1
|
Pedroni A, Yilmaz E, Del Vecchio L, Bhattarai P, Vidal IT, Dai YWE, Koutsogiannis K, Kizil C, Ampatzis K. Decoding the molecular, cellular, and functional heterogeneity of zebrafish intracardiac nervous system. Nat Commun 2024; 15:10483. [PMID: 39632839 PMCID: PMC11618350 DOI: 10.1038/s41467-024-54830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
The proper functioning of the heart relies on the intricate interplay between the central nervous system and the local neuronal networks within the heart itself. While the central innervation of the heart has been extensively studied, the organization and functionality of the intracardiac nervous system (IcNS) remain largely unexplored. Here, we present a comprehensive taxonomy of the IcNS, utilizing single-cell RNA sequencing, anatomical studies, and electrophysiological techniques. Our findings reveal a diverse array of neuronal types within the IcNS, exceeding previous expectations. We identify a subset of neurons exhibiting characteristics akin to pacemaker/rhythmogenic neurons similar to those found in Central Pattern Generator networks of the central nervous system. Our results underscore the heterogeneity within the IcNS and its key role in regulating the heart's rhythmic functionality. The classification and characterization of the IcNS presented here serve as a valuable resource for further exploration into the mechanisms underlying heart functionality and the pathophysiology of associated cardiac disorders.
Collapse
Affiliation(s)
- Andrea Pedroni
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Elanur Yilmaz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Lisa Del Vecchio
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Prabesh Bhattarai
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Inés Talaya Vidal
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Yu-Wen E Dai
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA.
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA.
| | | |
Collapse
|
2
|
Green SL, Silvester E, Dworkin S, Shakya M, Klein A, Lowe R, Datta K, Holland A. Molecular variations to the proteome of zebrafish larvae induced by environmentally relevant copper concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106963. [PMID: 38776608 DOI: 10.1016/j.aquatox.2024.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Contaminants are increasingly accumulating in aquatic environments and biota, with potential adverse effects on individual organisms, communities and ecosystems. However, studies that explore the molecular changes in fish caused by environmentally relevant concentrations of metals, such as copper (Cu), are limited. This study uses embryos of the model organism zebrafish (Danio rerio) to investigate effect of Cu on the proteome and amino acid (AA) composition of fish. Wild-type embryos at 24 h post-fertilisation were exposed to Cu (2 µg L-1 to 120 µg L-1) for 96 h and the number of healthy larvae were determined based on larvae that had hatched and did not display loss of equilibrium (LOE). The effect concentrations where Cu caused a 10 % (EC10) or 50 % (EC50) decrease in the number of healthy larvae were calculated as 3.7 µg L-1 and 10.9 µg L-1, respectively. Proteomics analysis of embryos exposed to the EC10 and EC50 concentrations of Cu revealed the proteome to differ more strongly after 48 h than 96 h, suggesting the acclimatisation of some larvae. Exposure to excess Cu caused differentially expressed proteins (DEPs) involved in oxidative stress, mitochondrial respiration, and neural transduction as well as the modulation of the AAs (Proline, Glycine and Alanine). This is the first study to suggest that LOE displayed by Cu-stressed fish may involve the disruption to GABAergic proteins and the calcium-dependent inhibitory neurotransmitter GABA. Moreover, this study highlights that proteomics and AA analysis can be used to identify potential biomarkers for environmental monitoring.
Collapse
Affiliation(s)
- Sarah L Green
- Department of Environment and Genetics, La Trobe University, 133 Mckoy Street, West Wodonga, Albury-Wodonga Campus, Victoria 3690, Australia.
