1
|
Massara M, Delogu C, Cardinale L, Livoti V, Liso A, Cainelli E, Sarlo M, Begliomini C, Ceolin C, De Rui M, Bisiacchi P, Sergi G, Mapelli D, Devita M. The lateralized cerebellum: insights into motor, cognitive, and affective functioning across ages: a scoping review. J Neurol 2025; 272:122. [PMID: 39812809 DOI: 10.1007/s00415-024-12884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025]
Abstract
Research on the cerebellum and its functional organization has significantly expanded over the last decades, expanding our comprehension of its role far beyond motor control, including critical contributions to cognition and affective processing. Notably, the cerebellar lateralization mirrors contralateral brain lateralization, a complex phenomenon that remains unexplored, especially across different stages of life. The present work aims to bridge this gap by providing a comprehensive scoping review of the lateralization of motor, cognitive, and affective functioning within the cerebellum across the lifespan. A methodical search in electronic databases (i.e., PubMed, Embase, and PsycINFO) was conducted up to October 2024, focusing on neuroimaging studies with healthy participants of all ages performing motor, cognitive, or affective tasks. Our selection process, which involved multiple independent reviewers, identified 128 studies reporting cerebellar asymmetries in individuals from early childhood to older age, with a significant portion of studies regarding young-middle adults (19-45 years old). The majority of the findings confirmed established lateralization patterns in motor and language processing, such as ipsilateral motor control and right-lateralized language functions. However, less attention has been paid to other cognitive functions and affective processing where more heterogeneous and less consistent asymmetries have been observed. To the best of our knowledge, this scoping review is the first to comprehensively investigate the motor, cognitive, and affective functional lateralization of the cerebellum across lifespan, highlighting previously overlooked dimensions of cerebellar contributions.
Collapse
Affiliation(s)
- Matilde Massara
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
| | - Carla Delogu
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
| | - Luca Cardinale
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
| | - Vincenzo Livoti
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padua, Via Orus 2/B, 35129, Padua, Italy
| | - Alba Liso
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 64, 44121, Ferrara, Italy
| | - Elisa Cainelli
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
| | - Michela Sarlo
- Department of Communication Sciences, Humanities and International Studies, University of Urbino Carlo Bo, Via Saffi 15, 61029, Urbino, Italy
| | - Chiara Begliomini
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padua, Via Orus 2/B, 35129, Padua, Italy
| | - Chiara Ceolin
- Geriatrics Division, Department of Medicine (DIMED), University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Marina De Rui
- Geriatrics Division, Department of Medicine (DIMED), University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padua, Via Orus 2/B, 35129, Padua, Italy
| | - Giuseppe Sergi
- Geriatrics Division, Department of Medicine (DIMED), University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Daniela Mapelli
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy
| | - Maria Devita
- Department of General Psychology, University of Padua, Via Venezia 8, 35131, Padua, Italy.
- Geriatrics Division, Department of Medicine (DIMED), University of Padua, Via Giustiniani 2, 35128, Padua, Italy.
| |
Collapse
|
2
|
Nemanich S, Schindler-Ivens S. Age-Related Development of Bilateral Coordination of the Upper Limbs in Children and Adolescents. J Mot Behav 2024; 57:12-20. [PMID: 39266011 PMCID: PMC11729494 DOI: 10.1080/00222895.2024.2396114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 09/14/2024]
Abstract
Bilateral coordination of the upper limbs (UL) is important for activities of daily living and physical activities. Motor coordination improves from childhood through adolescence. However, age-coordination trajectories for bilateral UL movements are not well-established, and it is unclear if bimanual coordination develops slower than unilateral coordination. In this study we examined age-related changes in UL coordination from childhood to late adolescence. Typically-developing children (N = 29, aged 7-17 years) performed unilateral and bilateral, antiphase cycling tasks with their ULs. Variations in cycling velocity and interlimb phase errors were computed as measures of coordination. Linear regression was used to examine age-coordination effects. Given the sensorimotor processing for bilateral movements and gradual development of the corpus callosum, we hypothesized different relationships between age and coordination for bilateral and unilateral movements. Results showed UL coordination was significantly related to age, where coordination was better in older compared to younger children (p < 0.001); however, there were similar significant effects for unilateral movements. Differences in unilateral and bilateral coordination were not significantly explained by biological sex, although power to detect sex differences was low. We conclude that bilateral and unilateral UL coordination are age-dependent; each improves at similar rates through childhood and adolescence.
