers and, in doing so, highlight how multimodal imaging approaches are important for enhancing specificity to myelin. Then, we discuss recent studies that have probed the nonuniform distribution of myelin across cortical layers and along white matter tracts. These approaches, collectively known as myelin profiling, have provided detailed depictions of myeloarchitecture in both the postmortem and living human brain. Notably, MRI-based profiling studies have recently focused on investigating whether it can capture interindividual variability in myelin characteristics as well as trajectories across the lifespan. Finally, another line of recent evidence emphasizes the contribution of region-specific myelination to large-scale organization, demonstrating the impact of myelination on global brain networks. In conclusion, we suggest that combining well-validated MRI markers with profiling techniques holds strong potential to elucidate individual differences in myeloarchitecture, which has important implications for understanding brain function and disease.
Collapse
Affiliation(s)
- Casey Paquola
- Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany.
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon, South Korea; Center for the Developing Brain, Child Mind Institute, New York, New York; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
12
|
Pietrasik W, Cribben I, Olsen F, Malykhin N. Diffusion tensor imaging of superficial prefrontal white matter in healthy aging. Brain Res 2023; 1799:148152. [PMID: 36343726 DOI: 10.1016/j.brainres.2022.148152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
The prefrontal cortex (PFC) is a heterogenous structure that is highly susceptible to the effects of aging. Few studies have investigated age effects on the superficial white matter (WM) contained within the PFC using in-vivo magnetic resonance imaging (MRI). This study used diffusion tensor imaging (DTI) tractography to examine the effects of age, sex, and intracranial volume (ICV) on superficial WM within specific PFC subregions, and to model the relationships with age using higher order polynomial regression modelling. PFC WM of 140 healthy individuals, aged 18-85, was segmented into medial and lateral orbitofrontal, medial prefrontal, and dorsolateral prefrontal subregions. Differences due to age in microstructural parameters such as fractional anisotropy (FA), axial and radial diffusivities, and macrostructural measures of tract volumes, fiber counts, average fiber lengths, and average number of fibers per voxel were examined. We found that most prefrontal subregions demonstrated age effects, with decreases in FA, tract volume, and fiber counts, and increases in all diffusivity measures. Age relationships were mostly non-linear, with higher order regressions chosen in most cases. Declines in PFC FA began at the onset of adulthood while the greatest changes in diffusivity and volume did not occur until middle age. The effects of age were most prominent in medial tracts while the lateral orbitofrontal tracts were less affected. Significant effects of sex and ICV were also observed in certain parameters. The patterns mostly followed myelination order, with late-myelinating prefrontal subregions experiencing earlier and more pronounced age effects, further supporting the frontal theory of aging.
Collapse
Affiliation(s)
- Wojciech Pietrasik
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ivor Cribben
- Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada; Department of Accounting & Business Analytics, Alberta School of Business, University of Alberta, Edmonton, Alberta, Canada
| | - Fraser Olsen
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nikolai Malykhin
- Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada; Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
13
|
Mai JK, Majtanik M. Myeloarchitectonic maps of the human cerebral cortex registered to surface and sections of a standard atlas brain. Transl Neurosci 2023; 14:20220325. [PMID: 38152094 PMCID: PMC10751573 DOI: 10.1515/tnsci-2022-0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023] Open
Abstract
C. and O. Vogt had set up a research program with the aim of establishing a detailed cartography of the medullary fiber distribution of the human brain. As part of this program, around 200 cortical fields were differentiated based on their myeloarchitectural characteristics and mapped with regard to their exact location in the isocortex. The typical features were graphically documented and classified by a sophisticated linguistic coding. Their results have only recently received adequate attention and applications. The reasons for the revival of this spectrum of their research include interest in the myeloarchitecture of the cortex as a differentiating feature of the cortex architecture and function, as well as the importance for advanced imaging methodologies, particularly tractography and molecular imaging. Here, we describe our approach to exploit the original work of the Vogts and their co-workers to construct a myeloarchitectonic map that is referenced to the Atlas of the Human Brain (AHB) in standard space. We developed a semi-automatic pipeline for processing and integrating the various original maps into a single coherent map. To optimize the precision of the registration between the published maps and the AHB, we augmented the maps with topographic landmarks of the brains that were originally analyzed. Registration of all maps into the AHB opened several possibilities. First, for the majority of the fields, multiple maps from different authors are available, which allows for sophisticated statistical integration, for example, unification with a label-fusion technique. Second, each field in the myeloarchitectonic surface map can be visualized on the myelin-stained cross-section of the AHB at the best possible correspondence. The features of each field can be correlated with the fiber-stained cross-sections in the AHB and with the extensive published materials from the Vogt school and, if necessary, corrected. Third, mapping to the AHB allows the relationship between fiber characteristics of the cortex and the subcortex to be examined. Fourth, the cytoarchitectonic maps from Brodmann and von Economo and Koskinas, which are also registered to the AHB, can be compared. This option allows the study of the correspondence between cyto- and myeloarchitecture in each field. Finally, by using our "stripe" technology - where any other feature registered to the same space can be directly compared owing to the linear and parallel representation of the correlated cortex segments - this map becomes part of a multidimensional co-registration platform.
Collapse
Affiliation(s)
- Juergen K. Mai
- Department of Neuroanatomy, Heinrich Heine University Duesseldorf, DuesseldorfD-40225, Germany
| | - Milan Majtanik
- Department of Informatics, Heinrich Heine University Duesseldorf, DuesseldorfD-40225, Germany
- MRX-Brain GmbH Duesseldorf, DuesseldorfD-40225, Germany
| |
Collapse
|
14
|
Guo Y, Wu H, Dong D, Zhou F, Li Z, Zhao L, Long Z. Stress and the brain: Emotional support mediates the association between myelination in the right supramarginal gyrus and perceived chronic stress. Neurobiol Stress 2022; 22:100511. [PMID: 36632310 PMCID: PMC9826980 DOI: 10.1016/j.ynstr.2022.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Perceived stress, which refers to people's evaluation of a stressful event and their ability to cope with it, has emerged as a stable predictor for physical and mental health outcomes. Increasing evidence has suggested the buffering effect of social support on perceived stress. Although previous studies have investigated the brain structural features (e.g., gray matter volume) associated with perceived stress, less is known about the association between perceived chronic stress and intra-cortical myelin (ICM), which is an important microstructure of brain and is essential for healthy brain functions, and the role of social support in this association. Using a sample of 1076 healthy young adults drawn from the Human Connectome Project, we quantified the ICMby the contrast of T1w and T2w images and examined its association with perceived chronic stress during the last month and social support. Behavioral results showed that perceived chronic stress was negatively associated with both emotional support and instrumental support. Vertex-wise multiple regression analyses revealed that higher level of perceived chronic stress was significantly associated with lower ICM content of a cluster in the right supramarginal gyrus (rSMG). Interestingly, the emotional support, but not the instrumental support, significantly mediated the association of perceived chronic stress with ICM in the rSMG. Overall, the present study provides novel evidence for the cortical myelination of perceived chronic stress in humans and highlights the essential role of the rSMG in perceived chronic stress and emotional support.
Collapse
Affiliation(s)
- Yiqun Guo
- School of Innovation and Entrepreneurship Education, Chongqing University of Posts and Telecommunications, Chongqing, China,School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China,Key Laboratory of Cognition and Personality, Ministry of Education, China,Corresponding author. School of Bioinformatics, Chongqing University of Posts and Telecommunications, No. 2, Chongwen Road, Nanan District, China.
| | - Huimin Wu
- Key Laboratory of Cognition and Personality, Ministry of Education, China,Faculty of Psychology, Southwest University, Chongqing, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, China,Faculty of Psychology, Southwest University, Chongqing, China
| | - Feng Zhou
- Key Laboratory of Cognition and Personality, Ministry of Education, China,Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhangyong Li
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Le Zhao
- Faculty of Psychology, Beijing Normal University, Zhuhai, China
| | - Zhiliang Long
- Key Laboratory of Cognition and Personality, Ministry of Education, China,Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Strain JF, Cooley SA, Tomov D, Boerwinkle A, Ances BM. Abnormal Magnetic Resonance Image Signature in Virologically Stable HIV Individuals. J Infect Dis 2022; 226:2161-2169. [PMID: 36281565 DOI: 10.1093/infdis/jiac418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND With implementation of combination antiretroviral therapy (cART), changes to brain integrity in people with HIV (PWH) are subtle compared to those observed in the pre-cART era. T1-weighted/T2-weighted (T1w/T2w) ratio has been proposed as a measure of cortical myelin. This study examines T1w/T2w values between virologically controlled PWH and persons without HIV (PWoH). METHODS Virologically well-controlled PWH (n = 164) and PWoH (n = 120) were compared on global and regional T1w/T2w values. T1w/T2w values were associated with HIV disease variables (nadir and current CD4 T-cell count, and CNS penetration effectiveness of cART regimen) in PWH, and as a function of age for both PWoH and PWH. RESULTS PWH had reduced global and regional T1w/T2w values compared to PWoH in the posterior cingulate cortex, caudal anterior cingulate cortex, and insula. T1w/T2w values did not correlate with HIV variables except for a negative relationship with CNS penetration effectiveness. Greater cardiovascular disease risk and older age were associated with lower T1w/T2w values only for PWH. CONCLUSIONS T1w/T2w values obtained from commonly acquired MRI protocols differentiates virologically well-controlled PWH from PWoH. Changes in T1w/T2w ratio do not correlate with typical HIV measures. Future studies are needed to determine the biological mechanisms underlying this measure.
Collapse
Affiliation(s)
- Jeremy F Strain
- Department of Neurology, Washington University, St Louis, Missouri, USA
| | - Sarah A Cooley
- Department of Neurology, Washington University, St Louis, Missouri, USA
| | - Dimitre Tomov
- Department of Neurology, Washington University, St Louis, Missouri, USA
| | - Anna Boerwinkle
- Department of Neurology, Washington University, St Louis, Missouri, USA
| | - Beau M Ances
- Department of Neurology, Washington University, St Louis, Missouri, USA
| |
Collapse
|
16
|
Ali TS, Lv J, Calamante F. Gradual changes in microarchitectural properties of cortex and juxtacortical white matter: Observed by anatomical and diffusion MRI. Magn Reson Med 2022; 88:2485-2503. [PMID: 36045582 DOI: 10.1002/mrm.29413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Characterization of cerebral cortex is challenged by the complexity and heterogeneity of its cyto- and myeloarchitecture. This study evaluates quantitative MRI metrics, measured across two cortical depths and in subcortical white matter (WM) adjacent to cortex (juxtacortical WM), indicative of myelin content, neurite density, and diffusion microenvironment, for a comprehensive characterization of cortical microarchitecture. METHODS High-quality structural and diffusion MRI data (N = 30) from the Human Connectome Project were processed to compute myelin index, neurite density index, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity from superficial cortex, deep cortex, and juxtacortical WM. The distributional patterns of these metrics were analyzed individually, correlated to one another, and were compared to established parcellations. RESULTS Our results supported that myeloarchitectonic and the coexisting cytoarchitectonic structures influence the diffusion properties of water molecules residing in cortex. Full cortical thickness showed myelination patterns similar to those previously observed in humans. Higher myelin indices with similar distributional patterns were observed in deep cortex whereas lower myelin indices were observed in superficial cortex. Neurite density index and other diffusion MRI derived parameters provided complementary information to myelination. Reliable and reproducible correlations were identified among the cortical microarchitectural properties and fiber distributional patterns in proximal WM structures. CONCLUSION We demonstrated gradual changes across the cortical sheath by assessing depth-specific cortical micro-architecture using anatomical and diffusion MRI. Mutually independent but coexisting features of cortical layers and juxtacortical WM provided new insights towards structural organizational units and variabilities across cortical regions and through depth.