| | - Ewen Silvester
- Department of Environment and Genetics, La Trobe University, 133 Mckoy Street, West Wodonga, Albury-Wodonga Campus, Victoria 3690, Australia
| | - Sebastian Dworkin
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora Campus, Victoria, Australia
| | - Manisha Shakya
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, New South Wales, Australia
| | - Annaleise Klein
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Rohan Lowe
- Proteomics and Metabolomics Platform, La Trobe University, Bundoora Campus, Victoria, Australia
| | - Keshava Datta
- Proteomics and Metabolomics Platform, La Trobe University, Bundoora Campus, Victoria, Australia
| | - Aleicia Holland
- Department of Environment and Genetics, La Trobe University, 133 Mckoy Street, West Wodonga, Albury-Wodonga Campus, Victoria 3690, Australia
| |
Collapse
|
3
|
Pedroni A, Dai YWE, Lafouasse L, Chang W, Srivastava I, Del Vecchio L, Ampatzis K. Neuroprotective gap-junction-mediated bystander transformations in the adult zebrafish spinal cord after injury. Nat Commun 2024; 15:4331. [PMID: 38773121 PMCID: PMC11109231 DOI: 10.1038/s41467-024-48729-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
The adult zebrafish spinal cord displays an impressive innate ability to regenerate after traumatic insults, yet the underlying adaptive cellular mechanisms remain elusive. Here, we show that while the cellular and tissue responses after injury are largely conserved among vertebrates, the large-size fast spinal zebrafish motoneurons are remarkably resilient by remaining viable and functional. We also reveal the dynamic changes in motoneuron glutamatergic input, excitability, and calcium signaling, and we underscore the critical role of calretinin (CR) in binding and buffering the intracellular calcium after injury. Importantly, we demonstrate the presence and the dynamics of a neuron-to-neuron bystander neuroprotective biochemical cooperation mediated through gap junction channels. Our findings support a model in which the intimate and dynamic interplay between glutamate signaling, calcium buffering, gap junction channels, and intercellular cooperation upholds cell survival and promotes the initiation of regeneration.
Collapse
Affiliation(s)
- Andrea Pedroni
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Yu-Wen E Dai
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Leslie Lafouasse
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Weipang Chang
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ipsit Srivastava
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Lisa Del Vecchio
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | |
Collapse
|
4
|
Iglesias Gonzalez AB, Koning HK, Tuz-Sasik MU, van Osselen I, Manuel R, Boije H. Perturbed development of calb2b expressing dI6 interneurons and motor neurons underlies locomotor defects observed in calretinin knock-down zebrafish larvae. Dev Biol 2024; 508:77-87. [PMID: 38278086 DOI: 10.1016/j.ydbio.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/28/2024]
Abstract
Calcium binding proteins are essential for neural development and cellular activity. Calretinin, encoded by calb2a and calb2b, plays a role during early zebrafish development and has been proposed as a marker for distinct neuronal populations within the locomotor network. We generated a calb2b:hs:eGFP transgenic reporter line to characterize calretinin expressing cells in the developing spinal cord and describe morphological and behavioral defects in calretinin knock-down larvae. eGFP was detected in primary and secondary motor neurons, as well as in dI6 and V0v interneurons. Knock-down of calretinin lead to disturbed development of motor neurons and dI6 interneurons, revealing a crucial role during early development of the locomotor network. Primary motor neurons showed delayed axon outgrowth and the distinct inhibitory CoLo neurons, originating from the dI6 lineage, were absent. These observations explain the locomotor defects we observed in calretinin knock-down animals where the velocity, acceleration and coordination were affected during escapes. Altogether, our analysis suggests an essential role for calretinin during the development of the circuits regulating escape responses and fast movements within the locomotor network.
Collapse
Affiliation(s)
| | - Harmen Kornelis Koning
- Department of Immunology, Genetics and Pathology, Uppsala University, S-75108, Uppsala, Sweden
| | - Melek Umay Tuz-Sasik
- Department of Immunology, Genetics and Pathology, Uppsala University, S-75108, Uppsala, Sweden
| | - Ilse van Osselen
- Department of Immunology, Genetics and Pathology, Uppsala University, S-75108, Uppsala, Sweden
| | - Remy Manuel
- Department of Immunology, Genetics and Pathology, Uppsala University, S-75108, Uppsala, Sweden
| | - Henrik Boije
- Department of Immunology, Genetics and Pathology, Uppsala University, S-75108, Uppsala, Sweden.
