1
|
Castillon C, Otsuka S, Armstrong J, Contractor A. Subregional activity in the dentate gyrus is amplified during elevated cognitive demands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.31.621367. [PMID: 39554113 PMCID: PMC11565968 DOI: 10.1101/2024.10.31.621367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Neural activity in the dentate gyrus (DG) is required for the detection and discrimination of novelty, context and patterns, amongst other cognitive processes. Prior work has demonstrated that there are differences in the activation of granule neurons in the supra and infrapyramidal blades of the DG during a range of hippocampal dependent tasks. Here we used an automated touch screen pattern separation task combined to temporally controlled tagging of active neurons to determine how performance in a cognitively demanding task affected patterns of neural activity in the DG. We found an increase in the blade-biased activity of suprapyramidal mature granule cells (mGCs) during the performance of a high cognitive demand segment of the task, with a further characteristic distribution of active neurons along the apex to blade, and hilar to molecular layer axes. Chemogenetic inhibition of adult-born granule cells (abDGCs) beyond a critical window of their maturation significantly impaired performance of mice during high-demand conditions but not when cognitive demand was low. abDGC inhibition also elevated the total activity of mGCs and disturbed the patterned distribution of active mGCs even in mice that eventually succeeded in the task. Conversely chemogenetic inhibition of mGCs reduced success in the high cognitive demand portion of this task and decreased the global number of active GCs without affecting the patterned distribution of active cells. These findings demonstrate how a high cognitive demand pattern separation task preferentially activates mGCs in subregions of the DG and are consistent with a modulatory role for abDGCs on the dentate circuit which in part governs the spatially organized patterns of activity of mGCs.
Collapse
|
2
|
Zaniewska M, Brygider S, Majcher-Maślanka I, Gawliński D, Głowacka U, Glińska S, Balcerzak Ł. The impact of voluntary wheel-running exercise on hippocampal neurogenesis and behaviours in response to nicotine cessation in rats. Psychopharmacology (Berl) 2024; 241:2585-2607. [PMID: 39463206 PMCID: PMC11569017 DOI: 10.1007/s00213-024-06705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
RATIONALE The literature indicates that nicotine exposure or its discontinuation impair adult hippocampal neurogenesis in rats, though the impact of exercise on this process remains unclear. We have previously shown that disturbances in the number of doublecortin (DCX, a marker of immature neurons)-positive (DCX+) cells in the dentate gyrus (DG) of the hippocampus during nicotine deprivation may contribute to a depression-like state in rats. OBJECTIVES This study aimed to investigate the effect of running on hippocampal neurogenesis, depression-like symptoms, and drug-seeking behaviour during nicotine deprivation. METHODS The rats were subjected to nicotine (0.03 mg/kg/inf) self-administration via an increasing schedule of reinforcement. After 21 sessions, the animals entered a 14-day abstinence phase during which they were housed in either standard home cages without wheels, cages equipped with running wheels, or cages with locked wheels. RESULTS Wheel running increased the number of Ki-67+ and DCX+ cells in the DG of both nicotine-deprived and nicotine-naive rats. Wheel-running exercise evoked an antidepressant effect on abstinence Day 14 but had no effect on nicotine-seeking behaviour on abstinence Day 15 compared to rats with locked-wheel access. CONCLUSIONS In summary, long-term wheel running positively affected the number of immature neurons in the hippocampus, which corresponded with an antidepressant response in nicotine-weaned rats. One possible mechanism underlying the positive effect of running on the affective state during nicotine cessation may be the reduction in deficits in DCX+ cells in the hippocampus.
Collapse
Affiliation(s)
- Magdalena Zaniewska
- Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland.
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, Kraków, 31-343, Poland.
- Affective Cognitive Neuroscience Laboratory, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland.
| | - Sabina Brygider
- Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, Kraków, 31-343, Poland
| | - Iwona Majcher-Maślanka
- Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
| | - Dawid Gawliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, Kraków, 31-343, Poland
| | - Urszula Głowacka
- Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegorzecka Street, Kraków, 31- 531, Poland
| | - Sława Glińska
- Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Łucja Balcerzak
- Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| |
Collapse
|
3
|
Park EH, Jo YS, Kim EJ, Park EH, Lee KJ, Rhyu IJ, Kim HT, Choi JS. Heterogenous effect of early adulthood stress on cognitive aging and synaptic function in the dentate gyrus. Front Mol Neurosci 2024; 17:1344141. [PMID: 38638601 PMCID: PMC11024304 DOI: 10.3389/fnmol.2024.1344141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/29/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive aging widely varies among individuals due to different stress experiences throughout the lifespan and vulnerability of neurocognitive mechanisms. To understand the heterogeneity of cognitive aging, we investigated the effect of early adulthood stress (EAS) on three different hippocampus-dependent memory tasks: the novel object recognition test (assessing recognition memory: RM), the paired association test (assessing episodic-like memory: EM), and trace fear conditioning (assessing trace memory: TM). Two-month-old rats were exposed to chronic mild stress for 6 weeks and underwent behavioral testing either 2 weeks or 20 months later. The results show that stress and aging impaired different types of memory tasks to varying degrees. RM is affected by combined effect of stress and aging. EM became less precise in EAS animals. TM, especially the contextual memory, showed impairment in aging although EAS attenuated the aging effect, perhaps due to its engagement in emotional memory systems. To further explore the neural underpinnings of these multi-faceted effects, we measured long-term potentiation (LTP), neural density, and synaptic density in the dentate gyrus (DG). Both stress and aging reduced LTP. Additionally, the synaptic density per neuron showed a further reduction in the stress aged group. In summary, EAS modulates different forms of memory functions perhaps due to their substantial or partial dependence on the functional integrity of the hippocampus. The current results suggest that lasting alterations in hippocampal circuits following EAS could potentially generate remote effects on individual variability in cognitive aging, as demonstrated by performance in multiple types of memory.
Collapse
Affiliation(s)
- Eun Hye Park
- School of Psychology, Korea University, Seoul, Republic of Korea
- Department of Psychology, New York University, New York, NY, United States
| | - Yong Sang Jo
- School of Psychology, Korea University, Seoul, Republic of Korea
| | - Eun Joo Kim
- School of Psychology, Korea University, Seoul, Republic of Korea
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Eui Ho Park
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kea Joo Lee
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Im Joo Rhyu
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun Taek Kim
- School of Psychology, Korea University, Seoul, Republic of Korea
| | - June-Seek Choi
- School of Psychology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Rodrigues RS, Moreira JB, Mateus JM, Barateiro A, Paulo SL, Vaz SH, Lourenço DM, Ribeiro FF, Soares R, Loureiro-Campos E, Bielefeld P, Sebastião AM, Fernandes A, Pinto L, Fitzsimons CP, Xapelli S. Cannabinoid type 2 receptor inhibition enhances the antidepressant and proneurogenic effects of physical exercise after chronic stress. Transl Psychiatry 2024; 14:170. [PMID: 38555299 PMCID: PMC10981758 DOI: 10.1038/s41398-024-02877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
Chronic stress is a major risk factor for neuropsychiatric conditions such as depression. Adult hippocampal neurogenesis (AHN) has emerged as a promising target to counteract stress-related disorders given the ability of newborn neurons to facilitate endogenous plasticity. Recent data sheds light on the interaction between cannabinoids and neurotrophic factors underlying the regulation of AHN, with important effects on cognitive plasticity and emotional flexibility. Since physical exercise (PE) is known to enhance neurotrophic factor levels, we hypothesised that PE could engage with cannabinoids to influence AHN and that this would result in beneficial effects under stressful conditions. We therefore investigated the actions of modulating cannabinoid type 2 receptors (CB2R), which are devoid of psychotropic effects, in combination with PE in chronically stressed animals. We found that CB2R inhibition, but not CB2R activation, in combination with PE significantly ameliorated stress-evoked emotional changes and cognitive deficits. Importantly, this combined strategy critically shaped stress-induced changes in AHN dynamics, leading to a significant increase in the rates of cell proliferation and differentiation of newborn neurons, overall reduction in neuroinflammation, and increased hippocampal levels of BDNF. Together, these results show that CB2Rs are crucial regulators of the beneficial effects of PE in countering the effects of chronic stress. Our work emphasises the importance of understanding the mechanisms behind the actions of cannabinoids and PE and provides a framework for future therapeutic strategies to treat stress-related disorders that capitalise on lifestyle interventions complemented with endocannabinoid pharmacomodulation.