Collapse
Affiliation(s)
- Tonima S Ali
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Jinglei Lv
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Sydney Imaging, The University of Sydney, Sydney, Australia
| | - Fernando Calamante
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Sydney Imaging, The University of Sydney, Sydney, Australia
| |
Collapse
|
17
|
Xiang B, Wen J, Schmidt RE, Sukstanskii AL, Mamah D, Yablonskiy DA, Cross AH. Evaluating brain damage in multiple sclerosis with simultaneous multi-angular-relaxometry of tissue. Ann Clin Transl Neurol 2022; 9:1514-1527. [PMID: 36178006 PMCID: PMC9539387 DOI: 10.1002/acn3.51621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) is a common demyelinating central nervous system disease. MRI methods that can quantify myelin loss are needed for trials of putative remyelinating agents. Quantitative magnetization transfer MRI introduced the macromolecule proton fraction (MPF), which correlates with myelin concentration. We developed an alternative approach, Simultaneous-Multi-Angular-Relaxometry-of-Tissue (SMART) MRI, to generate MPF. Our objective was to test SMART-derived MPF metric as a potential imaging biomarker of demyelination. METHODS Twenty healthy control (HC), 11 relapsing-remitting MS (RRMS), 22 progressive MS (PMS), and one subject with a biopsied tumefactive demyelinating lesion were scanned at 3T using SMART MRI. SMART-derived MPF metric was determined in normal-appearing cortical gray matter (NAGM), normal-appearing subcortical white matter (NAWM), and demyelinating lesions. MPF metric was evaluated for correlations with physical and cognitive test scores. Comparisons were made between HC and MS and between MS subtypes. Furthermore, correlations were determined between MPF and neuropathology in the biopsied person. RESULTS SMART-derived MPF in NAGM and NAWM were lower in MS than HC (p < 0.001). MPF in NAGM, NAWM and lesions differentiated RRMS from PMS (p < 0.01, p < 0.001, p < 0.001, respectively), whereas lesion volumes did not. MPF in NAGM, NAWM and lesions correlated with the Expanded Disability Status Scale (p < 0.01, p < 0.001, p < 0.001, respectively) and nine-hole peg test (p < 0.001, p < 0.001, p < 0.01, respectively). MPF was lower in the histopathologically confirmed inflammatory demyelinating lesion than the contralateral NAWM and increased in the biopsied lesion over time, mirroring improved clinical performance. INTERPRETATION SMART-derived MPF metric holds potential as a quantitative imaging biomarker of demyelination and remyelination.
Collapse
Affiliation(s)
- Biao Xiang
- Department of RadiologyWashington UniversitySt. LouisMissouri63110USA
| | - Jie Wen
- Department of RadiologyWashington UniversitySt. LouisMissouri63110USA
| | - Robert E. Schmidt
- Department of PathologyWashington UniversitySt. LouisMissouri63110USA
| | | | - Daniel Mamah
- Department of PsychiatryWashington UniversitySt. LouisMissouri63110USA
| | | | - Anne H. Cross
- Department of NeurologyWashington UniversitySt. LouisMissouri63110USA
| |
Collapse
|
18
|
Foit NA, Yung S, Lee HM, Bernasconi A, Bernasconi N, Hong SJ. A whole-brain 3D myeloarchitectonic atlas: Mapping the Vogt-Vogt legacy to the cortical surface. Neuroimage 2022; 263:119617. [PMID: 36084859 DOI: 10.1016/j.neuroimage.2022.119617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Building precise and detailed parcellations of anatomically and functionally distinct brain areas has been a major focus in Neuroscience. Pioneer anatomists parcellated the cortical manifold based on extensive histological studies of post-mortem brain, harnessing local variations in cortical cyto- and myeloarchitecture to define areal boundaries. Compared to the cytoarchitectonic field, where multiple neuroimaging studies have recently translated this old legacy data into useful analytical resources, myeloarchitectonics, which parcellate the cortex based on the organization of myelinated fibers, has received less attention. Here, we present the neocortical surface-based myeloarchitectonic atlas based on the histology-derived maps of the Vogt-Vogt school and its 2D translation by Nieuwenhuys. In addition to a myeloarchitectonic parcellation, our package includes intracortical laminar profiles of myelin content based on Vogt-Vogt-Hopf original publications. Histology-derived myelin density mapped on our atlas demonstrated a close overlap with in vivo quantitative MRI markers for myelin and relates to cytoarchitectural features. Complementing the existing battery of approaches for digital cartography, the whole-brain myeloarchitectonic atlas offers an opportunity to validate imaging surrogate markers of myelin in both health and disease.
Collapse
Affiliation(s)
- Niels A Foit
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Seles Yung
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Hyo Min Lee
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Seok-Jun Hong
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada; Center for the Developing Brain, Child Mind Institute, NY, USA; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
19
|
Schiavi S, Lu PJ, Weigel M, Lutti A, Jones DK, Kappos L, Granziera C, Daducci A. Bundle myelin fraction (BMF) mapping of different white matter connections using microstructure informed tractography. Neuroimage 2022; 249:118922. [PMID: 35063648 PMCID: PMC7615247 DOI: 10.1016/j.neuroimage.2022.118922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
To date, we have scarce information about the relative myelination level of different fiber bundles in the human brain. Indirect evidence comes from postmortem histology data but histological stainings are unable to follow a specific bundle and determine its intrinsic myelination. In this context, quantitative MRI, and diffusion MRI tractography may offer a viable solution by providing, respectively, voxel-wise myelin sensitive maps and the pathways of the major tracts of the brain. Then, "tractometry" can be used to combine these two pieces of information by averaging tissue features (obtained from any voxel-wise map) along the streamlines recovered with diffusion tractography. Although this method has been widely used in the literature, in cases of voxels containing multiple fiber populations (each with different levels of myelination), tractometry provides biased results because the same value will be attributed to any bundle passing through the voxel. To overcome this bias, we propose a new method - named "myelin streamline decomposition" (MySD) - which extends convex optimization modeling for microstructure informed tractography (COMMIT) allowing the actual value measured by a microstructural map to be deconvolved on each individual streamline, thereby recovering unique bundle-specific myelin fractions (BMFs). We demonstrate the advantage of our method with respect to tractometry in well-studied bundles and compare the cortical projection of the obtained bundle-wise myelin values of both methods. We also prove the stability of our approach across different subjects and different MRI sensitive myelin mapping approaches. This work provides a proof-of-concept of in vivo investigations of entire neuronal pathways that, to date, are not possible.
Collapse
Affiliation(s)
- Simona Schiavi
- Department of Computer Science, University of Verona, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Italy.
| | - Po-Jui Lu
- Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Translational Imaging in Neurology (ThINk) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Translational Imaging in Neurology (ThINk) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Radiological Physics, Department of Radiology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre, Cardiff University, United Kingdom; Neuroscience and Mental Health Research Institute, Cardiff University, United Kingdom
| | - Ludwig Kappos
- Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Translational Imaging in Neurology (ThINk) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Translational Imaging in Neurology (ThINk) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | | |
Collapse
|
20
|
Cho S, Kurokawa R, Hagiwara A, Gonoi W, Mori H, Kawahara T, Nakaya M, Sakamoto N, Fujita N, Kamio S, Koyama H, Abe O. Localization of the central sulcus using the distinctive high signal intensity of the paracentral lobule on T1-weighted images. Neuroradiology 2022; 64:289-299. [PMID: 33959791 DOI: 10.1007/s00234-021-02729-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE The central sulcus is an important landmark in the brain. This study aimed to investigate the distinctive signal of the paracentral lobule (PL) on T1-weighted images (T1WIs; the white PL sign) and evaluate its usefulness as a new method of identifying the central sulcus. METHODS T1WIs of the brain of 96 participants (age, 58.9 ± 17.9 years; range, 8-87 years) scanned at 3-T MR system were retrospectively reviewed. First, we qualitatively analyzed the signal of the cortex of the PL by comparing it with that of the ipsilateral superior frontal gyrus on a 4-point grading score. Second, we compared the cortical signal intensity and gray/white-matter contrast between the PL and superior frontal gyrus. Third, we evaluated the usefulness of the PL signal for identifying the central sulcus. RESULTS The PL cortex was either mildly hyperintense (grade 2) or definitely hyperintense (grade 3) in comparison with that of superior frontal cortex in all participants. The signal intensity of the PL cortex was significantly higher than that of the superior frontal cortex (p < 0.001), whereas the gray/white-matter contrast of the PL was weaker than that of the superior frontal gyrus (p < 0.001). The central sulci were identified with 94.3% accuracy (181/192) using the new method. CONCLUSION The white PL sign may be helpful in identifying the central sulcus, and this approach can be recognized as a new method for identification of the central sulcus.
Collapse
Affiliation(s)
- Shinichi Cho
- Department of Radiology, The University of Tokyo, 1-2-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Ryo Kurokawa
- Department of Radiology, The University of Tokyo, 1-2-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | | | - Wataru Gonoi
- Department of Radiology, The University of Tokyo, 1-2-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Harushi Mori
- Department of Radiology, Jichi Medical University, Tochigi, Japan
| | - Takuya Kawahara
- Clinical Research Promotion Center, Biostatistics Unit, The University of Tokyo Hospital, Tokyo, Japan
| | - Moto Nakaya
- Department of Radiology, The University of Tokyo, 1-2-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Naoya Sakamoto
- Department of Radiology, The University of Tokyo, 1-2-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Nana Fujita
- Department of Radiology, The University of Tokyo, 1-2-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Satoru Kamio
- Department of Radiology, The University of Tokyo, 1-2-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hiroaki Koyama
- Department of Radiology, The University of Tokyo, 1-2-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Osamu Abe
- Department of Radiology, The University of Tokyo, 1-2-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
21
|
Hilgetag CC, Goulas A, Changeux JP. A natural cortical axis connecting the outside and inside of the human brain. Netw Neurosci 2022; 6:950-959. [PMID: 36875013 PMCID: PMC9976644 DOI: 10.1162/netn_a_00256] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/17/2022] [Indexed: 11/04/2022] Open
Abstract
What structural and connectivity features of the human brain help to explain the extraordinary human cognitive abilities? We recently proposed a set of relevant connectomic fundamentals, some of which arise from the size scaling of the human brain relative to other primate brains, while others of these fundamentals may be uniquely human. In particular, we suggested that the remarkable increase of the size of the human brain due to its prolonged prenatal development has brought with it an increased sparsification, hierarchical modularization, as well as increased depth and cytoarchitectonic differentiation of brain networks. These characteristic features are complemented by a shift of projection origins to the upper layers of many cortical areas as well as the significantly prolonged postnatal development and plasticity of the upper cortical layers. Another fundamental aspect of cortical organization that has emerged in recent research is the alignment of diverse features of evolution, development, cytoarchitectonics, function, and plasticity along a principal, natural cortical axis from sensory ("outside") to association ("inside") areas. Here we highlight how this natural axis is integrated in the characteristic organization of the human brain. In particular, the human brain displays a developmental expansion of outside areas and a stretching of the natural axis such that outside areas are more widely separated from each other and from inside areas than in other species. We outline some functional implications of this characteristic arrangement.