| |
Collapse
|
5
|
Schuppe ER, Ballagh I, Akbari N, Fang W, Perelmuter JT, Radtke CH, Marchaterre MA, Bass AH. Midbrain node for context-specific vocalisation in fish. Nat Commun 2024; 15:189. [PMID: 38167237 PMCID: PMC10762186 DOI: 10.1038/s41467-023-43794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Vocalizations communicate information indicative of behavioural state across divergent social contexts. Yet, how brain regions actively pattern the acoustic features of context-specific vocal signals remains largely unexplored. The midbrain periaqueductal gray (PAG) is a major site for initiating vocalization among mammals, including primates. We show that PAG neurons in a highly vocal fish species (Porichthys notatus) are activated in distinct patterns during agonistic versus courtship calling by males, with few co-activated during a non-vocal behaviour, foraging. Pharmacological manipulations within vocally active PAG, but not hindbrain, sites evoke vocal network output to sonic muscles matching the temporal features of courtship and agonistic calls, showing that a balance of inhibitory and excitatory dynamics is likely necessary for patterning different call types. Collectively, these findings support the hypothesis that vocal species of fish and mammals share functionally comparable PAG nodes that in some species can influence the acoustic structure of social context-specific vocal signals.
Collapse
Affiliation(s)
- Eric R Schuppe
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
- Department of Physiology, University of California San Francisco School of Medicine, San Francisco, CA, 94305, USA
| | - Irene Ballagh
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
- Department of Zoology, The University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - Najva Akbari
- Department of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
- Department of Biology, Stanford University, Palo Alto, CA, 94305, USA
| | - Wenxuan Fang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | | | - Caleb H Radtke
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | | | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
6
|
Aceves M, Tucker A, Chen J, Vo K, Moses J, Amar Kumar P, Thomas H, Miranda D, Dampf G, Dietz V, Chang M, Lukose A, Jang J, Nadella S, Gillespie T, Trevino C, Buxton A, Pritchard AL, Green P, McCreedy DA, Dulin JN. Developmental stage of transplanted neural progenitor cells influences anatomical and functional outcomes after spinal cord injury in mice. Commun Biol 2023; 6:544. [PMID: 37208439 PMCID: PMC10199026 DOI: 10.1038/s42003-023-04893-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Neural progenitor cell (NPC) transplantation is a promising therapeutic strategy for replacing lost neurons following spinal cord injury (SCI). However, how graft cellular composition influences regeneration and synaptogenesis of host axon populations, or recovery of motor and sensory functions after SCI, is poorly understood. We transplanted developmentally-restricted spinal cord NPCs, isolated from E11.5-E13.5 mouse embryos, into sites of adult mouse SCI and analyzed graft axon outgrowth, cellular composition, host axon regeneration, and behavior. Earlier-stage grafts exhibited greater axon outgrowth, enrichment for ventral spinal cord interneurons and Group-Z spinal interneurons, and enhanced host 5-HT+ axon regeneration. Later-stage grafts were enriched for late-born dorsal horn interneuronal subtypes and Group-N spinal interneurons, supported more extensive host CGRP+ axon ingrowth, and exacerbated thermal hypersensitivity. Locomotor function was not affected by any type of NPC graft. These findings showcase the role of spinal cord graft cellular composition in determining anatomical and functional outcomes following SCI.