Collapse
Affiliation(s)
- R S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Université de Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - J B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - J M Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - A Barateiro
- Central Nervous System, blood and peripheral inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - S L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - S H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - D M Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - F F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - R Soares
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - E Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - P Bielefeld
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - A M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - A Fernandes
- Central Nervous System, blood and peripheral inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - L Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - C P Fitzsimons
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - S Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
5
|
Hussain G, Akram R, Anwar H, Sajid F, Iman T, Han HS, Raza C, De Aguilar JLG. Adult neurogenesis: a real hope or a delusion? Neural Regen Res 2024; 19:6-15. [PMID: 37488837 PMCID: PMC10479850 DOI: 10.4103/1673-5374.375317] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/27/2023] [Accepted: 04/10/2023] [Indexed: 07/26/2023] Open
Abstract
Adult neurogenesis, the process of creating new neurons, involves the coordinated division, migration, and differentiation of neural stem cells. This process is restricted to neurogenic niches located in two distinct areas of the brain: the subgranular zone of the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricle, where new neurons are generated and then migrate to the olfactory bulb. Neurogenesis has been thought to occur only during the embryonic and early postnatal stages and to decline with age due to a continuous depletion of neural stem cells. Interestingly, recent years have seen tremendous progress in our understanding of adult brain neurogenesis, bridging the knowledge gap between embryonic and adult neurogenesis. Here, we discuss the current status of adult brain neurogenesis in light of what we know about neural stem cells. In this notion, we talk about the importance of intracellular signaling molecules in mobilizing endogenous neural stem cell proliferation. Based on the current understanding, we can declare that these molecules play a role in targeting neurogenesis in the mature brain. However, to achieve this goal, we need to avoid the undesired proliferation of neural stem cells by controlling the necessary checkpoints, which can lead to tumorigenesis and prove to be a curse instead of a blessing or hope.
Collapse
Affiliation(s)
- Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Tehreem Iman
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Hyung Soo Han
- Department of Physiology, School of Medicine, Clinical Omics Institute, Kyungpook National University, Daegu, Korea
| | - Chand Raza
- Department of Zoology, Faculty of Chemistry and Life Sciences, Government College University, Lahore, Pakistan
| | - Jose-Luis Gonzalez De Aguilar
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Hadipour M, Meftahi GH, Jahromi GP. Date palm spathe extract reverses chronic stress-induced changes in dendritic arborization in the amygdala and impairment of hippocampal long-term potentiation. Synapse 2023:e22278. [PMID: 37315214 DOI: 10.1002/syn.22278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
Chronic restraint stress induces anxiety-like behaviors and emotional abnormalities via an alteration of synaptic remodeling in the amygdala and the hippocampus. Given that the date palm spathe has been shown to have neuroprotective effects on different experimental models, this study aimed to address whether the date palm spathe extract (hydroalcoholic extract of date palm spathe [HEDPP]) can reduce chronic restraint stress-induced behavioral, electrophysiological, and morphological changes in the rat model. Thirty-two male Wistar rats (weight 200-220 g) were randomly divided into control, stress, HEDPP, and stress + HEDPP for 14 days. Animals were submitted to restraint stress for 2 h per day for 14 consecutive days. The animals of the HEDPP and stress + HEDPP groups were supplemented with HEDPP (125 mg/kg) during these 14 days, 30 min before being placed in the restraint stress tube. We used passive avoidance, open-field test, and field potential recording to assess emotional memory, anxiety-like behavioral and long-term potentiation in the CA1 region of the hippocampus, respectively. Moreover, Golgi-Cox staining was used to investigate the amygdala neuron dendritic arborization. Results showed that stress induction was associated with behavioral changes (anxiety-like behavioral and emotional memory impairment), and the administration of HEDPP effectively normalized these deficits. HEDPP remarkably amplified the slope and amplitude of mean-field excitatory postsynaptic potentials (fEPSPs) in the CA1 area of the hippocampus in stressed rats. Chronic restraint stress significantly decreased the dendritic arborization in the central and basolateral nucleus of the amygdala neuron. HEDPP suppressed this stress effect in the central nucleus of the amygdala. Our findings indicated that HEDPP administration improves stress-induced learning impairment and memory and anxiety-like behaviors by preventing adverse effects on synaptic plasticity in the hippocampus and amygdala.
Collapse
Affiliation(s)
| | | | - Gila Pirzad Jahromi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Yun S, Soler I, Tran FH, Haas HA, Shi R, Bancroft GL, Suarez M, de Santis CR, Reynolds RP, Eisch AJ. Behavioral pattern separation and cognitive flexibility are enhanced in a mouse model of increased lateral entorhinal cortex-dentate gyrus circuit activity. Front Behav Neurosci 2023; 17:1151877. [PMID: 37324519 PMCID: PMC10267474 DOI: 10.3389/fnbeh.2023.1151877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
Behavioral pattern separation and cognitive flexibility are essential cognitive abilities that are disrupted in many brain disorders. A better understanding of the neural circuitry involved in these abilities will open paths to treatment. In humans and mice, discrimination and adaptation rely on the integrity of the hippocampal dentate gyrus (DG) which receives glutamatergic input from the entorhinal cortex (EC), including the lateral EC (LEC). An inducible increase of EC-DG circuit activity improves simple hippocampal-dependent associative learning and increases DG neurogenesis. Here, we asked if the activity of LEC fan cells that directly project to the DG (LEC → DG neurons) regulates the relatively more complex hippocampal-dependent abilities of behavioral pattern separation or cognitive flexibility. C57BL/6J male mice received bilateral LEC infusions of a virus expressing shRNA TRIP8b, an auxiliary protein of an HCN channel or a control virus (SCR shRNA). Prior work shows that 4 weeks post-surgery, TRIP8b mice have more DG neurogenesis and greater activity of LEC → DG neurons compared to SCR shRNA mice. Here, 4 weeks post-surgery, the mice underwent testing for behavioral pattern separation and reversal learning (touchscreen-based location discrimination reversal [LDR]) and innate fear of open spaces (elevated plus maze [EPM]) followed by quantification of new DG neurons (doublecortin-immunoreactive cells [DCX+] cells). There was no effect of treatment (SCR shRNA vs. TRIP8b) on performance during general touchscreen training, LDR training, or the 1st days of LDR testing. However, in the last days of LDR testing, the TRIP8b shRNA mice had improved pattern separation (reached the first reversal more quickly and had more accurate discrimination) compared to the SCR shRNA mice, specifically when the load on pattern separation was high (lit squares close together or "small separation"). The TRIP8b shRNA mice were also more cognitively flexible (achieved more reversals) compared to the SCR shRNA mice in the last days of LDR testing. Supporting a specific influence on cognitive behavior, the SCR shRNA and TRIP8b shRNA mice did not differ in total distance traveled or in time spent in the closed arms of the EPM. Supporting an inducible increase in LEC-DG activity, DG neurogenesis was increased. These data indicate that the TRIP8b shRNA mice had better pattern separation and reversal learning and more neurogenesis compared to the SCR shRNA mice. This study advances fundamental and translational neuroscience knowledge relevant to two cognitive functions critical for adaptation and survival-behavioral pattern separation and cognitive flexibility-and suggests that the activity of LEC → DG neurons merits exploration as a therapeutic target to normalize dysfunctional DG behavioral output.