Collapse
Affiliation(s)
- Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany.,Department of Health Sciences, Boston University, Boston, MA, USA
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany
| | - Jean-Pierre Changeux
- CNRS UMR 3571, Institut Pasteur, Paris, France.,Communications Cellulaires, Collège de France, Paris, France
| |
Collapse
|
22
|
Tendler BC, Qi F, Foxley S, Pallebage-Gamarallage M, Menke RAL, Ansorge O, Hurley SA, Miller KL. A method to remove the influence of fixative concentration on postmortem T 2 maps using a kinetic tensor model. Hum Brain Mapp 2021; 42:5956-5972. [PMID: 34541735 PMCID: PMC8596944 DOI: 10.1002/hbm.25661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/06/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
Formalin fixation has been shown to substantially reduce T2 estimates, primarily driven by the presence of fixative in tissue. Prior to scanning, post‐mortem samples are often placed into a fluid that has more favourable imaging properties. This study investigates whether there is evidence for a change in T2 in regions close to the tissue surface due to fixative outflux into this surrounding fluid. Furthermore, we investigate whether a simulated spatial map of fixative concentration can be used as a confound regressor to reduce T2 inhomogeneity. To achieve this, T2 maps and diffusion tensor estimates were obtained in 14 whole, formalin‐fixed post‐mortem brains placed in Fluorinert approximately 48 hr prior to scanning. Seven brains were fixed with 10% formalin and seven brains were fixed with 10% neutral buffered formalin (NBF). Fixative outflux was modelled using a proposed kinetic tensor (KT) model, which incorporates voxelwise diffusion tensor estimates to account for diffusion anisotropy and tissue‐specific diffusion coefficients. Brains fixed with 10% NBF revealed a spatial T2 pattern consistent with modelled fixative outflux. Confound regression of fixative concentration reduced T2 inhomogeneity across both white and grey matter, with the greatest reduction attributed to the KT model versus simpler models of fixative outflux. No such effect was observed in brains fixed with 10% formalin. Correlations between the transverse relaxation rate R2 and ferritin/myelin proteolipid protein (PLP) histology lead to an increased similarity for the relationship between R2 and PLP for the two fixative types after KT correction.
Collapse
Affiliation(s)
- Benjamin C Tendler
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford
| | - Feng Qi
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford
| | - Sean Foxley
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford.,Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | | | - Ricarda A L Menke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Samuel A Hurley
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford
| |
Collapse
|
23
|
Nerland S, Jørgensen KN, Nordhøy W, Maximov II, Bugge RAB, Westlye LT, Andreassen OA, Geier OM, Agartz I. Multisite reproducibility and test-retest reliability of the T1w/T2w-ratio: A comparison of processing methods. Neuroimage 2021; 245:118709. [PMID: 34848300 DOI: 10.1016/j.neuroimage.2021.118709] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The ratio of T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging (MRI) images is often used as a proxy measure of cortical myelin. However, the T1w/T2w-ratio is based on signal intensities that are inherently non-quantitative and known to be affected by extrinsic factors. To account for this a variety of processing methods have been proposed, but a systematic evaluation of their efficacy is lacking. Given the dependence of the T1w/T2w-ratio on scanner hardware and T1w and T2w protocols, it is important to ensure that processing pipelines perform well also across different sites. METHODS We assessed a variety of processing methods for computing cortical T1w/T2w-ratio maps, including correction methods for nonlinear field inhomogeneities, local outliers, and partial volume effects as well as intensity normalisation. These were implemented in 33 processing pipelines which were applied to four test-retest datasets, with a total of 170 pairs of T1w and T2w images acquired on four different MRI scanners. We assessed processing pipelines across datasets in terms of their reproducibility of expected regional distributions of cortical myelin, lateral intensity biases, and test-retest reliability regionally and across the cortex. Regional distributions were compared both qualitatively with histology and quantitatively with two reference datasets, YA-BC and YA-B1+, from the Human Connectome Project. RESULTS Reproducibility of raw T1w/T2w-ratio distributions was overall high with the exception of one dataset. For this dataset, Spearman rank correlations increased from 0.27 to 0.70 after N3 bias correction relative to the YA-BC reference and from -0.04 to 0.66 after N4ITK bias correction relative to the YA-B1+ reference. Partial volume and outlier corrections had only marginal effects on the reproducibility of T1w/T2w-ratio maps and test-retest reliability. Before intensity normalisation, we found large coefficients of variation (CVs) and low intraclass correlation coefficients (ICCs), with total whole-cortex CV of 10.13% and whole-cortex ICC of 0.58 for the raw T1w/T2w-ratio. Intensity normalisation with WhiteStripe, RAVEL, and Z-Score improved total whole-cortex CVs to 5.91%, 5.68%, and 5.19% respectively, whereas Z-Score and Least Squares improved whole-cortex ICCs to 0.96 and 0.97 respectively. CONCLUSIONS In the presence of large intensity nonuniformities, bias field correction is necessary to achieve acceptable correspondence with known distributions of cortical myelin, but it can be detrimental in datasets with less intensity inhomogeneity. Intensity normalisation can improve test-retest reliability and inter-subject comparability. However, both bias field correction and intensity normalisation methods vary greatly in their efficacy and may affect the interpretation of results. The choice of T1w/T2w-ratio processing method must therefore be informed by both scanner and acquisition protocol as well as the given study objective. Our results highlight limitations of the T1w/T2w-ratio, but also suggest concrete ways to enhance its usefulness in future studies.
Collapse
Affiliation(s)
- Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo 0319, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Kjetil N Jørgensen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo 0319, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Wibeke Nordhøy
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ivan I Maximov
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Robin A B Bugge
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Oliver M Geier
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo 0319, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Dong D, Wang Y, Long Z, Jackson T, Chang X, Zhou F, Chen H. The Association between Body Mass Index and Intra-Cortical Myelin: Findings from the Human Connectome Project. Nutrients 2021; 13:3221. [PMID: 34579106 PMCID: PMC8469469 DOI: 10.3390/nu13093221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
Intra-cortical myelin is a myelinated part of the cerebral cortex that is responsible for the spread and synchronization of neuronal activity in the cortex. Recent animal studies have established a link between obesity and impaired oligodendrocyte maturation vis-à-vis cells that produce and maintain myelin; however, the association between obesity and intra-cortical myelination remains to be established. To investigate the effects of obesity on intra-cortical myelin in living humans, we employed a large, demographically well-characterized sample of healthy young adults drawn from the Human Connectome Project (n = 1066). Intra-cortical myelin was assessed using a novel T1-w/T2-w ratio method. Linear regression analysis was used to investigate the association between body mass index (BMI), an indicator of obesity, and intra-cortical myelination, adjusting for covariates of no interest. We observed BMI was related to lower intra-cortical myelination in regions previously identified to be involved in reward processing (i.e., medial orbitofrontal cortex, rostral anterior cingulate cortex), attention (i.e., visual cortex, inferior/middle temporal gyrus), and salience detection (i.e., insula, supramarginal gyrus) in response to viewing food cues (corrected p < 0.05). In addition, higher BMIs were associated with more intra-cortical myelination in regions associated with somatosensory processing (i.e., the somatosensory network) and inhibitory control (i.e., lateral inferior frontal gyrus, frontal pole). These findings were also replicated after controlling for key potential confounding factors including total intracranial volume, substance use, and fluid intelligence. Findings suggested that altered intra-cortical myelination may represent a novel microstructure-level substrate underlying prior abnormal obesity-related brain neural activity, and lays a foundation for future investigations designed to evaluate how living habits, such as dietary habit and physical activity, affect intra-cortical myelination.
Collapse
Affiliation(s)
- Debo Dong
- Key Laboratory of Cognition and Personality, Southwest University (SWU), Ministry of Education, Chongqing 400715, China; (D.D.); (Y.W.); (Z.L.)
- Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Yulin Wang
- Key Laboratory of Cognition and Personality, Southwest University (SWU), Ministry of Education, Chongqing 400715, China; (D.D.); (Y.W.); (Z.L.)
- Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Zhiliang Long
- Key Laboratory of Cognition and Personality, Southwest University (SWU), Ministry of Education, Chongqing 400715, China; (D.D.); (Y.W.); (Z.L.)
- Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Todd Jackson
- Department of Psychology, University of Macau, Taipa 999078, China;
| | - Xuebin Chang
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Feng Zhou
- Center for Information in Medicine, MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Southwest University (SWU), Ministry of Education, Chongqing 400715, China; (D.D.); (Y.W.); (Z.L.)
- Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| |
Collapse
|
25
|
De Meo E, Storelli L, Moiola L, Ghezzi A, Veggiotti P, Filippi M, Rocca MA. In vivo gradients of thalamic damage in paediatric multiple sclerosis: a window into pathology. Brain 2021; 144:186-197. [PMID: 33221873 DOI: 10.1093/brain/awaa379] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 01/01/2023] Open
Abstract
The thalamus represents one of the first structures affected by neurodegenerative processes in multiple sclerosis. A greater thalamic volume reduction over time, on its CSF side, has been described in paediatric multiple sclerosis patients. However, its determinants and the underlying pathological changes, likely occurring before this phenomenon becomes measurable, have never been explored. Using a multiparametric magnetic resonance approach, we quantified, in vivo, the different processes that can involve the thalamus in terms of focal lesions, microstructural damage and atrophy in paediatric multiple sclerosis patients and their distribution according to the distance from CSF/thalamus interface and thalamus/white matter interface. In 70 paediatric multiple sclerosis patients and 26 age- and sex-matched healthy controls, we tested for differences in thalamic volume and quantitative MRI metrics-including fractional anisotropy, mean diffusivity and T1/T2-weighted ratio-in the whole thalamus and in thalamic white matter, globally and within concentric bands originating from CSF/thalamus interface. In paediatric multiple sclerosis patients, the relationship of thalamic abnormalities with cortical thickness and white matter lesions was also investigated. Compared to healthy controls, patients had significantly increased fractional anisotropy in whole thalamus (f2 = 0.145; P = 0.03), reduced fractional anisotropy (f2 = 0.219; P = 0.006) and increased mean diffusivity (f2 = 0.178; P = 0.009) in thalamic white matter and a trend towards a reduced thalamic volume (f2 = 0.027; P = 0.058). By segmenting the whole thalamus and thalamic white matter into concentric bands, in paediatric multiple sclerosis we detected significant fractional anisotropy abnormalities in bands nearest to CSF (f2 = 0.208; P = 0.002) and in those closest to white matter (f2 range = 0.183-0.369; P range = 0.010-0.046), while we found significant mean diffusivity (f2 range = 0.101-0.369; P range = 0.018-0.042) and T1/T2-weighted ratio (f2 = 0.773; P = 0.001) abnormalities in thalamic bands closest to CSF. The increase in fractional anisotropy and decrease in mean diffusivity detected at the CSF/thalamus interface correlated with cortical thickness reduction (r range = -0.27-0.34; P range = 0.004-0.028), whereas the increase in fractional anisotropy detected at the thalamus/white matter interface correlated with white matter lesion volumes (r range = 0.24-0.27; P range = 0.006-0.050). Globally, our results support the hypothesis of heterogeneous pathological processes, including retrograde degeneration from white matter lesions and CSF-mediated damage, leading to thalamic microstructural abnormalities, likely preceding macroscopic tissue loss. Assessing thalamic microstructural changes using a multiparametric magnetic resonance approach may represent a target to monitor the efficacy of neuroprotective strategies early in the disease course.