Collapse
Affiliation(s)
- Miriam Aceves
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Ashley Tucker
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Joseph Chen
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Katie Vo
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Joshua Moses
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | | | - Hannah Thomas
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Diego Miranda
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Gabrielle Dampf
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Valerie Dietz
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Matthew Chang
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Aleena Lukose
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Julius Jang
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Sneha Nadella
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Tucker Gillespie
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Christian Trevino
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Andrew Buxton
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Anna L Pritchard
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | | | - Dylan A McCreedy
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
7
|
Huang Z, Sun L, Zheng X, Zhang Y, Zhu Y, Chen T, Chen Z, Ja L, OuYang L, Zhu Y, Chen S, Lei W. A neural tract tracing study on synaptic connections for cortical glutamatergic terminals and cervical spinal calretinin neurons in rats. Front Neural Circuits 2023; 17:1086873. [PMID: 37187913 PMCID: PMC10175624 DOI: 10.3389/fncir.2023.1086873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The cerebral cortex innervates motor neurons in the anterior horn of the spinal cord by regulating of interneurons. At present, nerve tracing, immunohistochemistry, and immunoelectron microscopy are used to explore and confirm the characteristics of synaptic connections between the corticospinal tract (CST) and cervical spinal calretinin (Cr) interneurons. Our morphological results revealed that (1) biotinylated dextran amine labeled (BDA+) fibers from the cerebral cortex primarily presented a contralateral spinal distribution, with a denser distribution in the ventral horn (VH) than in the dorsal horn (DH). An electron microscope (EM) showed that BDA+ terminals formed asymmetric synapses with spinal neurons, and their mean labeling rate was not different between the DH and VH. (2) Cr-immunoreactive (Cr+) neurons were unevenly distributed throughout the spinal gray matter, and were denser and larger in the VH than in the DH. At the single labeling electron microscope (EM) level, the labeling rate of Cr+ dendrites was higher in the VH than in the DH, in which Cr+ dendrites mainly received asymmetric synaptic inputs, and between the VH and DH. (3) Immunofluorescence triple labeling showed obvious apposition points among BDA+ terminals, synaptophysin and Cr+ dendrites, with a higher density in the VH than in the DH. (4) Double labeling in EM, BDA+ terminals and Cr+ dendrites presented the same pattern, BDA+ terminals formed asymmetric synapses either with Cr+ dendrites or Cr negative (Cr-) dendrites, and Cr+ dendrites received either BDA+ terminals or BDA- synaptic inputs. The average percentage of BDA+ terminals targeting Cr+ dendrites was higher in the VH than in the DH, but the percentage of BDA+ terminals targeting Cr- dendrites was prominently higher than that targeting Cr+ dendrites. There was no difference in BDA+ terminal size. The percentage rate for Cr+ dendrites receiving BDA+ terminal inputs was lower than that receiving BDA- terminal inputs, and the BDA+ terminal size was larger than the BDA- terminal size received by Cr+ dendrites. The present morphological results suggested that spinal Cr+ interneurons are involved in the regulatory process of the cortico-spinal pathway.
Collapse
Affiliation(s)
- Ziyun Huang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liping Sun
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuefeng Zheng
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Ye Zhang
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Yaxi Zhu
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhi Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Linju Ja
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lisi OuYang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaofeng Zhu
- College of Medicine, Institute of Medical Sciences, Jishou University, Jishou, China
- Yaofeng Zhu, ,
| | - Si Chen
- Department of Human Anatomy, Histology and Embryology, Zunyi Medical University, Zhuhai, China
- Si Chen, ,
| | - Wanlong Lei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wanlong Lei, ,
| |
Collapse
|
8
|
Huang CX, Wang Z, Cheng J, Zhu Z, Guan NN, Song J. De novo establishment of circuit modules restores locomotion after spinal cord injury in adult zebrafish. Cell Rep 2022; 41:111535. [DOI: 10.1016/j.celrep.2022.111535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/12/2022] [Accepted: 09/29/2022] [Indexed: 11/03/2022] Open
|
9
|
GABAergic and Glutamatergic Phenotypes of Neurons Expressing Calcium-Binding Proteins in the Preoptic Area of the Guinea Pig. Int J Mol Sci 2022; 23:ijms23147963. [PMID: 35887305 PMCID: PMC9320123 DOI: 10.3390/ijms23147963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
The mammalian preoptic area (POA) has large populations of calbindin (CB), calretinin (CR) and parvalbumin (PV) neurons, but phenotypes of these cells are unknown. Therefore, the question is whether neurons expressing CB, CR, and/or PV are GABAergic or glutamatergic. Double-immunofluorescence staining followed by epifluorescence and confocal microscopy was used to determine the coexpression patterns of CB, CR and PV expressing neurons with vesicular GABA transporters (VGAT) as specific markers of GABAergic neurons and vesicular glutamate transporters (VGLUT 2) as specific markers of glutamatergic neurons. The guinea pig was adopted as, like humans, it has a reproductive cycle with a true luteal phase and a long gestation period. The results demonstrated that in the guinea pig POA of both sexes, ~80% of CB+ and ~90% of CR+ neurons coexpress VGAT; however, one-fifth of CB+ neurons and one-third of CR+ cells coexpress VGLUT. About two-thirds of PV+ neurons express VGAT, and similar proportion of them coexpress VGLUT. Thus, many CB+, CR+ and PV+ neurons may be exclusively GABAergic (VGAT-expressing cells) or glutamatergic (VGLUT-expressing cells); however, at least a small fraction of CR+ cells and at least one-third of PV+ cells are likely neurons with a dual GABA/glutamate phenotype that may coexpress both transporters.