Collapse
Affiliation(s)
- Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ivan Soler
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- University of Pennsylvania, Philadelphia, PA, United States
| | - Fionya H. Tran
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Harley A. Haas
- University of Pennsylvania, Philadelphia, PA, United States
| | - Raymon Shi
- University of Pennsylvania, Philadelphia, PA, United States
| | | | - Maiko Suarez
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Christopher R. de Santis
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ryan P. Reynolds
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amelia J. Eisch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Jiang M, Jang SE, Zeng L. The Effects of Extrinsic and Intrinsic Factors on Neurogenesis. Cells 2023; 12:cells12091285. [PMID: 37174685 PMCID: PMC10177620 DOI: 10.3390/cells12091285] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
In the mammalian brain, neurogenesis is maintained throughout adulthood primarily in two typical niches, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) of the lateral ventricles and in other nonclassic neurogenic areas (e.g., the amygdala and striatum). During prenatal and early postnatal development, neural stem cells (NSCs) differentiate into neurons and migrate to appropriate areas such as the olfactory bulb where they integrate into existing neural networks; these phenomena constitute the multistep process of neurogenesis. Alterations in any of these processes impair neurogenesis and may even lead to brain dysfunction, including cognitive impairment and neurodegeneration. Here, we first summarize the main properties of mammalian neurogenic niches to describe the cellular and molecular mechanisms of neurogenesis. Accumulating evidence indicates that neurogenesis plays an integral role in neuronal plasticity in the brain and cognition in the postnatal period. Given that neurogenesis can be highly modulated by a number of extrinsic and intrinsic factors, we discuss the impact of extrinsic (e.g., alcohol) and intrinsic (e.g., hormones) modulators on neurogenesis. Additionally, we provide an overview of the contribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection to persistent neurological sequelae such as neurodegeneration, neurogenic defects and accelerated neuronal cell death. Together, our review provides a link between extrinsic/intrinsic factors and neurogenesis and explains the possible mechanisms of abnormal neurogenesis underlying neurological disorders.
Collapse
Affiliation(s)
- Mei Jiang
- Department of Human Anatomy, Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Dongguan Campus, Guangdong Medical University, Dongguan 523808, China
| | - Se Eun Jang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
- Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, 11 Mandalay Road, Singapore 308232, Singapore
| |
Collapse
|
9
|
Upregulations of α 1 adrenergic receptors and noradrenaline synthases in the medial prefrontal cortex are associated with emotional and cognitive dysregulation induced by post-weaning social isolation in male rats. Neurosci Lett 2023; 797:137071. [PMID: 36642239 DOI: 10.1016/j.neulet.2023.137071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Early-life social isolation induces emotional and cognitive dysregulation, such as increased aggression and anxiety, and decreases neuron excitability in the medial prefrontal cortex (mPFC). The noradrenergic system in the mPFC regulates emotion and cognitive function via α1 or α2A adrenergic receptors, depending on noradrenaline levels. However, social isolation-induced changes in the mPFC noradrenergic system have not been reported. Here, male Wistar rats received post-weaning social isolation for nine consecutive weeks and were administered behavioral tests (novel object recognition, elevated plus maze, aggression, and forced swimming, sequentially). Protein expression levels in the mPFC noradrenergic system (α1 and α2A adrenergic receptors, tyrosine hydroxylase, and dopamine-β-hydroxylase used as indices of noradrenaline synthesis and release) were examined through western blotting. Social isolation caused cognitive dysfunction, anxiety-like behavior, and aggression, but not behavioral despair. Socially-isolated rats exhibited increased protein levels of the α1 adrenergic receptor, tyrosine hydroxylase, and dopamine-β-hydroxylase in the mPFC; there was no significant difference between the groups in the α2A adrenergic receptor expression levels. Preferential activation of the α1 adrenergic receptor caused by high noradrenaline concentration in the mPFC may be involved in social isolation-induced emotional and cognitive regulation impairments. Targeting the α1 adrenergic receptor signaling pathway is a potential therapeutic strategy for psychiatric disorders with symptomatic features such as emotional and cognitive dysregulation.
Collapse
|
10
|
Yun S, Soler I, Tran F, Haas HA, Shi R, Bancroft GL, Suarez M, de Santis CR, Reynolds RP, Eisch AJ. Behavioral pattern separation and cognitive flexibility are enhanced in a mouse model of increased lateral entorhinal cortex-dentate gyrus circuit activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525756. [PMID: 36747871 PMCID: PMC9900985 DOI: 10.1101/2023.01.26.525756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Behavioral pattern separation and cognitive flexibility are essential cognitive abilities which are disrupted in many brain disorders. Better understanding of the neural circuitry involved in these abilities will open paths to treatment. In humans and mice, discrimination and adaptation rely on integrity of the hippocampal dentate gyrus (DG) which both receive glutamatergic input from the entorhinal cortex (EC), including the lateral EC (LEC). Inducible increase of EC-DG circuit activity improves simple hippocampal-dependent associative learning and increases DG neurogenesis. Here we asked if the activity of LEC fan cells that directly project to the DG (LEC➔DG neurons) regulates behavioral pattern separation or cognitive flexibility. C57BL6/J male mice received bilateral LEC infusions of a virus expressing shRNA TRIP8b, an auxiliary protein of an HCN channel or a control virus (SCR shRNA); this approach increases the activity of LEC➔DG neurons. Four weeks later, mice underwent testing for behavioral pattern separation and reversal learning (touchscreen-based Location Discrimination Reversal [LDR] task) and innate fear of open spaces (elevated plus maze [EPM]) followed by counting of new DG neurons (doublecortin-immunoreactive cells [DCX+] cells). TRIP8b and SCR shRNA mice performed similarly in general touchscreen training and LDR training. However, in late LDR testing, TRIP8b shRNA mice reached the first reversal more quickly and had more accurate discrimination vs. SCR shRNA mice, specifically when pattern separation was challenging (lit squares close together or "small separation"). Also, TRIP8b shRNA mice achieved more reversals in late LDR testing vs. SCR shRNA mice. Supporting a specific influence on cognitive behavior, SCR shRNA and TRIP8b shRNA mice did not differ in total distance traveled or in time spent in the closed arms of the EPM. Supporting an inducible increase in LEC-DG activity, DG neurogenesis was increased. These data indicate TRIP8b shRNA mice had better pattern separation and reversal learning and more neurogenesis vs. SCR shRNA mice. This work advances fundamental and translational neuroscience knowledge relevant to two cognitive functions critical for adaptation and survival - behavioral pattern separation and cognitive flexibility - and suggests the activity of LEC➔DG neurons merits exploration as a therapeutic target to normalize dysfunctional DG behavioral output.
Collapse
|
11
|
Gaspar R, Soares-Cunha C, Domingues AV, Coimbra B, Baptista FI, Pinto L, Ambrósio AF, Rodrigues AJ, Gomes CA. The Duration of Stress Determines Sex Specificities in the Vulnerability to Depression and in the Morphologic Remodeling of Neurons and Microglia. Front Behav Neurosci 2022; 16:834821. [PMID: 35330844 PMCID: PMC8940280 DOI: 10.3389/fnbeh.2022.834821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Stress exposure has been shown to induce a variety of molecular and functional alterations associated with anxiety and depression. Some studies suggest that microglia, the immune cells of the brain, play a significant role in determining neuronal and behavioral responses to chronic stress and also contribute to the development of stress-related psychopathologies. However, little is known about the impact of the duration of stress exposure upon microglia and neurons morphology, particularly considering sex differences. This issue deserves particular investigation, considering that the process of morphologic remodeling of neurons and microglia is usually accompanied by functional changes with behavioral expression. Here, we examine the effects of short and long unpredictable chronic mild stress (uCMS) protocols on behavior, evaluating in parallel microglia and neurons morphology in the dorsal hippocampus (dHIP) and in the nucleus accumbens (NAc), two brain regions involved in the etiology of depression. We report that long-term uCMS induced more behavioral alterations in males, which present anxiety and depression-like phenotypes (anhedonia and helplessness behavior), while females only display anxiety-like behavior. After short-term uCMS, both sexes presented anxiety-like behavior. Microglia cells undergo a process of morphologic adaptation to short-term uCMS, dependent on sex, in the NAc: we observed a hypertrophy in males and an atrophy in females, transient effects that do not persist after long-term uCMS. In the dHIP, the morphologic adaptation of microglia is only observed in females (hypertrophy) and after the protocol of long uCMS. Interestingly, males are more vulnerable to neuronal morphological alterations in a region-specific manner: dendritic atrophy in granule neurons of the dHIP and hypertrophy in the medium spiny neurons of the NAc, both after short- or long-term uCMS. The morphology of neurons in these brain regions were not affected in females. These findings raise the possibility that, by differentially affecting neurons and microglia in dHIP and NAc, chronic stress may contribute for differences in the clinical presentation of stress-related disorders under the control of sex-specific mechanisms.