Collapse
Affiliation(s)
- Ermelinda De Meo
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Loredana Storelli
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Ghezzi
- Multiple Sclerosis Center, Ospedale di Gallarate, Gallarate, Italy
| | - Pierangelo Veggiotti
- Paediatric Neurology Unit, V. Buzzi Children's Hospital, Milan, Italy.,Biomedical and Clinical Science Department, University of Milan, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
26
|
Snyder K, Whitehead EP, Theodore WH, Zaghloul KA, Inati SJ, Inati SK. Distinguishing type II focal cortical dysplasias from normal cortex: A novel normative modeling approach. NEUROIMAGE-CLINICAL 2021; 30:102565. [PMID: 33556791 PMCID: PMC7887437 DOI: 10.1016/j.nicl.2021.102565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/21/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Focal cortical dysplasias (FCDs) are a common cause of apparently non-lesional drug-resistant focal epilepsy. Visual detection of subtle FCDs on MRI is clinically important and often challenging. In this study, we implement a set of 3D local image filters adapted from computer vision applications to characterize the appearance of normal cortex surrounding the gray-white junction. We create a normative model to serve as the basis for a novel multivariate constrained outlier approach to automated FCD detection. METHODS Standardized MPRAGE, T2 and FLAIR MR images were obtained in 15 patients with radiologically or histologically diagnosed FCDs and 30 healthy volunteers. Multiscale 3D local image filters were computed for each MR contrast then sampled onto the gray-white junction surface. Using an iterative Gaussianization procedure, we created a normative model of cortical variability in healthy volunteers, allowing for identification of outlier regions and estimates of similarity in normal cortex and FCD lesions. We used a constrained outlier approach following local normalization to automatically detect FCD lesions based on projection onto the mean FCD feature vector. RESULTS FCDs as well as some normal cortical regions such as primary sensorimotor and paralimbic regions appear as outliers. Regions such as the paralimbic regions and the anterior insula have similar features to FCDs. Our constrained outlier approach allows for automated FCD detection with 80% sensitivity and 70% specificity. SIGNIFICANCE A normative model using multiscale local image filters can be used to describe the normal cortical variability. Although FCDs appear similar to some cortical regions such as the anterior insula and paralimbic cortices, they can be identified using a constrained outlier detection approach. Our method for detecting outliers and estimating similarity is generic and could be extended to identification of other types of lesions or atypical cortical areas.
Collapse
Affiliation(s)
- Kathryn Snyder
- EEG Section, Office of the Clinical Director, NINDS, National Institutes of Health, United States
| | | | - William H Theodore
- Clinical Epilepsy Section, NINDS, National Institutes of Health, United States
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, United States
| | - Souheil J Inati
- Office of the Clinical Director, NINDS, National Institutes of Health, United States
| | - Sara K Inati
- EEG Section, Office of the Clinical Director, NINDS, National Institutes of Health, United States.
| |
Collapse
|
27
|
Wang C, Foxley S, Ansorge O, Bangerter-Christensen S, Chiew M, Leonte A, Menke RA, Mollink J, Pallebage-Gamarallage M, Turner MR, Miller KL, Tendler BC. Methods for quantitative susceptibility and R2* mapping in whole post-mortem brains at 7T applied to amyotrophic lateral sclerosis. Neuroimage 2020; 222:117216. [PMID: 32745677 PMCID: PMC7775972 DOI: 10.1016/j.neuroimage.2020.117216] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Susceptibility weighted magnetic resonance imaging (MRI) is sensitive to the local concentration of iron and myelin. Here, we describe a robust image processing pipeline for quantitative susceptibility mapping (QSM) and R2* mapping of fixed post-mortem, whole-brain data. Using this pipeline, we compare the resulting quantitative maps in brains from patients with amyotrophic lateral sclerosis (ALS) and controls, with validation against iron and myelin histology. Twelve post-mortem brains were scanned with a multi-echo gradient echo sequence at 7T, from which susceptibility and R2* maps were generated. Semi-quantitative histological analysis for ferritin (the principal iron storage protein) and myelin proteolipid protein was performed in the primary motor, anterior cingulate and visual cortices. Magnetic susceptibility and R2* values in primary motor cortex were higher in ALS compared to control brains. Magnetic susceptibility and R2* showed positive correlations with both myelin and ferritin estimates from histology. Four out of nine ALS brains exhibited clearly visible hyperintense susceptibility and R2* values in the primary motor cortex. Our results demonstrate the potential for MRI-histology studies in whole, fixed post-mortem brains to investigate the biophysical source of susceptibility weighted MRI signals in neurodegenerative diseases like ALS.
Collapse
Affiliation(s)
- Chaoyue Wang
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom.
| | - Sean Foxley
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom; Department of Radiology, University of Chicago, United States
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Sarah Bangerter-Christensen
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom; Brigham Young University, Provo, United States
| | - Mark Chiew
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom
| | - Anna Leonte
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom; University of Groningen,the Netherlands
| | - Ricarda Al Menke
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom
| | - Jeroen Mollink
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom; Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, the Netherlands
| | | | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Karla L Miller
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom
| | - Benjamin C Tendler
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, United Kingdom
| |
Collapse
|
28
|
Lommers E, Guillemin C, Reuter G, Fouarge E, Delrue G, Collette F, Degueldre C, Balteau E, Maquet P, Phillips C. Voxel-Based quantitative MRI reveals spatial patterns of grey matter alteration in multiple sclerosis. Hum Brain Mapp 2020; 42:1003-1012. [PMID: 33155763 PMCID: PMC7856642 DOI: 10.1002/hbm.25274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/10/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
Despite robust postmortem evidence and potential clinical importance of gray matter (GM) pathology in multiple sclerosis (MS), assessing GM damage by conventional magnetic resonance imaging (MRI) remains challenging. This prospective cross‐sectional study aimed at characterizing the topography of GM microstructural and volumetric alteration in MS using, in addition to brain atrophy measures, three quantitative MRI (qMRI) parameters—magnetization transfer (MT) saturation, longitudinal (R1), and effective transverse (R2*) relaxation rates, derived from data acquired during a single scanning session. Our study involved 35 MS patients (14 relapsing–remitting MS; 21 primary or secondary progressive MS) and 36 age‐matched healthy controls (HC). The qMRI maps were computed and segmented in different tissue classes. Voxel‐based quantification (VBQ) and voxel‐based morphometry (VBM) statistical analyses were carried out using multiple linear regression models. In MS patients compared with HC, three configurations of GM microstructural/volumetric alterations were identified. (a) Co‐localization of GM atrophy with significant reduction of MT, R1, and/or R2*, usually observed in primary cortices. (b) Microstructural modifications without significant GM loss: hippocampus and paralimbic cortices, showing reduced MT and/or R1 values without significant atrophy. (c) Atrophy without significant change in microstructure, identified in deep GM nuclei. In conclusion, this quantitative multiparametric voxel‐based approach reveals three different spatially‐segregated combinations of GM microstructural/volumetric alterations in MS that might be associated with different neuropathology.
Collapse
Affiliation(s)
- Emilie Lommers
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium.,Clinical Neuroimmunology Unit, Neurology Department, CHU Liège, Liège, Belgium
| | - Camille Guillemin
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium.,Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | - Gilles Reuter
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium.,Neurosurgery Department, CHU Liège, Liège, Belgium
| | - Eve Fouarge
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium
| | - Gaël Delrue
- Clinical Neuroimmunology Unit, Neurology Department, CHU Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium.,Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | | | - Evelyne Balteau
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium
| | - Pierre Maquet
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium.,Clinical Neuroimmunology Unit, Neurology Department, CHU Liège, Liège, Belgium
| | - Christophe Phillips
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium.,GIGA - in silico medicine, University of Liège, Liège, Belgium
| |
Collapse
|
29
|
Nieuwenhuys R, Broere CAJ. A detailed comparison of the cytoarchitectonic and myeloarchitectonic maps of the human neocortex produced by the Vogt-Vogt school. Brain Struct Funct 2020; 225:2717-2733. [PMID: 33141295 DOI: 10.1007/s00429-020-02150-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
The comprehensive research programme of the Vogt-Vogt (V-V) school, which was active during the period 1900-1970, included detailed cytoarchitectonic and myeloarchitectonic analyses of the human cerebral cortex, with the aim to integrate the data obtained into a map, showing a parcellation of the human cerebral cortex into fundamental structural and potentially functional units. The cytoarchitectonic V-V analyses yielded two maps of the human cerebral cortex, the famous map of Brodmann (Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig, 1909), Brodmann (in: Bruns P (ed) Neue deutsche Chirurgie, Enke, Stuttgart, 1914), and the less known, but more detailed map of Sarkisov et al. (Cytoarchitecture of the human cortex cerebri. Medgiz, Moscow, 1949). Sarkisov et al. used in their cytoarchitectonic parcellation of the cortex the same numbering scheme as Brodmann. They confirmed the presence of most of the areas delineated by the latter, but they subdivided several of these areas into two or more separate areas or subareas. Within the realm of the myeloarchitectonic V-V analyses, numerous meticulous studies of the cortex of individual cerebral lobes were carried out, but these were not united into a single map. Consequently, the envisioned integration of cytoarchitectonic and myeloarchitectonic data mentioned above was never realized. Some years ago, we (Nieuwenhuys et al. in Brain Struct Funct 220:2551-2573, 2015a, Nieuwenhuys et al. in Brain Struct Funct 220:3753-3755, 2015b) reanalyzed the V-V myeloarchitectonic data, and succeeded in constructing a complete myeloarchitectonic map of the human neocortex from these data. Because the data provided by the V-V school were derived from many different brains, a standard brain had to be introduced as a template to which all data available could be transferred. As such the MNI305 template was selected. Having made available now the cytoarchitectonic maps of Brodmann and Sarkisov et al. and the recently prepared myeloarchitectonic map, an attempt is made here to realize at last the original aim of the V-V school, viz. the preparation of a single, combined (cyto + myelo) architectonic map of the human cortex. To this end, the following three steps have been made. First, Brodmann's (BR) map, and the map of Sarkisov et al. (SA) were harmoniously transferred to the same template brain as the one used during the construction of our myeloarchitectonic map. Second, the standardized BR and our myeloarchitectonic (NI) map were compared, and the data contained within these maps were integrated into a single standardized combined BR-NI map (Fig. 11). The standardized SA and NI maps were subjected to the same procedure (Fig. 12). Finally, the standardized combined BR-NI and SA-NI maps were united into a single combined BR-SA-NI map (Fig. 13). This map renders it possible to make direct comparisons between the results of the architectonic studies of the V-V school and current parcellations of the human neocortex.