Collapse
|
3
|
Hawks ZW, Todorov A, Marrus N, Nishino T, Talovic M, Nebel MB, Girault JB, Davis S, Marek S, Seitzman BA, Eggebrecht AT, Elison J, Dager S, Mosconi MW, Tychsen L, Snyder AZ, Botteron K, Estes A, Evans A, Gerig G, Hazlett HC, McKinstry RC, Pandey J, Schultz RT, Styner M, Wolff JJ, Zwaigenbaum L, Markson L, Petersen SE, Constantino JN, White DA, Piven J, Pruett JR. A Prospective Evaluation of Infant Cerebellar-Cerebral Functional Connectivity in Relation to Behavioral Development in Autism Spectrum Disorder. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:149-161. [PMID: 36712571 PMCID: PMC9874081 DOI: 10.1016/j.bpsgos.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 02/01/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder diagnosed based on social impairment, restricted interests, and repetitive behaviors. Contemporary theories posit that cerebellar pathology contributes causally to ASD by disrupting error-based learning (EBL) during infancy. The present study represents the first test of this theory in a prospective infant sample, with potential implications for ASD detection. Methods Data from the Infant Brain Imaging Study (n = 94, 68 male) were used to examine 6-month cerebellar functional connectivity magnetic resonance imaging in relation to later (12/24-month) ASD-associated behaviors and outcomes. Hypothesis-driven univariate analyses and machine learning-based predictive tests examined cerebellar-frontoparietal network (FPN; subserves error signaling in support of EBL) and cerebellar-default mode network (DMN; broadly implicated in ASD) connections. Cerebellar-FPN functional connectivity was used as a proxy for EBL, and cerebellar-DMN functional connectivity provided a comparative foil. Data-driven functional connectivity magnetic resonance imaging enrichment examined brain-wide behavioral associations, with post hoc tests of cerebellar connections. Results Cerebellar-FPN and cerebellar-DMN connections did not demonstrate associations with ASD. Functional connectivity magnetic resonance imaging enrichment identified 6-month correlates of later ASD-associated behaviors in networks of a priori interest (FPN, DMN), as well as in cingulo-opercular (also implicated in error signaling) and medial visual networks. Post hoc tests did not suggest a role for cerebellar connections. Conclusions We failed to identify cerebellar functional connectivity-based contributions to ASD. However, we observed prospective correlates of ASD-associated behaviors in networks that support EBL. Future studies may replicate and extend network-level positive results, and tests of the cerebellum may investigate brain-behavior associations at different developmental stages and/or using different neuroimaging modalities.
Collapse
Affiliation(s)
- Zoë W. Hawks
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Alexandre Todorov
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Tomoyuki Nishino
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Muhamed Talovic
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Mary Beth Nebel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica B. Girault
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Savannah Davis
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Scott Marek
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Benjamin A. Seitzman
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Adam T. Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Jed Elison
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
| | - Stephen Dager
- Departments of Radiology, University of Washington, Seattle, Washington
| | - Matthew W. Mosconi
- Life Span Institute and Clinical Child Psychology Program, University of Kansas, Lawrence, Kansas
| | - Lawrence Tychsen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Abraham Z. Snyder
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Kelly Botteron
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Annette Estes
- Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | - Alan Evans
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Guido Gerig
- Department of Computer Science and Engineering, Tandon School of Engineering, New York University, New York, New York
| | - Heather C. Hazlett
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert C. McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Juhi Pandey
- Center for Autism Research, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert T. Schultz
- Center for Autism Research, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Martin Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jason J. Wolff
- Department of Educational Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Lonnie Zwaigenbaum
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Lori Markson
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Steven E. Petersen
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - John N. Constantino
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Desirée A. White
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Joseph Piven
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John R. Pruett
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| |
Collapse
|
4
|