Collapse
Affiliation(s)
- Rita Gaspar
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipa I. Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António F. Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
- *Correspondence: Ana João Rodrigues,
| | - Catarina A. Gomes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Catarina A. Gomes,
| |
Collapse
|
12
|
Silveira‐Rosa T, Mateus‐Pinheiro A, Correia JS, Silva JM, Martins‐Macedo J, Araújo B, Machado‐Santos AR, Alves ND, Silva M, Loureiro‐Campos E, Sotiropoulos I, Bessa JM, Rodrigues AJ, Sousa N, Patrício P, Pinto L. Suppression of adult cytogenesis in the rat brain leads to sex-differentiated disruption of the HPA axis activity. Cell Prolif 2022; 55:e13165. [PMID: 34970787 PMCID: PMC8828259 DOI: 10.1111/cpr.13165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The action of stress hormones, mainly glucocorticoids, starts and coordinates the systemic response to stressful events. The HPA axis activity is predicated on information processing and modulation by upstream centres, such as the hippocampus where adult-born neurons (hABN) have been reported to be an important component in the processing and integration of new information. Still, it remains unclear whether and how hABN regulates HPA axis activity and CORT production, particularly when considering sex differences. MATERIALS AND METHODS Using both sexes of a transgenic rat model of cytogenesis ablation (GFAP-Tk rat model), we examined the endocrinological and behavioural effects of disrupting the generation of new astrocytes and neurons within the hippocampal dentate gyrus (DG). RESULTS Our results show that GFAP-Tk male rats present a heightened acute stress response. In contrast, GFAP-Tk female rats have increased corticosterone secretion at nadir, a heightened, yet delayed, response to an acute stress stimulus, accompanied by neuronal hypertrophy in the basal lateral amygdala and increased expression of the glucocorticoid receptors in the ventral DG. CONCLUSIONS Our results reveal that hABN regulation of the HPA axis response is sex-differentiated.
Collapse
Affiliation(s)
- Tiago Silveira‐Rosa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - António Mateus‐Pinheiro
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Department of Internal MedicineCoimbra Hospital and University CenterCoimbraPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Joana Margarida Silva
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Joana Martins‐Macedo
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Bruna Araújo
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Ana Rita Machado‐Santos
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Present address:
Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA
- Present address:
New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Mariana Silva
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Eduardo Loureiro‐Campos
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - João Miguel Bessa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B’s ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Bn’ML – Behavioral and Molecular LabBragaPortugal
| |
Collapse
|
13
|
Patrício P, Mateus-Pinheiro A, Machado-Santos AR, Alves ND, Correia JS, Morais M, Bessa JM, Rodrigues AJ, Sousa N, Pinto L. Cell Cycle Regulation of Hippocampal Progenitor Cells in Experimental Models of Depression and after Treatment with Fluoxetine. Int J Mol Sci 2021; 22:ijms222111798. [PMID: 34769232 PMCID: PMC8584049 DOI: 10.3390/ijms222111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Changes in adult hippocampal cell proliferation and genesis have been largely implicated in depression and antidepressant action, though surprisingly, the underlying cell cycle mechanisms are largely undisclosed. Using both an in vivo unpredictable chronic mild stress (uCMS) rat model of depression and in vitro rat hippocampal-derived neurosphere culture approaches, we aimed to unravel the cell cycle mechanisms regulating hippocampal cell proliferation and genesis in depression and after antidepressant treatment. We show that the hippocampal dentate gyrus (hDG) of uCMS animals have less proliferating cells and a decreased proportion of cells in the G2/M phase, suggesting a G1 phase arrest; this is accompanied by decreased levels of cyclin D1, E, and A expression. Chronic fluoxetine treatment reversed the G1 phase arrest and promoted an up-regulation of cyclin E. In vitro, dexamethasone (DEX) decreased cell proliferation, whereas the administration of serotonin (5-HT) reversed it. DEX also induced a G1-phase arrest and decreased cyclin D1 and D2 expression levels while increasing p27. Additionally, 5-HT treatment could partly reverse the G1-phase arrest and restored cyclin D1 expression. We suggest that the anti-proliferative actions of chronic stress in the hDG result from a glucocorticoid-mediated G1-phase arrest in the progenitor cells that is partly mediated by decreased cyclin D1 expression which may be overcome by antidepressant treatment.
Collapse
Affiliation(s)
- Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- B’nML—Behavioral &Molecular Lab, 4715-057 Braga, Portugal
- Correspondence: (P.P.); (L.P.)
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- B’nML—Behavioral &Molecular Lab, 4715-057 Braga, Portugal
| | - Ana Rita Machado-Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY 10032, USA
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Mónica Morais
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - João Miguel Bessa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- B’nML—Behavioral &Molecular Lab, 4715-057 Braga, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- B’nML—Behavioral &Molecular Lab, 4715-057 Braga, Portugal
- Correspondence: (P.P.); (L.P.)
| |
Collapse
|
14
|
Rodrigues RS, Paulo SL, Moreira JB, Tanqueiro SR, Sebastião AM, Diógenes MJ, Xapelli S. Adult Neural Stem Cells as Promising Targets in Psychiatric Disorders. Stem Cells Dev 2021; 29:1099-1117. [PMID: 32723008 DOI: 10.1089/scd.2020.0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of new therapies for psychiatric disorders is of utmost importance, given the enormous toll these disorders pose to society nowadays. This should be based on the identification of neural substrates and mechanisms that underlie disease etiopathophysiology. Adult neural stem cells (NSCs) have been emerging as a promising platform to counteract brain damage. In this perspective article, we put forth a detailed view of how NSCs operate in the adult brain and influence brain homeostasis, having profound implications at both behavioral and functional levels. We appraise evidence suggesting that adult NSCs play important roles in regulating several forms of brain plasticity, particularly emotional and cognitive flexibility, and that NSC dynamics are altered upon brain pathology. Furthermore, we discuss the potential therapeutic value of utilizing adult endogenous NSCs as vessels for regeneration, highlighting their importance as targets for the treatment of multiple mental illnesses, such as affective disorders, schizophrenia, and addiction. Finally, we speculate on strategies to surpass current challenges in neuropsychiatric disease modeling and brain repair.
Collapse
Affiliation(s)
- Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara R Tanqueiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
15
|
Paulo SL, Ribeiro-Rodrigues L, Rodrigues RS, Mateus JM, Fonseca-Gomes J, Soares R, Diógenes MJ, Solá S, Sebastião AM, Ribeiro FF, Xapelli S. Sustained Hippocampal Neural Plasticity Questions the Reproducibility of an Amyloid-β-Induced Alzheimer's Disease Model. J Alzheimers Dis 2021; 82:1183-1202. [PMID: 34151790 DOI: 10.3233/jad-201567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The use of Alzheimer's disease (AD) models obtained by intracerebral infusion of amyloid-β (Aβ) has been increasingly reported in recent years. Nonetheless, these models may present important challenges. OBJECTIVE We have focused on canonical mechanisms of hippocampal-related neural plasticity to characterize a rat model obtained by an intracerebroventricular (icv) injection of soluble amyloid-β42 (Aβ42). METHODS Animal behavior was evaluated in the elevated plus maze, Y-Maze spontaneous or forced alternation, Morris water maze, and open field, starting 2 weeks post-Aβ42 infusion. Hippocampal neurogenesis was assessed 3 weeks after Aβ42 injection. Aβ deposition, tropomyosin receptor kinase B levels, and neuroinflammation were appraised at 3 and 14 days post-Aβ42 administration. RESULTS We found that immature neuronal dendritic morphology was abnormally enhanced, but proliferation and neuronal differentiation in the dentate gyrus was conserved one month after Aβ42 injection. Surprisingly, animal behavior did not reveal changes in cognitive performance nor in locomotor and anxious-related activity. Brain-derived neurotrophic factor related-signaling was also unchanged at 3 and 14 days post-Aβ icv injection. Likewise, astrocytic and microglial markers of neuroinflammation in the hippocampus were unaltered in these time points. CONCLUSION Taken together, our data emphasize a high variability and lack of behavioral reproducibility associated with these Aβ injection-based models, as well as the need for its further optimization, aiming at addressing the gap between preclinical AD models and the human disorder.