Collapse
Affiliation(s)
- Rudolf Nieuwenhuys
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands. .,Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK, Amsterdam, The Netherlands.
| | - Cees A J Broere
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105 BK, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Petracca M, El Mendili MM, Moro M, Cocozza S, Podranski K, Fleysher L, Inglese M. Laminar analysis of the cortical T1/T2-weighted ratio at 7T. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/6/e900. [PMID: 33087580 PMCID: PMC7641144 DOI: 10.1212/nxi.0000000000000900] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022]
Abstract
Objective In this observational study, we explored cortical structure as function of cortical depth through a laminar analysis of the T1/T2-weighted (T1w/T2w) ratio, which has been related to dendrite density in ex vivo brain tissue specimens of patients with MS. Methods In 39 patients (22 relapsing-remitting, 13 female, age 41.1 ± 10.6 years; 17 progressive, 11 female, age 54.1 ± 9.9 years) and 21 healthy controls (8 female, , age 41.6 ± 10.6 years), we performed a voxel-wise analysis of T1w/T2w ratio maps from high-resolution 7T images from the subpial surface to the gray matter/white matter boundary. Six layers were sampled to ensure accuracy based on mean cortical thickness and image resolution. Results At the voxel-wise comparison (p < 0.05, family wise error rate corrected), the whole MS group showed lower T1w/T2w ratio values than controls, both when considering the entire cortex and each individual layer, with peaks occurring in the fusiform, temporo-occipital, and superior and middle frontal cortex. In relapsing-remitting patients, differences in the T1w/T2w ratio were only identified in the subpial layer, with the peak occurring in the fusiform cortex, whereas results obtained in progressive patients mirrored the widespread damage found in the whole group. Conclusions Laminar analysis of T1w/T2w ratio mapping confirms the presence of cortical damage in MS and shows a variable expression of intracortical damage according to the disease phenotype. Although in the relapsing-remitting stage, only the subpial layer appears susceptible to damage, in progressive patients, widespread cortical abnormalities can be observed, not only, as described before, with regard to myelin/iron concentration but, possibly, to other microstructural features.
Collapse
Affiliation(s)
- Maria Petracca
- From the Department of Neurology (M.P., M.M.E.M., M.M., S.C., K.P., M.I.), Icahn School of Medicine at Mount Sinai, NY; Aix-Marseille Univ (M.M.E.M.), CNRS, CRMBM; APHM (M.M.E.M.), Hôpital de la Timone, CEMEREM, Marseille, France; Department of Informatics (M.M.), Bioengineering, Robotics and Systems Engineering (DIBRIS) and Machine Learning Genoa Center (MaLGa), University of Genoa; Department of Advanced Biomedical Sciences (S.C.), University of Naples "Federico II", Italy; Department of Radiology (L.F.), Icahn School of Medicine at Mount Sinai, NY; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics (M.I.), Maternal and Child Health (DINOGMI) and Center of Excellence for Biomedical Research, University of Genoa; and Ospedale Policlinico San Martino-IRCCS (M.I.), Genoa, Italy
| | - Mohamed M El Mendili
- From the Department of Neurology (M.P., M.M.E.M., M.M., S.C., K.P., M.I.), Icahn School of Medicine at Mount Sinai, NY; Aix-Marseille Univ (M.M.E.M.), CNRS, CRMBM; APHM (M.M.E.M.), Hôpital de la Timone, CEMEREM, Marseille, France; Department of Informatics (M.M.), Bioengineering, Robotics and Systems Engineering (DIBRIS) and Machine Learning Genoa Center (MaLGa), University of Genoa; Department of Advanced Biomedical Sciences (S.C.), University of Naples "Federico II", Italy; Department of Radiology (L.F.), Icahn School of Medicine at Mount Sinai, NY; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics (M.I.), Maternal and Child Health (DINOGMI) and Center of Excellence for Biomedical Research, University of Genoa; and Ospedale Policlinico San Martino-IRCCS (M.I.), Genoa, Italy
| | - Matteo Moro
- From the Department of Neurology (M.P., M.M.E.M., M.M., S.C., K.P., M.I.), Icahn School of Medicine at Mount Sinai, NY; Aix-Marseille Univ (M.M.E.M.), CNRS, CRMBM; APHM (M.M.E.M.), Hôpital de la Timone, CEMEREM, Marseille, France; Department of Informatics (M.M.), Bioengineering, Robotics and Systems Engineering (DIBRIS) and Machine Learning Genoa Center (MaLGa), University of Genoa; Department of Advanced Biomedical Sciences (S.C.), University of Naples "Federico II", Italy; Department of Radiology (L.F.), Icahn School of Medicine at Mount Sinai, NY; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics (M.I.), Maternal and Child Health (DINOGMI) and Center of Excellence for Biomedical Research, University of Genoa; and Ospedale Policlinico San Martino-IRCCS (M.I.), Genoa, Italy
| | - Sirio Cocozza
- From the Department of Neurology (M.P., M.M.E.M., M.M., S.C., K.P., M.I.), Icahn School of Medicine at Mount Sinai, NY; Aix-Marseille Univ (M.M.E.M.), CNRS, CRMBM; APHM (M.M.E.M.), Hôpital de la Timone, CEMEREM, Marseille, France; Department of Informatics (M.M.), Bioengineering, Robotics and Systems Engineering (DIBRIS) and Machine Learning Genoa Center (MaLGa), University of Genoa; Department of Advanced Biomedical Sciences (S.C.), University of Naples "Federico II", Italy; Department of Radiology (L.F.), Icahn School of Medicine at Mount Sinai, NY; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics (M.I.), Maternal and Child Health (DINOGMI) and Center of Excellence for Biomedical Research, University of Genoa; and Ospedale Policlinico San Martino-IRCCS (M.I.), Genoa, Italy
| | - Kornelius Podranski
- From the Department of Neurology (M.P., M.M.E.M., M.M., S.C., K.P., M.I.), Icahn School of Medicine at Mount Sinai, NY; Aix-Marseille Univ (M.M.E.M.), CNRS, CRMBM; APHM (M.M.E.M.), Hôpital de la Timone, CEMEREM, Marseille, France; Department of Informatics (M.M.), Bioengineering, Robotics and Systems Engineering (DIBRIS) and Machine Learning Genoa Center (MaLGa), University of Genoa; Department of Advanced Biomedical Sciences (S.C.), University of Naples "Federico II", Italy; Department of Radiology (L.F.), Icahn School of Medicine at Mount Sinai, NY; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics (M.I.), Maternal and Child Health (DINOGMI) and Center of Excellence for Biomedical Research, University of Genoa; and Ospedale Policlinico San Martino-IRCCS (M.I.), Genoa, Italy
| | - Lazar Fleysher
- From the Department of Neurology (M.P., M.M.E.M., M.M., S.C., K.P., M.I.), Icahn School of Medicine at Mount Sinai, NY; Aix-Marseille Univ (M.M.E.M.), CNRS, CRMBM; APHM (M.M.E.M.), Hôpital de la Timone, CEMEREM, Marseille, France; Department of Informatics (M.M.), Bioengineering, Robotics and Systems Engineering (DIBRIS) and Machine Learning Genoa Center (MaLGa), University of Genoa; Department of Advanced Biomedical Sciences (S.C.), University of Naples "Federico II", Italy; Department of Radiology (L.F.), Icahn School of Medicine at Mount Sinai, NY; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics (M.I.), Maternal and Child Health (DINOGMI) and Center of Excellence for Biomedical Research, University of Genoa; and Ospedale Policlinico San Martino-IRCCS (M.I.), Genoa, Italy
| | - Matilde Inglese
- From the Department of Neurology (M.P., M.M.E.M., M.M., S.C., K.P., M.I.), Icahn School of Medicine at Mount Sinai, NY; Aix-Marseille Univ (M.M.E.M.), CNRS, CRMBM; APHM (M.M.E.M.), Hôpital de la Timone, CEMEREM, Marseille, France; Department of Informatics (M.M.), Bioengineering, Robotics and Systems Engineering (DIBRIS) and Machine Learning Genoa Center (MaLGa), University of Genoa; Department of Advanced Biomedical Sciences (S.C.), University of Naples "Federico II", Italy; Department of Radiology (L.F.), Icahn School of Medicine at Mount Sinai, NY; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics (M.I.), Maternal and Child Health (DINOGMI) and Center of Excellence for Biomedical Research, University of Genoa; and Ospedale Policlinico San Martino-IRCCS (M.I.), Genoa, Italy.
| |
Collapse
|
31
|
Liu X, Bautista J, Liu E, Zikopoulos B. Imbalance of laminar-specific excitatory and inhibitory circuits of the orbitofrontal cortex in autism. Mol Autism 2020; 11:83. [PMID: 33081829 PMCID: PMC7574354 DOI: 10.1186/s13229-020-00390-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The human orbitofrontal cortex (OFC) is involved in assessing the emotional significance of events and stimuli, emotion-based learning, allocation of attentional resources, and social cognition. Little is known about the structure, connectivity and excitatory/inhibitory circuit interactions underlying these diverse functions in human OFC, as well as how the circuit is disrupted in individuals with autism spectrum disorder (ASD). METHODS We used post-mortem brain tissue from neurotypical adults and individuals with ASD. We examined the morphology and distribution of myelinated axons across cortical layers in OFC, at the single axon level, as a proxy of excitatory pathways. In the same regions, we also examined the laminar distribution of all neurons and neurochemically- and functionally-distinct inhibitory neurons that express the calcium-binding proteins parvalbumin (PV), calbindin (CB), and calretinin (CR). RESULTS We found that the density of myelinated axons increased consistently towards layer 6, while the average axon diameter did not change significantly across layers in both groups. However, both the density and diameter of myelinated axons were significantly lower in the ASD group compared with the Control group. The distribution pattern and density of the three major types of inhibitory neurons was comparable between groups, but there was a significant reduction in the density of excitatory neurons across OFC layers in ASD. LIMITATIONS This study is limited by the availability of human post-mortem tissue optimally processed for high-resolution microscopy and immunolabeling, especially from individuals with ASD. CONCLUSIONS The balance between excitation and inhibition in OFC is at the core of its function, assessing and integrating emotional and social cues with internal states and external inputs. Our preliminary results provide evidence for laminar-specific changes in the ratio of excitation/inhibition in OFC of adults with ASD, with an overall weakening and likely disorganization of excitatory signals and a relative strengthening of local inhibition. These changes likely underlie pathology of major OFC communications with limbic or other cortices and the amygdala in individuals with ASD, and may provide the anatomic basis for disrupted transmission of signals for social interactions and emotions in autism.