Tripathi SM, Murray AD, Wischik CM, Schelter B. Crossed cerebellar diaschisis in Alzheimer's disease. Nucl Med Commun 2022; 43:423-427. [PMID: 35081090 DOI: 10.1097/mnm.0000000000001531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Crossed cerebellar diaschisis (CCD) is characterized by hypometabolism and hypoperfusion on molecular imaging in the cerebellum due to a supratentorial lesion on the contralateral side. CCD is a well-established phenomenon in acute or subacute conditions such as infarction but it has been less well described in chronic conditions such as neurodegenerative dementias. Here, we investigate CCD in a large sample of 830 people meeting research criteria for Alzheimer's disease (AD) using [18F]fluorodeoxyglucose-positron emission tomography (FDG-PET). MATERIALS AND METHODS This study is based on FDG-PET data collected at baseline as part of two large-scale Phase III clinical trials of a novel tau aggregation inhibitor medication, methylthioninium in mild to moderate AD participants. Quantification of FDG-PET hypometabolism was carried out using standardized uptake value ratio (SUVR), with the pons as the comparison region. SUVR was compared in different regions of interest between the right and left hemispheres of the brain and cerebellum in people with mild AD (Mini-Mental State Examination score ≥ 20). RESULTS Comparison of SUVR in different brain regions demonstrated significant differences in the temporal, occipital and cerebellar cortices. Right and left asymmetry was noted with lower SUVR in the left temporal and occipital regions, whereas SUVR was lower in the right side of the cerebellum. CONCLUSION Here, we found robust evidence of CCD in a large sample of people with AD, a chronic neurodegenerative condition. The presence of this phenomenon in AD opens up a new avenue of research in AD pathogenesis and has the potential to change future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Shailendra Mohan Tripathi
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
- King George's Medical University, Lucknow, India
| | - Alison D Murray
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
- King George's Medical University, Lucknow, India
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen
- TauRx Therapeutics Ltd, Aberdeen
| | - Bjoern Schelter
- TauRx Therapeutics Ltd, Aberdeen
- Institute for Complex Systems and Mathematical Biology (ICSMB), Meston Building, Meston Walk, King's College, Old Aberdeen University of Aberdeen, Aberdeen, UK
| |
Collapse
|
5
|
De Benedictis A, Rossi-Espagnet MC, de Palma L, Carai A, Marras CE. Networking of the Human Cerebellum: From Anatomo-Functional Development to Neurosurgical Implications. Front Neurol 2022; 13:806298. [PMID: 35185765 PMCID: PMC8854219 DOI: 10.3389/fneur.2022.806298] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
In the past, the cerebellum was considered to be substantially involved in sensory-motor coordination. However, a growing number of neuroanatomical, neuroimaging, clinical and lesion studies have now provided converging evidence on the implication of the cerebellum in a variety of cognitive, affective, social, and behavioral processes as well. These findings suggest a complex anatomo-functional organization of the cerebellum, involving a dense network of cortical territories and reciprocal connections with many supra-tentorial association areas. The final architecture of cerebellar networks results from a complex, highly protracted, and continuous development from childhood to adulthood, leading to integration between short-distance connections and long-range extra-cerebellar circuits. In this review, we summarize the current evidence on the anatomo-functional organization of the cerebellar connectome. We will focus on the maturation process of afferent and efferent neuronal circuitry, and the involvement of these networks in different aspects of neurocognitive processing. The final section will be devoted to identifying possible implications of this knowledge in neurosurgical practice, especially in the case of posterior fossa tumor resection, and to discuss reliable strategies to improve the quality of approaches while reducing postsurgical morbidity.
Collapse
Affiliation(s)
- Alessandro De Benedictis
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Luca de Palma
- Neurology Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Carlo Efisio Marras
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
6
|
Lepping RJ, McKinney WS, Magnon GC, Keedy SK, Wang Z, Coombes SA, Vaillancourt DE, Sweeney JA, Mosconi MW. Visuomotor brain network activation and functional connectivity among individuals with autism spectrum disorder. Hum Brain Mapp 2021; 43:844-859. [PMID: 34716740 PMCID: PMC8720186 DOI: 10.1002/hbm.25692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and predictive of functional outcomes, though their neural underpinnings remain poorly understood. Using functional magnetic resonance imaging, we examined both brain activation and functional connectivity during visuomotor behavior in 27 individuals with ASD and 30 typically developing (TD) controls (ages 9–35 years). Participants maintained a constant grip force while receiving visual feedback at three different visual gain levels. Relative to controls, ASD participants showed increased force variability, especially at high gain, and reduced entropy. Brain activation was greater in individuals with ASD than controls in supplementary motor area, bilateral superior parietal lobules, and contralateral middle frontal gyrus at high gain. During motor action, functional connectivity was reduced between parietal‐premotor and parietal‐putamen in individuals with ASD compared to controls. Individuals with ASD also showed greater age‐associated increases in functional connectivity between cerebellum and visual, motor, and prefrontal cortical areas relative to controls. These results indicate that visuomotor deficits in ASD are associated with atypical activation and functional connectivity of posterior parietal, premotor, and striatal circuits involved in translating sensory feedback information into precision motor behaviors, and that functional connectivity of cerebellar–cortical sensorimotor and nonsensorimotor networks show delayed maturation.