Collapse
Affiliation(s)
- Sara L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana M Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João Fonseca-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Soares
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Biologia Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
16
|
Dioli C, Patrício P, Pinto LG, Marie C, Morais M, Vyas S, Bessa JM, Pinto L, Sotiropoulos I. Adult neurogenic process in the subventricular zone-olfactory bulb system is regulated by Tau protein under prolonged stress. Cell Prolif 2021; 54:e13027. [PMID: 33988263 PMCID: PMC8249793 DOI: 10.1111/cpr.13027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives The area of the subventricular zone (SVZ) in the adult brain exhibits the highest number of proliferative cells, which, together with the olfactory bulb (OB), maintains constant brain plasticity through the generation, migration and integration of newly born neurons. Despite Tau and its malfunction is increasingly related to deficits of adult hippocampal neurogenesis and brain plasticity under pathological conditions [e.g. in Alzheimer's disease (AD)], it remains unknown whether Tau plays a role in the neurogenic process of the SVZ and OB system under conditions of chronic stress, a well‐known sculptor of brain and risk factor for AD. Materials and methods Different types of newly born cells in SVZ and OB were analysed in animals that lack Tau gene (Tau‐KO) and their wild‐type littermates (WT) under control or chronic stress conditions. Results We demonstrate that chronic stress reduced the number of proliferating cells and neuroblasts in the SVZ leading to decreased number of newborn neurons in the OB of adult WT, but not Tau‐KO, mice. Interestingly, while stress‐evoked changes were not detected in OB granular cell layer, Tau‐KO exhibited increased number of mature neurons in this layer indicating altered neuronal migration due to Tau loss. Conclusions Our findings suggest the critical involvement of Tau in the neurogenesis suppression of SVZ and OB neurogenic niche under stressful conditions highlighting the role of Tau protein as an essential regulator of stress‐driven plasticity deficits.
Collapse
Affiliation(s)
- Chrysoula Dioli
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Institute of Biology Paris Seine, Team Gene Regulation and Adaptive Behaviors, Department of Neurosciences Paris Seine, Sorbonne Université, CNRS UMR 8246, INSERM U1130, Paris, France
| | - Patrícia Patrício
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucilia-Goreti Pinto
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Clemence Marie
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mónica Morais
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sheela Vyas
- Institute of Biology Paris Seine, Team Gene Regulation and Adaptive Behaviors, Department of Neurosciences Paris Seine, Sorbonne Université, CNRS UMR 8246, INSERM U1130, Paris, France
| | - João M Bessa
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luisa Pinto
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ioannis Sotiropoulos
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
17
|
Levone BR, Moloney GM, Cryan JF, O'Leary OF. Specific sub-regions along the longitudinal axis of the hippocampus mediate antidepressant-like behavioral effects. Neurobiol Stress 2021; 14:100331. [PMID: 33997156 PMCID: PMC8100619 DOI: 10.1016/j.ynstr.2021.100331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/02/2021] [Accepted: 04/17/2021] [Indexed: 01/15/2023] Open
Abstract
Current antidepressants are suboptimal due incomplete understanding of the neurobiology underlying their behavioral effects. However, imaging studies suggest the hippocampus is a key brain region underpinning antidepressant action. There is increasing attention on the functional segregation of the hippocampus into a dorsal region (dHi) predominantly involved in spatial learning and memory, and a ventral region (vHi) which regulates anxiety, a symptom often co-morbid with depression. However, little is known about the roles of these hippocampal sub-regions in the antidepressant response. Moreover, the area between them, the intermediate hippocampus (iHi), has received little attention. Here, we investigated the impact of dHi, iHi or vHi lesions on anxiety- and depressive-like behaviors under baseline or antidepressant treatment conditions in male C57BL/6 mice (n = 8-10). We found that in the absence of fluoxetine, vHi lesions reduced anxiety-like behavior, while none of the lesions affected other antidepressant-sensitive behaviors. vHi lesions prevented the acute antidepressant-like behavioral effects of fluoxetine in the tail suspension test and its anxiolytic effects in the novelty-induced hypophagia test. Intriguingly, only iHi lesions prevented the antidepressant effects of chronic fluoxetine treatment in the forced swim test. dHi lesions did not impact any behaviors either in the absence or presence of fluoxetine. In summary, we found that vHi plays a key role in anxiety-like behavior and its modulation by fluoxetine, while both iHi and vHi play distinct roles in fluoxetine-induced antidepressant-like behaviors.
Collapse
Affiliation(s)
- Brunno Rocha Levone
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Gaspar R, Soares-Cunha C, Domingues AV, Coimbra B, Baptista FI, Pinto L, Ambrósio AF, Rodrigues AJ, Gomes CA. Resilience to stress and sex-specific remodeling of microglia and neuronal morphology in a rat model of anxiety and anhedonia. Neurobiol Stress 2021; 14:100302. [PMID: 33614864 PMCID: PMC7879043 DOI: 10.1016/j.ynstr.2021.100302] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/08/2023] Open
Abstract
Prenatal exposure to stress or glucocorticoids (GC) is associated with the appearance of psychiatric diseases later in life. Microglia, the immune cells of the brain, are altered in stress-related disorders. Synthetic GC such as dexamethasone (DEX) are commonly prescribed in case of preterm risk labour in order to promote fetal lung maturation. Recently, we reported long-lasting differences in microglia morphology in a model of in utero exposure to DEX (iuDEX), that presents an anxious phenotype. However, it is still unclear if stress differentially affects iuDEX males and females. In this work, we evaluated how iuDEX animals of both sexes cope with chronic mild stress for 2 weeks. We evaluated emotional behavior and microglia and neuronal morphology in the dorsal hippocampus (dHIP) and nucleus accumbens (NAc), two brain regions involved in emotion-related disorders. We report that males and females prenatally exposed to DEX have better performance in anxiety- and depression-related behavioral tests after chronic stress exposure in adulthood than non-exposed animals. Interestingly, iuDEX animals present sex-dependent changes in microglia morphology in the dHIP (hypertrophy in females) and in the NAc (atrophy in females and hypertrophy in males). After chronic stress, these cells undergo sex-specific morphological remodeling. Paralleled to these alterations in cytoarchitecture of microglia, we report inter-regional differences in dendritic morphology in a sex-specific manner. iuDEX females present fewer complex neurons in the NAc, whereas iuDEX males presented less complex neuronal morphology in the dHIP. Interestingly, these alterations were modified by stress exposure. Our work shows that stressful events during pregnancy can exert a preserved sex-specific effect in adulthood. Although the role of the observed cellular remodeling is still unknown, sex-specific differences in microglia plasticity induced by long-term stress exposure may anticipate differences in drug efficacy in the context of stress-induced anxiety- or depression-related behaviors. iuDEX induces anxiety- and depression-related behavioral in both sexes. iuDEX induces sex dependent fine structural alterations in neurons and microglia morphology in the dHIP and in the NAc. uCMS in combination to iuDEX normalize the behavior as well the morphology of neurons in the NAc. Stressful events during pregnancy can exert a preserved sex-specific effect in adulthood.