Collapse
Affiliation(s)
- Xuefeng Liu
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA
| | - Julied Bautista
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA
| | - Edward Liu
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA. .,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA. .,Graduate Program in Neuroscience, Boston University, Boston, MA, USA.
| |
Collapse
|
32
|
Chang EF, Kurteff G, Andrews JP, Briggs RG, Conner AK, Battiste JD, Sughrue ME. Pure Apraxia of Speech After Resection Based in the Posterior Middle Frontal Gyrus. Neurosurgery 2020; 87:E383-E389. [PMID: 32097489 PMCID: PMC7690655 DOI: 10.1093/neuros/nyaa002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 12/01/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND IMPORTANCE Apraxia of speech is a disorder of articulatory coordination and planning in speech sound production. Its diagnosis is based on deficits in articulation, prosody, and fluency. It is often described concurrent with aphasia or dysarthria, while pure apraxia of speech is a rare entity. CLINICAL PRESENTATION A right-handed man underwent focal surgical resection of a recurrent grade III astrocytoma in the left hemisphere dorsal premotor cortex located in the posterior middle frontal gyrus. After the procedure, he experienced significant long-term speech production difficulties. A battery of standard and custom language and articulatory assessments were administered, revealing intact comprehension and naming abilities, and preserved strength in orofacial articulators, but considerable deficits in articulatory coordination, fluency, and prosody-consistent with diagnosis of pure apraxia of speech. Tractography and resection volumes compared with publicly available imaging data from the Human Connectome Project suggest possible overlap with area 55b, an under-recognized language area in the dorsal premotor cortex and has white matter connectivity with the superior longitudinal fasciculus. CONCLUSION The case reported here details a rare clinical entity, pure apraxia of speech resulting from resection of posterior middle frontal gyrus. While not a classical language area, emerging literature supports the role of this area in the production of fluent speech, and has implications for surgical planning and the general neurobiology of language.
Collapse
Affiliation(s)
- Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Garret Kurteff
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - John P Andrews
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andrew K Conner
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - James D Battiste
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | |
Collapse
|
33
|
Paquola C, Bethlehem RAI, Seidlitz J, Wagstyl K, Romero-Garcia R, Whitaker KJ, Vos de Wael R, Williams GB, NSPN Consortium, Vértes PE, Margulies DS, Bernhardt B, Bullmore ET. Shifts in myeloarchitecture characterise adolescent development of cortical gradients. eLife 2019; 8:e50482. [PMID: 31724948 PMCID: PMC6855802 DOI: 10.7554/elife.50482] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/02/2019] [Indexed: 11/21/2022] Open
Abstract
We studied an accelerated longitudinal cohort of adolescents and young adults (n = 234, two time points) to investigate dynamic reconfigurations in myeloarchitecture. Intracortical profiles were generated using magnetization transfer (MT) data, a myelin-sensitive magnetic resonance imaging contrast. Mixed-effect models of depth specific intracortical profiles demonstrated two separate processes i) overall increases in MT, and ii) flattening of the MT profile related to enhanced signal in mid-to-deeper layers, especially in heteromodal and unimodal association cortices. This development was independent of morphological changes. Enhanced MT in mid-to-deeper layers was found to spatially co-localise specifically with gene expression markers of oligodendrocytes. Interregional covariance analysis revealed that these intracortical changes contributed to a gradual differentiation of higher-order from lower-order systems. Depth-dependent trajectories of intracortical myeloarchitectural development contribute to the maturation of structural hierarchies in the human neocortex, providing a model for adolescent development that bridges microstructural and macroscopic scales of brain organisation.
Collapse
Affiliation(s)
- Casey Paquola
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMcGill UniversityMontrealCanada
| | - Richard AI Bethlehem
- Department of PsychiatryUniversity of CambridgeCambridgeUnited Kingdom
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUnited Kingdom
| | - Jakob Seidlitz
- Department of PsychiatryUniversity of CambridgeCambridgeUnited Kingdom
- Developmental Neurogenomics UnitNational Institute of Mental HealthBethesdaUnited States
| | - Konrad Wagstyl
- Department of PsychiatryUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Kirstie J Whitaker
- Department of PsychiatryUniversity of CambridgeCambridgeUnited Kingdom
- The Alan Turing InstituteLondonUnited Kingdom
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMcGill UniversityMontrealCanada
| | - Guy B Williams
- Department of Clinical Neurosciences, Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Petra E Vértes
- Department of PsychiatryUniversity of CambridgeCambridgeUnited Kingdom
- The Alan Turing InstituteLondonUnited Kingdom
| | - Daniel S Margulies
- FrontlabInstitut du Cerveau et de la Moelle épinière, UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225ParisFrance
| | - Boris Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMcGill UniversityMontrealCanada
| | - Edward T Bullmore
- Department of PsychiatryUniversity of CambridgeCambridgeUnited Kingdom
- Department of Clinical Neurosciences, Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
34
|
Schurr R, Filo S, Mezer AA. Tractography delineation of the vertical occipital fasciculus using quantitative T1 mapping. Neuroimage 2019; 202:116121. [DOI: 10.1016/j.neuroimage.2019.116121] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/12/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022] Open
|
35
|
Gordon EM, May GJ, Nelson SM. MRI-based measures of intracortical myelin are sensitive to a history of TBI and are associated with functional connectivity. Neuroimage 2019; 200:199-209. [PMID: 31203023 PMCID: PMC6703948 DOI: 10.1016/j.neuroimage.2019.06.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/29/2019] [Accepted: 06/12/2019] [Indexed: 01/31/2023] Open
Abstract
Traumatic brain injuries (TBIs) induce persistent behavioral and cognitive deficits via diffuse axonal injury. Axonal injuries are often examined in vivo using diffusion MRI, which identifies damaged and demyelinated regions in deep white matter. However, TBI patients can exhibit impairment in the absence of diffusion-measured abnormalities, suggesting that axonal injury and demyelination may occur outside the deep white matter. Importantly, myelinated axons are also present within the cortex. Cortical myelination cannot be measured using diffusion imaging, but can be mapped in-vivo using the T1-w/T2-w ratio method. Here, we conducted the first work examining effects of TBI on intracortical myelin in living humans by applying myelin mapping to 46 US Military Veterans with a history of TBI. We observed that myelin maps could be created in TBI patients that matched known distributions of cortical myelin. After controlling for age and presence of blast injury, the number of lifetime TBIs was associated with reductions in the T1-w/T2-w ratio across the cortex, most significantly in a highly-myelinated lateral occipital region corresponding with the human MT+ complex. Further, the T1-w/T2-w ratio in this MT+ region predicted resting-state functional connectivity of that region. By contrast, a history of blast TBI did not affect the T1-w/T2-w ratio in either a diffuse or focal pattern. These findings suggest that intracortical myelin, as measured using the T1-w/T2-w ratio, may be a TBI biomarker that is anatomically complementary to diffusion MRI. Thus, myelin mapping could potentially be combined with diffusion imaging to improve MRI-based diagnostic tools for TBI.
Collapse
Affiliation(s)
- Evan M Gordon
- VISN 17 Center of Excellence for Research on Returning War Veterans, 4800 Memorial Dr, 151-C, Waco, TX, 76711, USA; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy Dr #800, Dallas, TX, 75235, USA; Department of Psychology and Neuroscience, Baylor University, Baylor Sciences Building Suite B.309, Waco, TX, 76706, USA.
| | - Geoffrey J May
- VISN 17 Center of Excellence for Research on Returning War Veterans, 4800 Memorial Dr, 151-C, Waco, TX, 76711, USA; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy Dr #800, Dallas, TX, 75235, USA; Department of Psychology and Neuroscience, Baylor University, Baylor Sciences Building Suite B.309, Waco, TX, 76706, USA; Department of Psychiatry and Behavioral Science, Texas A&M Health Science Center, College of Medicine, 8441 Riverside Parkway, Bryan, TX, 77807, USA
| | - Steven M Nelson
- VISN 17 Center of Excellence for Research on Returning War Veterans, 4800 Memorial Dr, 151-C, Waco, TX, 76711, USA; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, 1600 Viceroy Dr #800, Dallas, TX, 75235, USA; Department of Psychology and Neuroscience, Baylor University, Baylor Sciences Building Suite B.309, Waco, TX, 76706, USA; Department of Psychiatry and Behavioral Science, Texas A&M Health Science Center, College of Medicine, 8441 Riverside Parkway, Bryan, TX, 77807, USA
| |
Collapse
|
36
|
Pelkmans W, Dicks E, Barkhof F, Vrenken H, Scheltens P, van der Flier WM, Tijms BM. Gray matter T1-w/T2-w ratios are higher in Alzheimer's disease. Hum Brain Mapp 2019; 40:3900-3909. [PMID: 31157938 PMCID: PMC6771703 DOI: 10.1002/hbm.24638] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/18/2023] Open
Abstract
Myelin determines the conduction of neuronal signals along axonal connections in networks of the brain. Loss of myelin integrity in neuronal circuits might result in cognitive decline in Alzheimer's disease (AD). Recently, the ratio of T1-weighted by T2-weighted MRI has been used as a proxy for myelin content in gray matter of the cortex. With this approach, we investigated whether AD dementia patients show lower cortical myelin content (i.e., a lower T1-w/T2-w ratio value). We selected structural T1-w and T2-w MR images of 293 AD patients and 172 participants with normal cognition (NC). T1-w/T2-w ratios were computed for the whole brain and within 90 automated anatomical labeling atlas regions using SPM12, compared between groups and correlated with the neuronal injury marker tau in cerebrospinal fluid (CSF) and Mini Mental State Examination (MMSE). In contrast to our hypothesis, AD patients showed higher whole brain T1-w/T2-w ratios than NC, and regionally in 31 anatomical areas (p < .0005; d = 0.21 to 0.48), predominantly in the inferior parietal lobule, angular gyrus, anterior cingulate, and precuneus. Regional higher T1-w/T2-w values were associated with higher CSF tau concentrations (p < .0005; r = .16 to .22) and worse MMSE scores (p < .0005; r = -.16 to -.21). These higher T1-w/T2-w values in AD seem to contradict previous pathological findings of demyelination and disconnectivity in AD. Future research should further investigate the biological processes reflected by increases in T1-w/T2-w values.
Collapse
Affiliation(s)
- Wiesje Pelkmans
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ellen Dicks
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Institutes of Neurology and Healthcare Engineering, UCL, London, UK
| | - Hugo Vrenken
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Epidemiology & Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Turner R. Myelin and Modeling: Bootstrapping Cortical Microcircuits. Front Neural Circuits 2019; 13:34. [PMID: 31133821 PMCID: PMC6517540 DOI: 10.3389/fncir.2019.00034] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Histological studies of myelin-stained sectioned cadaver brain and in vivo myelin-weighted magnetic resonance imaging (MRI) show that the cerebral cortex is organized into cortical areas with generally well-defined boundaries, which have consistent internal patterns of myelination. The process of myelination is largely driven by neural experience, in which the axonal passage of action potentials stimulates neighboring oligodendrocytes to perform their task. This bootstrapping process, such that the traffic of action potentials facilitates increased traffic, suggests the hypothesis that the specific pattern of myelination (myeloarchitecture) in each cortical area reveals the principal cortical microcircuits required for the function of that area. If this idea is correct, the observable sequential maturation of specific brain areas can provide evidence for models of the stages of cognitive development.