Collapse
Affiliation(s)
- Rebecca J Lepping
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Walker S McKinney
- Schiefelbusch Institute for Life Span Studies, Clinical Child Psychology Program, and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, Kansas, USA
| | - Grant C Magnon
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, USA
| | - Zheng Wang
- Department of Occupational Therapy, University of Florida, Gainesville, Florida, USA.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Stephen A Coombes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Matthew W Mosconi
- Schiefelbusch Institute for Life Span Studies, Clinical Child Psychology Program, and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
7
|
Abstract
Adult ability in complex cognitive domains, including music, is commonly thought of as the product of gene-environment interactions, where genetic predispositions influence and are modulated by experience, resulting in the final phenotypic expression. Recently, however, the important contribution of maturation to gene-environment interactions has become better understood. Thus, the timing of exposure to specific experience, such as music training, has been shown to produce long-term impacts on adult behaviour and the brain. Work from our lab and others shows that musical training before the ages of 7-9 enhances performance on musical tasks and modifies brain structure and function, sometimes in unexpected ways. The goal of this paper is to present current evidence for sensitive period effects for musical training in the context of what is known about brain maturation and to present a framework that integrates genetic, environmental and maturational influences on the development of musical skill. We believe that this framework can also be applied more broadly to understanding how predispositions, brain development and experience interact.
Collapse
|
8
|
Amemiya K, Morita T, Hirose S, Ikegami T, Hirashima M, Naito E. Neurological and behavioral features of locomotor imagery in the blind. Brain Imaging Behav 2021; 15:656-676. [PMID: 32240463 PMCID: PMC8032591 DOI: 10.1007/s11682-020-00275-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In people with normal sight, mental simulation (motor imagery) of an experienced action involves a multisensory (especially kinesthetic and visual) emulation process associated with the action. Here, we examined how long-term blindness influences sensory experience during motor imagery and its neuronal correlates by comparing data obtained from blind and sighted people. We scanned brain activity with functional magnetic resonance imaging (fMRI) while 16 sighted and 14 blind male volunteers imagined either walking or jogging around a circle of 2 m radius. In the training before fMRI, they performed these actions with their eyes closed. During scanning, we explicitly instructed the blindfolded participants to generate kinesthetic motor imagery. After the experimental run, they rated the degree to which their motor imagery became kinesthetic or spatio-visual. The imagery of blind people was more kinesthetic as per instructions, while that of the sighted group became more spatio-visual. The imagery of both groups commonly activated bilateral frontoparietal cortices including supplementary motor areas (SMA). Despite the lack of group differences in degree of brain activation, we observed stronger functional connectivity between the SMA and cerebellum in the blind group compared to that in the sighted group. To conclude, long-term blindness likely changes sensory emulation during motor imagery to a more kinesthetic mode, which may be associated with stronger functional coupling in kinesthetic brain networks compared with that in sighted people. This study adds valuable knowledge on motor cognition and mental imagery processes in the blind.
Collapse
Affiliation(s)
- Kaoru Amemiya
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoyo Morita
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Hirose
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsuyoshi Ikegami
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masaya Hirashima
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
9
|
Morita T, Asada M, Naito E. Examination of the development and aging of brain deactivation using a unimanual motor task. Adv Robot 2021. [DOI: 10.1080/01691864.2021.1886168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tomoyo Morita
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan
| | - Minoru Asada
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
10
|
Penhune VB. A gene-maturation-environment model for understanding sensitive period effects in musical training. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Dellatolas G, Câmara-Costa H. The role of cerebellum in the child neuropsychological functioning. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:265-304. [PMID: 32958180 DOI: 10.1016/b978-0-444-64150-2.00023-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This chapter proposes a review of neuropsychologic and behavior findings in pediatric pathologies of the cerebellum, including cerebellar malformations, pediatric ataxias, cerebellar tumors, and other acquired cerebellar injuries during childhood. The chapter also contains reviews of the cerebellar mutism/posterior fossa syndrome, reported cognitive associations with the development of the cerebellum in typically developing children and subjects born preterm, and the role of the cerebellum in neurodevelopmental disorders such as autism spectrum disorders and developmental dyslexia. Cognitive findings in pediatric cerebellar disorders are considered in the context of known cerebellocerebral connections, internal cellular organization of the cerebellum, the idea of a universal cerebellar transform and computational internal models, and the role of the cerebellum in specific cognitive and motor functions, such as working memory, language, timing, or control of eye movements. The chapter closes with a discussion of the strengths and weaknesses of the cognitive affective syndrome as it has been described in children and some conclusions and perspectives.
Collapse
Affiliation(s)
- Georges Dellatolas
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France.
| | - Hugo Câmara-Costa
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France; Centre d'Etudes en Santé des Populations, INSERM U1018, Paris, France
| |
Collapse
|