Collapse
Affiliation(s)
- Rita Gaspar
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipa I Baptista
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António F Ambrósio
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Catarina A Gomes
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| |
Collapse
|
19
|
The positive effects of running exercise on hippocampal astrocytes in a rat model of depression. Transl Psychiatry 2021; 11:83. [PMID: 33526783 PMCID: PMC7851162 DOI: 10.1038/s41398-021-01216-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
Running exercise has been shown to alleviate depressive symptoms, but the mechanism of its antidepressant effect is still unclear. Astrocytes are the predominant cell type in the brain and perform key functions vital to central nervous system (CNS) physiology. Mounting evidence suggests that changes in astrocyte number in the hippocampus are closely associated with depression. However, the effects of running exercise on astrocytes in the hippocampus of depression have not been investigated. Here, adult male rats were subjected to chronic unpredictable stress (CUS) for 5 weeks followed by treadmill running for 6 weeks. The sucrose preference test (SPT) was used to assess anhedonia of rats. Then, immunohistochemistry and modern stereological methods were used to precisely quantify the total number of glial fibrillary acidic protein (GFAP)+ astrocytes in each hippocampal subregion, and immunofluorescence was used to quantify the density of bromodeoxyuridine (BrdU)+ and GFAP+ cells in each hippocampal subregion. We found that running exercise alleviated CUS-induced deficit in sucrose preference and hippocampal volume decline, and that CUS intervention significantly reduced the number of GFAP+ cells and the density of BrdU+/GFAP+ cells in the hippocampal CA1 region and dentate gyrus (DG), while 6 weeks of running exercise reversed these decreases. These results further confirmed that running exercise alleviates depressive symptoms and protects hippocampal astrocytes in depressed rats. These findings suggested that the positive effects of running exercise on astrocytes and the generation of new astrocytes in the hippocampus might be important structural bases for the antidepressant effects of running exercise.
Collapse
|
20
|
Podgorny OV, Gulyaeva NV. Glucocorticoid-mediated mechanisms of hippocampal damage: Contribution of subgranular neurogenesis. J Neurochem 2020; 157:370-392. [PMID: 33301616 DOI: 10.1111/jnc.15265] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022]
Abstract
A comprehensive overview of the interplay between glucocorticoids (GCs) and adult hippocampal neurogenesis (AHN) is presented, particularly, in the context of a diseased brain. The effectors of GCs in the dentate gyrus neurogenic niche of the hippocampal are reviewed, and the consequences of the GC signaling on the generation and integration of new neurons are discussed. Recent findings demonstrating how GC signaling mediates impairments of the AHN in various brain pathologies are overviewed. GC-mediated effects on the generation and integration of adult-born neurons in the hippocampal dentate gyrus depend on the nature, severity, and duration of the acting stress factor. GCs realize their effects on the AHN primarily via specific glucocorticoid and mineralocorticoid receptors. Disruption of the reciprocal regulation between the hypothalamic-pituitary-adrenal (HPA) axis and the generation of the adult-born granular neurons is currently considered to be a key mechanism implicating the AHN into the pathogenesis of numerous brain diseases, including those without a direct hippocampal damage. These alterations vary from reduced proliferation of stem and progenitor cells to increased cell death and abnormalities in morphology, connectivity, and localization of young neurons. Although the involvement of the mutual regulation between the HPA axis and the AHN in the pathogenesis of cognitive deficits and mood impairments is evident, several unresolved critical issues are stated. Understanding the details of GC-mediated mechanisms involved in the alterations in AHN could enable the identification of molecular targets for ameliorating pathology-induced imbalance in the HPA axis/AHN mutual regulation to conquer cognitive and psychiatric disturbances.
Collapse
Affiliation(s)
- Oleg V Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, Russia
| |
Collapse
|
21
|
Sakhri FZ, Adachi N, Zerizer S, Ohashi Y, Ikemoto H, Tsukada M, Kabouche Z, Hisamitsu T, Sunagawa M. Behavioral and neurological improvement by Cydonia oblonga fruit extract in chronic immobilization stress rats. Phytother Res 2020; 35:2074-2084. [PMID: 33205508 DOI: 10.1002/ptr.6953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/17/2020] [Accepted: 11/05/2020] [Indexed: 11/12/2022]
Abstract
It is known that chronic stress is a contributing factor to several physical and mental diseases. In this study, we examined the effect of hydroethanolic extract of Cydonia oblonga fruit (HECO, 300 mg/kg) in chronically immobilized rats on physiological and behavioral parameters by the open field test (OFT), sucrose preference test (SPT), and forced swimming test (FST) and on neurological alterations by analysis of the hippocampal neurogenesis. A daily 6 hr exposure to chronic immobilization stress (CIS) for 21 consecutive days induced anxiety- and depressive-like behaviors in rats' concomitant with decreased weight gain and increased plasma corticosterone (CORT) levels, rats also showed atrophy in the CA3 subregion of the hippocampus and a decreased number of Ki67 and DCX positive cells in the dentate gyrus (DG). Treatment with HECO successfully suppressed the physiological and behavioral markers of the CIS and prevents the structural abnormality and the impaired cell proliferation in the hippocampus. Moreover, the daily administration of HECO improved the mood function in normal rats. Taking together, our findings demonstrate, for the first time, the anti-depressive effect of C. oblonga fruit by enhancing the hippocampal neurogenesis in the rat model of depression.
Collapse
Affiliation(s)
- Fatma Z Sakhri
- Department of Physiology, School of Medicine, Showa University, Shinagawa-ku, Japan.,Laboratoire d'Immunologie, Université Des Frères Mentouri-Constantine 1, Constantine, Algeria.,Laboratoire d'Obtention de Substances Thérapeutiques, Université Des Frères Mentouri-Constantine 1, Constantine, Algeria
| | - Naoki Adachi
- Department of Physiology, School of Medicine, Showa University, Shinagawa-ku, Japan
| | - Sakina Zerizer
- Laboratoire d'Immunologie, Université Des Frères Mentouri-Constantine 1, Constantine, Algeria
| | - Yusuke Ohashi
- Department of Physiology, School of Medicine, Showa University, Shinagawa-ku, Japan
| | - Hideshi Ikemoto
- Department of Physiology, School of Medicine, Showa University, Shinagawa-ku, Japan
| | - Mana Tsukada
- Department of Physiology, School of Medicine, Showa University, Shinagawa-ku, Japan
| | - Zahia Kabouche
- Laboratoire d'Obtention de Substances Thérapeutiques, Université Des Frères Mentouri-Constantine 1, Constantine, Algeria
| | - Tadashi Hisamitsu
- Department of Physiology, School of Medicine, Showa University, Shinagawa-ku, Japan
| | - Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Shinagawa-ku, Japan
| |
Collapse
|
22
|
Ekova MR, Smirnov AV, Tyurenkov IN, Grigor'eva NV. Peculiarities of the Expression of Inducible NO Synthase in Rat Dentate Gyrus in Depression Modeling. Bull Exp Biol Med 2020; 169:718-720. [PMID: 32990853 DOI: 10.1007/s10517-020-04963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 10/23/2022]
Abstract
Mild stress exposure contributes to the development of cognitive and emotional deficits, is considered as a model of depressive state, and is characterized by enhanced NO production. In albino mature (12-month-old) male rats, the depressive state was simulated by daily 30-min exposure to stressful stimuli (vibration, loud sound, and strobe light) over 7 days in a special chamber. On paraffin frontal sections of the brain stained with antibodies against inducible NO synthase (iNOS), the expression and distribution pattern of immunoreactive material were evaluated in various layers of the dentate gyrus under normal conditions and after depression modeling. The relative area of iNOS expression in the dentate gyrus of control rats was 8.2 (7.1-9.9)%, while in rats with experimental depression, this parameter was 16.7 (10.5-22.1)%, i.e. increased by 8.5% (p<0.05). In mature rats with modeled depressive state, the expression and relative area of iNOS expression in neuronal perikarya in the granular and subgranular layers of the dentate gyrus increased, which can underlie the mechanisms of damage and determine reduced neuroplasticity and suppressed neurogenesis in the dentate gyrus in rats during adulthood.