Collapse
Affiliation(s)
- Robert Turner
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
- Spinoza Centre for Neuroimaging, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
38
|
Tzourio-Mazoyer N, Maingault S, Panzieri J, Pepe A, Crivello F, Mazoyer B. Intracortical Myelination of Heschl's Gyrus and the Planum Temporale Varies With Heschl's Duplication Pattern and Rhyming Performance: An Investigation of 440 Healthy Volunteers. Cereb Cortex 2019; 29:2072-2083. [PMID: 29912300 DOI: 10.1093/cercor/bhy088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/21/2018] [Indexed: 12/25/2022] Open
Abstract
We investigated, in 445 healthy adults whose Heschl's gyrus (HG) gyrification patterns had been previously identified, how an in vivo MRI marker of intracortical myelination of HG and the planum temporale (PT) varied as a function of HG gyrification pattern and, in cases of duplication, of anatomical characteristics of the second HG (H2). By measuring the MRI T1/T2 ratio in regions of interest covering the first HG (H1), H2 in cases of common stem (H2CSD), or complete posterior duplication (H2CPD) and the PT, we showed that H1 had the highest T1/T2 values, while the PT had the lowest. The major impact of duplication was a decrease in both H1 and PT T1/T2 values in cases of left CPD. Concerning H2, the right and left T1/T2 values of right H2CSD were closer to those of H1, and those of left H2CPD were closer to those of PT. After adjusting for verbal skills, rhyming performance was not associated with T1/T2 values in left regions, but it decreased with increasing right PT T1/T2 values. These results reveal the existence of hemispheric differences in H2 myelination and underline the importance of neuroimaging markers of intracortical myelination for investigating brain structure-function relationships.
Collapse
Affiliation(s)
- N Tzourio-Mazoyer
- University of Bordeaux, IMN, UMR 5293, Bordeaux, France.,CNRS, IMN, UMR 5293, Bordeaux, France.,CEA, GIN, IMN, UMR 5293, Bordeaux, France
| | - S Maingault
- University of Bordeaux, IMN, UMR 5293, Bordeaux, France.,CNRS, IMN, UMR 5293, Bordeaux, France.,CEA, GIN, IMN, UMR 5293, Bordeaux, France
| | - J Panzieri
- University of Bordeaux, IMN, UMR 5293, Bordeaux, France.,CNRS, IMN, UMR 5293, Bordeaux, France.,CEA, GIN, IMN, UMR 5293, Bordeaux, France
| | - A Pepe
- University of Bordeaux, IMN, UMR 5293, Bordeaux, France.,CNRS, IMN, UMR 5293, Bordeaux, France.,CEA, GIN, IMN, UMR 5293, Bordeaux, France
| | - F Crivello
- University of Bordeaux, IMN, UMR 5293, Bordeaux, France.,CNRS, IMN, UMR 5293, Bordeaux, France.,CEA, GIN, IMN, UMR 5293, Bordeaux, France
| | - B Mazoyer
- University of Bordeaux, IMN, UMR 5293, Bordeaux, France.,CNRS, IMN, UMR 5293, Bordeaux, France.,CEA, GIN, IMN, UMR 5293, Bordeaux, France
| |
Collapse
|
39
|
Möller HE, Bossoni L, Connor JR, Crichton RR, Does MD, Ward RJ, Zecca L, Zucca FA, Ronen I. Iron, Myelin, and the Brain: Neuroimaging Meets Neurobiology. Trends Neurosci 2019; 42:384-401. [PMID: 31047721 DOI: 10.1016/j.tins.2019.03.009] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/12/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022]
Abstract
Although iron is crucial for neuronal functioning, many aspects of cerebral iron biology await clarification. The ability to quantify specific iron forms in the living brain would open new avenues for diagnosis, therapeutic monitoring, and understanding pathogenesis of diseases. A modality that allows assessment of brain tissue composition in vivo, in particular of iron deposits or myelin content on a submillimeter spatial scale, is magnetic resonance imaging (MRI). Multimodal strategies combining MRI with complementary analytical techniques ex vivo have emerged, which may lead to improved specificity. Interdisciplinary collaborations will be key to advance beyond simple correlative analyses in the biological interpretation of MRI data and to gain deeper insights into key factors leading to iron accumulation and/or redistribution associated with neurodegeneration.
Collapse
Affiliation(s)
- Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, Leipzig, Germany.
| | - Lucia Bossoni
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - James R Connor
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | - Mark D Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Roberta J Ward
- Centre for Neuroinflammation and Neurodegeneration, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy; Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY, USA
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Itamar Ronen
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
40
|
The Structural Model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex. Brain Struct Funct 2019; 224:985-1008. [PMID: 30739157 PMCID: PMC6500485 DOI: 10.1007/s00429-019-01841-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022]
Abstract
The classical theory of cortical systematic variation has been independently described in reptiles, monotremes, marsupials and placental mammals, including primates, suggesting a common bauplan in the evolution of the cortex. The Structural Model is based on the systematic variation of the cortex and is a platform for advancing testable hypotheses about cortical organization and function across species, including humans. The Structural Model captures the overall laminar structure of areas by dividing the cortical architectonic continuum into discrete categories (cortical types), which can be used to test hypotheses about cortical organization. By type, the phylogenetically ancient limbic cortices-which form a ring at the base of the cerebral hemisphere-are agranular if they lack layer IV, or dysgranular if they have an incipient granular layer IV. Beyond the dysgranular areas, eulaminate type cortices have six layers. The number and laminar elaboration of eulaminate areas differ depending on species or cortical system within a species. The construct of cortical type retains the topology of the systematic variation of the cortex and forms the basis for a predictive Structural Model, which has successfully linked cortical variation to the laminar pattern and strength of cortical connections, the continuum of plasticity and stability of areas, the regularities in the distribution of classical and novel markers, and the preferential vulnerability of limbic areas to neurodegenerative and psychiatric diseases. The origin of cortical types has been recently traced to cortical development, and helps explain the variability of diseases with an onset in ontogeny.
Collapse
|
41
|
Goulas A, Majka P, Rosa MGP, Hilgetag CC. A blueprint of mammalian cortical connectomes. PLoS Biol 2019; 17:e2005346. [PMID: 30901324 PMCID: PMC6456226 DOI: 10.1371/journal.pbio.2005346] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/09/2019] [Accepted: 03/07/2019] [Indexed: 01/01/2023] Open
Abstract
The cerebral cortex of mammals exhibits intricate interareal wiring. Moreover, mammalian cortices differ vastly in size, cytological composition, and phylogenetic distance. Given such complexity and pronounced species differences, it is a considerable challenge to decipher organizational principles of mammalian connectomes. Here, we demonstrate species-specific and species-general unifying principles linking the physical, cytological, and connectional dimensions of architecture in the mouse, cat, marmoset, and macaque monkey. The existence of connections is related to the cytology of cortical areas, in addition to the role of physical distance, but this relation is attenuated in mice and marmoset monkeys. The cytoarchitectonic cortical gradients, and not the rostrocaudal axis of the cortex, are closely linked to the laminar origin of connections, a principle that allows the extrapolation of this connectional feature to humans. Lastly, a network core, with a central role under different modes of network communication, characterizes all cortical connectomes. We observe a displacement of the network core in mammals, with a shift of the core of cats and macaque monkeys toward the less neuronally dense areas of the cerebral cortex. This displacement has functional ramifications but also entails a potential increased degree of vulnerability to pathology. In sum, our results sketch out a blueprint of mammalian connectomes consisting of species-specific and species-general links between the connectional, physical, and cytological dimensions of the cerebral cortex, possibly reflecting variations and persistence of evolutionarily conserved mechanisms and cellular phenomena. Our framework elucidates organizational principles that encompass but also extend beyond the wiring economy principle imposed by the physical embedding of the cerebral cortex.
Collapse
Affiliation(s)
- Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
- * E-mail:
| | - Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- ARC Centre of Excellence for Integrative Brain Function, Monash University Node, Monash University, Clayton, Australia
| | - Marcello G. P. Rosa
- ARC Centre of Excellence for Integrative Brain Function, Monash University Node, Monash University, Clayton, Australia
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Claus C. Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
42
|
Puelles L, Alonso A, García-Calero E, Martínez-de-la-Torre M. Concentric ring topology of mammalian cortical sectors and relevance for patterning studies. J Comp Neurol 2019; 527:1731-1752. [PMID: 30737959 DOI: 10.1002/cne.24650] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/05/2019] [Accepted: 01/28/2019] [Indexed: 01/07/2023]
Abstract
Models aiming to explain causally the evolutionary or ontogenetic emergence of the pallial isocortex and its regional/areal heterogeneity in mammals use simple or complex assumptions about the pallial structure present in basal mammals and nonmammals. The question arises: how complex is the pattern that needs to be accounted for in causal models? This topic is also paramount for comparative purposes, since some topological relationships may be explained as being ancestral, rather than newly emerged. The mouse pallium is apt to be reexamined in this context, due to the breadth of available molecular markers and correlative experimental patterning results. We center the present essay on a recapitulative glance at the classic theory of concentric mammalian allo-, meso-, and neocortex domains. In its simplest terms, this theory postulates a central neocortical island (6 layers) separated by a surrounding mesocortical ring (4-5 layers) from a peripheral allocortical ring (3 layers). These territories show additional partition into regional or areal subdivisions. There are also borderline amygdalar, claustral, and septal areas of the pallium, nuclear in structure. There has been little effort so far to contemplate the full concentric ring model in current "cortex patterning" models. In this essay, we recapitulate the ring idea in mammals (mouse) and consider a potential causal patterning scenario using topologic models. Finally, we briefly explore how far this theory may apply to pallium models proposed recently for sauropsids.
Collapse
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy and IMIB-Arrixaca Institute, School of Medicine, University of Murcia, Murcia, Spain
| | - Antonia Alonso
- Department of Human Anatomy and IMIB-Arrixaca Institute, School of Medicine, University of Murcia, Murcia, Spain
| | - Elena García-Calero
- Department of Human Anatomy and IMIB-Arrixaca Institute, School of Medicine, University of Murcia, Murcia, Spain
| | | |
Collapse
|
43
|
Beul SF, Hilgetag CC. Neuron density fundamentally relates to architecture and connectivity of the primate cerebral cortex. Neuroimage 2019; 189:777-792. [PMID: 30677500 DOI: 10.1016/j.neuroimage.2019.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/05/2019] [Indexed: 12/16/2022] Open
Abstract
Studies of structural brain connectivity have revealed many intriguing features of complex cortical networks. To advance integrative theories of cortical organization, an understanding is required of how connectivity interrelates with other aspects of brain structure. Recent studies have suggested that interareal connectivity may be related to a variety of macroscopic as well as microscopic architectonic features of cortical areas. However, it is unclear how these features are inter-dependent and which of them most strongly and fundamentally relate to structural corticocortical connectivity. Here, we systematically investigated the relation of a range of microscopic and macroscopic architectonic features of cortical organization, namely layer III pyramidal cell soma cross section, dendritic synapse count, dendritic synapse density and dendritic tree size as well as area neuron density, to multiple properties of cortical connectivity, using a comprehensive, up-to-date structural connectome of the primate brain. Importantly, relationships were investigated by multi-variate analyses to account for the interrelations of features. Of all considered factors, the classical architectonic parameter of neuron density most strongly and consistently related to essential features of cortical connectivity (existence and laminar patterns of projections, area degree), and in conjoint analyses largely abolished effects of cellular morphological features. These results confirm neuron density as a central architectonic indicator of the primate cerebral cortex that is closely related to essential aspects of brain connectivity and is also highly indicative of further features of the architectonic organization of cortical areas, such as the considered cellular morphological measures. Our findings integrate several aspects of cortical micro- and macroscopic organization, with implications for cortical development and function.