Collapse
Affiliation(s)
- M R Ekova
- Volgograd State Medical University, the Ministry of Health of Russian Federation, Volgograd, Russia.
| | - A V Smirnov
- Volgograd State Medical University, the Ministry of Health of Russian Federation, Volgograd, Russia.,Volgograd Medical Research Center, Volgograd, Russia
| | - I N Tyurenkov
- Volgograd State Medical University, the Ministry of Health of Russian Federation, Volgograd, Russia
| | - N V Grigor'eva
- Volgograd State Medical University, the Ministry of Health of Russian Federation, Volgograd, Russia
| |
Collapse
|
23
|
Lormant F, Ferreira VHB, Meurisse M, Lemarchand J, Constantin P, Morisse M, Cornilleau F, Parias C, Chaillou E, Bertin A, Lansade L, Leterrier C, Lévy F, Calandreau L. Emotionality modulates the impact of chronic stress on memory and neurogenesis in birds. Sci Rep 2020; 10:14620. [PMID: 32884096 PMCID: PMC7471904 DOI: 10.1038/s41598-020-71680-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/17/2020] [Indexed: 12/27/2022] Open
Abstract
Chronic stress is a strong modulator of cognitive processes, such as learning and memory. There is, however, great within-individual variation in how an animal perceives and reacts to stressors. These differences in coping with stress modulate the development of stress-induced memory alterations. The present study investigated whether and how chronic stress and individual emotionality interrelate and influence memory performances and brain neurogenesis in birds. For that, we used two lines of Japanese quail (Coturnix japonica) with divergent emotionality levels. Highly (E+) and less (E-) emotional quail were submitted to chronic unpredictable stress (CUS) for 3 weeks and trained in a spatial task and a discrimination task, a form of cue-based memory. E + and E- birds were also used to assess the impact of CUS and emotionality on neurogenesis within the hippocampus and the striatum. CUS negatively impacted spatial memory, and cell proliferation, and survival in the hippocampus. High emotionality was associated with a decreased hippocampal neurogenesis. CUS improved discrimination performances and favored the differentiation of newborn cells into mature neurons in the striatum, specifically in E+ birds. Our results provide evidence that CUS consequences on memory and neural plasticity depends both on the memory system and individual differences in behavior.
Collapse
Affiliation(s)
- Flore Lormant
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Vitor Hugo Bessa Ferreira
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France.,Yncréa Hauts-de-France, ISA Lille, 48 bd Vauban, 59046, Lille Cedex, France
| | - Maryse Meurisse
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Julie Lemarchand
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Paul Constantin
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Mélody Morisse
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Fabien Cornilleau
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Céline Parias
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Elodie Chaillou
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Aline Bertin
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Léa Lansade
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Christine Leterrier
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Frédéric Lévy
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France.,CNRS, UMR 7247, 37380, Nouzilly, France.,Université François Rabelais, 37041, Tours, France.,IFCE, 37380, Nouzilly, France
| | - Ludovic Calandreau
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, 37380, Nouzilly, France. .,CNRS, UMR 7247, 37380, Nouzilly, France. .,Université François Rabelais, 37041, Tours, France. .,IFCE, 37380, Nouzilly, France.
| |
Collapse
|
24
|
Mori M, Murata Y, Tsuchihashi M, Hanakita N, Terasaki F, Harada H, Kawanabe S, Terada K, Matsumoto T, Ohe K, Mine K, Enjoji M. Continuous psychosocial stress stimulates BMP signaling in dorsal hippocampus concomitant with anxiety-like behavior associated with differential modulation of cell proliferation and neurogenesis. Behav Brain Res 2020; 392:112711. [PMID: 32461130 DOI: 10.1016/j.bbr.2020.112711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/19/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
Abstract
Bone morphogenetic protein (BMP) signaling in the hippocampus regulates psychiatric behaviors and hippocampal neurogenesis in non-stress conditions; however, stress-induced changes in hippocampal BMP signaling have not yet been reported. Therefore, we sought to examine whether psychosocial stress, which induces psychiatric symptoms, affects hippocampal BMP signaling. A total of 32 male Sprague-Dawley rats were exposed to a psychosocial stress using a Resident/Intruder paradigm for ten consecutive days. Subsequently, rats were subjected to a battery of behavioral tests (novelty-suppressed feeding test, sucrose preference test, and forced swimming test) for the evaluation of adult neurogenesis and activity of BMP signaling in the dorsal and ventral hippocampus. Repeated social defeat promoted anxiety-like behaviors, but neither anhedonia nor behavioral despair. Socially defeated rats exhibited an increase in the number of Ki-67-positive cells, decrease in the number of doublecortin (DCX)-positive cells, and decrease only in the dorsal hippocampus of the ratio of DCX-positive to Ki-67-positive cells, a proxy for newly-born cell maturation speed and survival. In contrast, no differences were observed in the number of 5-Bromo-2'-deoxyuridine (BrdU)-positive cells, indicating survival of newly-born cells both in the dorsal and ventral hippocampus. Furthermore, psychosocial stress significantly increased the BMP-4 and phosphorylated Smad1/5/9 expression levels specifically in the dorsal hippocampus. Our findings suggest that repeated psychosocial stress activates BMP signaling and differently affects cell proliferation and neurogenesis exclusively in the dorsal hippocampus, potentially exacerbating anxiety-related symptoms. Targeting BMP signaling is a potential therapeutic strategy for psychiatric disorders.
Collapse
Affiliation(s)
- Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Mariko Tsuchihashi
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Naoko Hanakita
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Fumie Terasaki
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Hiroyoshi Harada
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shunsuke Kawanabe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kazuki Terada
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Taichi Matsumoto
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kazunori Mine
- Faculty of Neurology and Psychiatry, BOOCS CLINIC FUKUOKA, 6F Random Square Bldg., 6-18, Tenya-Machi, Hakata-ku, Fukuoka 812-0025, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
25
|
Machado-Santos AR, Alves ND, Araújo B, Correia JS, Patrício P, Mateus-Pinheiro A, Loureiro-Campos E, Bessa JM, Sousa N, Pinto L. Astrocytic plasticity at the dorsal dentate gyrus on an animal model of recurrent depression. Neuroscience 2019; 454:94-104. [PMID: 31747562 DOI: 10.1016/j.neuroscience.2019.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Astrocytes are now known to play crucial roles in the central nervous system, supporting and closely interacting with neurons and therefore able to modulate brain function. Both human postmortem studies in brain samples from patients diagnosed with Major Depressive Disorder and from animal models of depression reported numerical and morphological astrocytic changes specifically in the hippocampus. In particular, these studies revealed significant reductions in glial cell density denoted by a decreased number of S100B-positive cells and a decrease in GFAP expression in several brain regions including the hippocampus. To reveal plastic astrocytic changes in the context of recurrent depression, we longitudinally assessed dynamic astrocytic alterations (gene expression, cell densities and morphologic variations) in the hippocampal dentate gyrus under repeated exposure to unpredictable chronic mild stress (uCMS) and upon treatment with two antidepressants, fluoxetine and imipramine. Both antidepressants decreased astrocytic complexity immediately after stress exposure. Moreover, we show that astrocytic alterations, particularly an increased number of S100B-positive cells, are observed after recurrent stress exposure. Interestingly, these alterations were prevented at the long-term by either fluoxetine or imipramine treatment.