Collapse
Affiliation(s)
- Sarah F Beul
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany; Department of Health Sciences, Boston University, 02215, Boston, MA, USA.
| |
Collapse
|
44
|
Braak H, Del Tredici K. Top-Down Projections Direct the Gradual Progression of Alzheimer-Related Tau Pathology Throughout the Neocortex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:291-303. [PMID: 32096045 DOI: 10.1007/978-981-32-9358-8_22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In sporadic Alzheimer's disease (sAD), tau pathology gradually but relentlessly progresses from the transentorhinal region of the temporal lobe into both the allocortex and temporal high order association areas of the neocortex. From there, it ultimately reaches the primary sensory and motor fields of the neocortex. The brunt of the changes seen during neurofibrillary stages (NFT) I-VI is borne by top-down projection neurons that contribute to cortico-cortical connectivities between different neocortical fields. Very early changes develop in isolated pyramidal cells in layers III and V, and these cells are targets of top-down projections terminating in association areas of the first temporal gyrus or in peristriate regions of the occipital lobe. Neurofibrillary pathology in these regions is routinely associated with late NFT stages. Sequential changes occur in different cell compartments (dendritic, somatic, axonal) of these early-involved neurons. Tau pathology first develops in distal segments of basal dendrites, then in proximal dendrites, the soma, and, finally, in the axon of affected pyramidal neurons. This sequence of abnormal changes supports the concept that axons of cortico-cortical top-down neurons may carry and spread abnormal tau seeds in a focused manner (transsynaptically) into the distal dendritic segments of nerve cells directly following in the neuronal chain, thereby sustaining tau-seeded templating in sAD.
Collapse
Affiliation(s)
- Heiko Braak
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany.
| |
Collapse
|
45
|
Microstructural imaging of human neocortex in vivo. Neuroimage 2018; 182:184-206. [DOI: 10.1016/j.neuroimage.2018.02.055] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/13/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
|
46
|
Van Essen DC, Donahue CJ, Glasser MF. Development and Evolution of Cerebral and Cerebellar Cortex. BRAIN, BEHAVIOR AND EVOLUTION 2018; 91:158-169. [PMID: 30099464 PMCID: PMC6097530 DOI: 10.1159/000489943] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 11/19/2022]
Abstract
Cerebral cortex and cerebellar cortex both vary enormously across species in their size and complexity of convolutions. We discuss the development and evolution of cortical structures in terms of anatomy and functional organization. We propose that the distinctive shapes of cerebral and cerebellar cortex can be explained by relatively few developmental processes, notably including mechanical tension along axons and dendrites. Regarding functional organization, we show how maps of myelin content in cerebral cortex are evolutionarily conserved across primates but differ in the proportion of cortex devoted to sensory, cognitive, and other functions. We summarize recent progress and challenges in (i) parcellating cerebral cortex into a mosaic of distinct areas, (ii) distinguishing cortical areas that correspond across species from those that are present in one species but not another, and (iii) using this information along with surface-based interspecies registration to gain deeper insights into cortical evolution. We also comment on the methodological challenges imposed by the differences in anatomical and functional organization of cerebellar cortex relative to cerebral cortex.
Collapse
|
47
|
Chopra S, Shaw M, Shaw T, Sachdev PS, Anstey KJ, Cherbuin N. More highly myelinated white matter tracts are associated with faster processing speed in healthy adults. Neuroimage 2018; 171:332-340. [DOI: 10.1016/j.neuroimage.2017.12.069] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 01/23/2023] Open
|
48
|
Fischl B, Sereno MI. Microstructural parcellation of the human brain. Neuroimage 2018; 182:219-231. [PMID: 29496612 DOI: 10.1016/j.neuroimage.2018.01.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/27/2022] Open
Abstract
The human cerebral cortex is composed of a mosaic of areas thought to subserve different functions. The parcellation of the cortex into areas has a long history and has been carried out using different combinations of structural, connectional, receptotopic, and functional properties. Here we give a brief overview of the history of cortical parcellation, and explore different microstructural properties and analysis techniques that can be used to define the borders between different regions. We show that accounting for the 3D geometry of the highly folded human cortex is especially critical for accurate parcellation. We close with some thoughts on future directions and best practices for combining modalities.
Collapse
Affiliation(s)
- Bruce Fischl
- Department of Radiology, Harvard Medical School, United States; Athinoula A. Martinos Center for Biomedical Imaging Mass, General Hospital, United States; Division of Health Sciences and Technology and Engineering and Computer Science MIT, Cambridge, MA, United States.
| | - Martin I Sereno
- Department of Psychology, SDSU Imaging Center, San Diego State University, San Diego, CA 92182, United States.
| |
Collapse
|
49
|
Fukutomi H, Glasser MF, Zhang H, Autio JA, Coalson TS, Okada T, Togashi K, Van Essen DC, Hayashi T. Neurite imaging reveals microstructural variations in human cerebral cortical gray matter. Neuroimage 2018; 182:488-499. [PMID: 29448073 DOI: 10.1016/j.neuroimage.2018.02.017] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 01/08/2018] [Accepted: 02/09/2018] [Indexed: 12/27/2022] Open
Abstract
We present distinct patterns of neurite distribution in the human cerebral cortex using diffusion magnetic resonance imaging (MRI). We analyzed both high-resolution structural (T1w and T2w images) and diffusion MRI data in 505 subjects from the Human Connectome Project. Neurite distributions were evaluated using the neurite orientation dispersion and density imaging (NODDI) model, optimized for gray matter, and mapped onto the cortical surface using a method weighted towards the cortical mid-thickness to reduce partial volume effects. The estimated neurite density was high in both somatosensory and motor areas, early visual and auditory areas, and middle temporal area (MT), showing a strikingly similar distribution to myelin maps estimated from the T1w/T2w ratio. The estimated neurite orientation dispersion was particularly high in early sensory areas, which are known for dense tangential fibers and are classified as granular cortex by classical anatomists. Spatial gradients of these cortical neurite properties revealed transitions that colocalize with some areal boundaries in a recent multi-modal parcellation of the human cerebral cortex, providing mutually supportive evidence. Our findings indicate that analyzing the cortical gray matter neurite morphology using diffusion MRI and NODDI provides valuable information regarding cortical microstructure that is related to but complementary to myeloarchitecture.
Collapse
Affiliation(s)
- Hikaru Fukutomi
- RIKEN Center for Life Science Technologies, Kobe, Japan; Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Matthew F Glasser
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; St. Luke's Hospital, St. Louis, MO, USA
| | - Hui Zhang
- Centre for Medical Image Computing and Department of Computer Science, University College London, UK
| | | | - Timothy S Coalson
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Tomohisa Okada
- RIKEN Center for Life Science Technologies, Kobe, Japan; Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - David C Van Essen
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Takuya Hayashi
- RIKEN Center for Life Science Technologies, Kobe, Japan; RIKEN Compass to Healthy Life Research Complex Program, Kobe, Japan.
| |
Collapse
|
50
|
Righart R, Biberacher V, Jonkman LE, Klaver R, Schmidt P, Buck D, Berthele A, Kirschke JS, Zimmer C, Hemmer B, Geurts JJG, Mühlau M. Cortical pathology in multiple sclerosis detected by the T1/T2-weighted ratio from routine magnetic resonance imaging. Ann Neurol 2017; 82:519-529. [PMID: 28833433 PMCID: PMC5698772 DOI: 10.1002/ana.25020] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 11/08/2022]
Abstract
OBJECTIVE In multiple sclerosis, neuropathological studies have shown widespread changes in the cerebral cortex. In vivo imaging is critical, because the histopathological substrate of most measurements is unknown. METHODS Using a novel magnetic resonance imaging analysis technique, based on the ratio of T1- and T2-weighted signal intensities, we studied the cerebral cortex of a large cohort of patients in early stages of multiple sclerosis. A total of 168 patients with clinically isolated syndrome or relapsing-remitting multiple sclerosis (Expanded Disability Status Scale: median = 1, range = 0-3.5) and 80 age- and sex-matched healthy controls were investigated. We also searched for the histopathological substrate of the T1/T2-weighted ratio by combining postmortem imaging and histopathology in 9 multiple sclerosis brain donors. RESULTS Patients showed lower T1/T2-weighted ratio values in parietal and occipital areas. The 4 most significant clusters appeared in the medial occipital and posterior cingulate cortex (each left and right). The decrease of the T1/T2-weighted ratio in the posterior cingulate was related to performance in attention. Analysis of the T1/T2-weighted ratio values of postmortem imaging yielded a strong correlation with dendrite density but none of the other parameters including myelin. INTERPRETATION The T1/T2-weighted ratio decreases in early stages of multiple sclerosis in a widespread manner, with a preponderance of posterior areas and with a contribution to attentional performance; it seems to reflect dendrite pathology. As the method is broadly available and applicable to available clinical scans, we believe that it is a promising candidate for studying and monitoring cortical pathology or therapeutic effects in multiple sclerosis. Ann Neurol 2017;82:519-529.
Collapse
Affiliation(s)
- Ruthger Righart
- Department of Neurology, Rechts der Isar Hospital, Technical University of Munich, Munich, Germany.,TUM Neuroimaging Center, Rechts der Isar Hospital, Technical University of Munich, Munich, Germany
| | - Viola Biberacher
- Department of Neurology, Rechts der Isar Hospital, Technical University of Munich, Munich, Germany.,TUM Neuroimaging Center, Rechts der Isar Hospital, Technical University of Munich, Munich, Germany
| | - Laura E Jonkman
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, the Netherlands
| | - Roel Klaver
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, the Netherlands
| | - Paul Schmidt
- Department of Neurology, Rechts der Isar Hospital, Technical University of Munich, Munich, Germany.,TUM Neuroimaging Center, Rechts der Isar Hospital, Technical University of Munich, Munich, Germany.,Department of Statistics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dorothea Buck
- Department of Neurology, Rechts der Isar Hospital, Technical University of Munich, Munich, Germany
| | - Achim Berthele
- Department of Neurology, Rechts der Isar Hospital, Technical University of Munich, Munich, Germany
| | - Jan S Kirschke
- Department of Neuroradiology, Rechts der Isar Hospital, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Rechts der Isar Hospital, Technical University of Munich, Munich, Germany
| | - Bernhard Hemmer
- Department of Neurology, Rechts der Isar Hospital, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, the Netherlands
| | - Mark Mühlau
- Department of Neurology, Rechts der Isar Hospital, Technical University of Munich, Munich, Germany.,TUM Neuroimaging Center, Rechts der Isar Hospital, Technical University of Munich, Munich, Germany
| |
Collapse
|