Collapse
Affiliation(s)
- Ana R Machado-Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno D Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Bruna Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joana S Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Eduardo Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - João M Bessa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
26
|
Christian KM, Ming GL, Song H. Adult neurogenesis and the dentate gyrus: Predicting function from form. Behav Brain Res 2019; 379:112346. [PMID: 31722241 DOI: 10.1016/j.bbr.2019.112346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Hypotheses about the functional properties of the dentate gyrus and adult dentate neurogenesis have been shaped by early observations of the anatomy of this region, mostly in rodents. This has led to the development of a few core propositions that have guided research over the past several years, including the predicted role of this region in pattern separation and the local transformation of inputs from the entorhinal cortex. We now have the opportunity to review these predictions and update these anatomical observations based on recently developed techniques that reveal the complex structure, connectivity, and dynamic properties of distinct cell populations in the dentate gyrus at a higher resolution. Cumulative evidence suggests that the dentate gyrus and adult-born granule cells play a role in some forms of behavioral discriminations, but there are still many unanswered questions about how the dentate gyrus processes information to support the disambiguation of stimuli.
Collapse
Affiliation(s)
- Kimberly M Christian
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Guo-Li Ming
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Developmental and Cell Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Epigenetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Developmental and Cell Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Epigenetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Dioli C, Patrício P, Sousa N, Kokras N, Dalla C, Guerreiro S, Santos-Silva MA, Rego AC, Pinto L, Ferreiro E, Sotiropoulos I. Chronic stress triggers divergent dendritic alterations in immature neurons of the adult hippocampus, depending on their ultimate terminal fields. Transl Psychiatry 2019; 9:143. [PMID: 31028242 PMCID: PMC6486609 DOI: 10.1038/s41398-019-0477-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/02/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022] Open
Abstract
Chronic stress, a suggested precipitant of brain pathologies, such as depression and Alzheimer's disease, is known to impact on brain plasticity by causing neuronal remodeling as well as neurogenesis suppression in the adult hippocampus. Although many studies show that stressful conditions reduce the number of newborn neurons in the adult dentate gyrus (DG), little is known about whether and how stress impacts on dendritic development and structural maturation of these newborn neurons. We, herein, demonstrate that chronic stress impacts differentially on doublecortin (DCX)-positive immature neurons in distinct phases of maturation. Specifically, the density of the DCX-positive immature neurons whose dendritic tree reaches the inner molecular layer (IML) of DG is reduced in stressed animals, whereas their dendritic complexity is increased. On the contrary, no change on the density of DCX-positive neurons whose dendritic tree extends to the medial/outer molecular layer (M/OML) of the DG is found under stress conditions, whereas the dendritic complexity of these cells is diminished. In addition, DCX+ cells displayed a more complex and longer arbor in the dendritic compartments located in the granular cell layer of the DG under stress conditions; on the contrary, their dendritic segments localized into the M/OML were shorter and less complex. These findings suggest that the neuroplastic effects of chronic stress on dendritic maturation and complexity of DCX+ immature neurons vary based on the different maturation stage of DCX-positive cells and the different DG sublayer, highlighting the complex and dynamic stress-driven neuroplasticity of immature neurons in the adult hippocampus.
Collapse
Affiliation(s)
- Chrysoula Dioli
- 0000 0001 2159 175Xgrid.10328.38Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Patrícia Patrício
- 0000 0001 2159 175Xgrid.10328.38Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Nuno Sousa
- 0000 0001 2159 175Xgrid.10328.38Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Nikolaos Kokras
- 0000 0001 2155 0800grid.5216.0First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece ,0000 0001 2155 0800grid.5216.0Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- 0000 0001 2155 0800grid.5216.0Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sara Guerreiro
- 0000 0001 2159 175Xgrid.10328.38Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Miguel A. Santos-Silva
- 0000 0001 2159 175Xgrid.10328.38Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Ana Cristina Rego
- 0000 0000 9511 4342grid.8051.cCenter for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute of Biochemistry, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Luísa Pinto
- 0000 0001 2159 175Xgrid.10328.38Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal ,0000 0001 2159 175Xgrid.10328.38ICVS/3B’s - PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Elisabete Ferreiro
- 0000 0000 9511 4342grid.8051.cCenter for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal ,0000 0000 9511 4342grid.8051.cInstitute for Interdisciplinary Research of the University of Coimbra (IIIUC), Coimbra, Portugal
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.
| |
Collapse
|
28
|
Murata Y, Matsuda H, Mikami Y, Hirose S, Mori M, Ohe K, Mine K, Enjoji M. Chronic administration of quetiapine stimulates dorsal hippocampal proliferation and immature neurons of male rats, but does not reverse psychosocial stress-induced hyponeophagic behavior. Psychiatry Res 2019; 272:411-418. [PMID: 30611957 DOI: 10.1016/j.psychres.2018.12.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 12/14/2022]
Abstract
Quetiapine, an atypical antipsychotic, has been used for the treatment of several neuropsychiatric disorders. However, the underlying mechanism of the broad therapeutic range of quetiapine remains unknown. We previously reported that several aversive conditions affect dorsal/ventral hippocampal neurogenesis differentially. This study was aimed to elucidate the positive effects of chronic treatment with quetiapine on regional differences in hippocampal proliferation and immature neurons and behavioral changes under psychosocial stress using the Resident-Intruder paradigm. Twenty-three male Sprague-Dawley rats were intraperitoneally administered a vehicle or quetiapine (10 mg/kg) once daily for 28 days. Two weeks after starting the injections, animals were exposed to intermittent social defeat (four times over two weeks). The behavioral effects of stress and quetiapine were evaluated by the Novelty-Suppressed Feeding (NSF) test. The stereological quantification of hippocampal neurogenesis was estimated using immunostaining with Ki-67 and doublecortin (DCX). Chronic quetiapine treatment stimulated the Ki-67- and DCX-positive cells in the dorsal hippocampus, but not in the ventral subregion. The stress-induced changes in neurogenesis and hyponeophagic behavior were not reversed by repeated administration of quetiapine. Future study with additional behavioral tests is needed to elucidate the functional significance of the quetiapine-induced increase in dorsal hippocampal neurogenesis.
Collapse
Affiliation(s)
- Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Hiroko Matsuda
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yoko Mikami
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shiori Hirose
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kazunori Mine
- Faculty of Neurology and Psychiatry, Mito Hospital, 4-1-1, Shime-Higashi, Shime-Machi, Kasuya-Gun, Fukuoka 811-2243, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
29
|
Xu B, Lian S, Li SZ, Guo JR, Wang JF, Wang D, Zhang LP, Yang HM. GABAB receptor mediate hippocampal neuroinflammation in adolescent male and female mice after cold expose. Brain Res Bull 2018; 142:163-175. [PMID: 30031816 DOI: 10.1016/j.brainresbull.2018.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/04/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
Abstract
Stress induces many non-specific inflammatory responses in the mouse brain, especially during adolescence. Although the impact of stress on the brain has long been reported, the effects of cold stress on hippocampal neuroinflammation in adolescent mice are not well understood; furthermore, whether these effects are gender specific are also not well established. Adolescent male and female C57BL/6 mice were exposed to 4 °C temperatures for 12 h, after which behavior was assessed using the open field test. Using western blotting and immunohistochemistry we also assessed glial cell numbers and microglial activation, as well as inflammatory cytokine levels and related protein expression levels. We found that in mice subjected to cold stress: 1) There were significant behavioral changes; 2) neuronal nuclei densities were smaller and total cell numbers were significantly decreased; 3) nuclear factor (NF)-κB and phosphorylated AKT were upregulated; 4) pro-inflammatory cytokines such as interleukin-6 and tumor necrosis factor-α were also upregulated; and 5) microglia were activated, while glial fibrillary acid protein and ionized calcium-binding adapter molecule 1 protein expression increased. Taken together, these results indicate that cold stress induces pro-inflammatory cytokine upregulation that leads to neuroinflammation and neuronal apoptosis in the hippocampi of adolescent mice. We believe that these effects are influenced by a GABAB/Rap1B/AKT/NF-κB pathway. Finally, male mice were more sensitive to the effects of cold stress than were female mice.
Collapse
Affiliation(s)
- Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shi-Ze Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Jing-Ru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Jian-Fa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Di Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Li-Ping Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| | - Huan-Min Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| |
Collapse
|