Collapse
|
10
|
Branchereau P, Cattaert D. Chloride Homeostasis in Developing Motoneurons. ADVANCES IN NEUROBIOLOGY 2022; 28:45-61. [PMID: 36066820 DOI: 10.1007/978-3-031-07167-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Maturation of GABA/Glycine chloride-mediated synaptic inhibitions is crucial for the establishment of a balance between excitation and inhibition. GABA and glycine are excitatory neurotransmitters on immature neurons that exhibit elevated [Cl-]i. Later in development [Cl-]i drops leading to the occurrence of inhibitory synaptic activity. This ontogenic change is closely correlated to a differential expression of two cation-chloride cotransporters that are the Cl- channel K+/Cl- co-transporter type 2 (KCC2) that extrudes Cl- ions and the Na+-K+-2Cl- cotransporter NKCC1 that accumulates Cl- ions. The classical scheme built from studies performed on cortical and hippocampal networks proposes that immature neurons display high [Cl-]i because NKCC1 is overexpressed compared to KCC2 and that the co-transporters ratio reverses in mature neurons, lowering [Cl-]i. In this chapter, we will see that this classical scheme is not true in motoneurons (MNs) and that an early alteration of the chloride homeostasis may be involved in pathological conditions.
Collapse
Affiliation(s)
- Pascal Branchereau
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Univ. Bordeaux, UMR 5287, CNRS, Bordeaux, France.
| | - Daniel Cattaert
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Univ. Bordeaux, UMR 5287, CNRS, Bordeaux, France
| |
Collapse
|
11
|
Corral-Juan M, Casquero P, Giraldo-Restrepo N, Laurie S, Martinez-Piñeiro A, Mateo-Montero RC, Ispierto L, Vilas D, Tolosa E, Volpini V, Alvarez-Ramo R, Sánchez I, Matilla-Dueñas A. OUP accepted manuscript. Brain Commun 2022; 4:fcac030. [PMID: 35310830 PMCID: PMC8928420 DOI: 10.1093/braincomms/fcac030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Spinocerebellar ataxias consist of a highly heterogeneous group of inherited movement disorders clinically characterized by progressive cerebellar ataxia variably associated with additional distinctive clinical signs. The genetic heterogeneity is evidenced by the myriad of associated genes and underlying genetic defects identified. In this study, we describe a new spinocerebellar ataxia subtype in nine members of a Spanish five-generation family from Menorca with affected individuals variably presenting with ataxia, nystagmus, dysarthria, polyneuropathy, pyramidal signs, cerebellar atrophy and distinctive cerebral demyelination. Affected individuals presented with horizontal and vertical gaze-evoked nystagmus and hyperreflexia as initial clinical signs, and a variable age of onset ranging from 12 to 60 years. Neurophysiological studies showed moderate axonal sensory polyneuropathy with altered sympathetic skin response predominantly in the lower limbs. We identified the c.1877C > T (p.Ser626Leu) pathogenic variant within the SAMD9L gene as the disease causative genetic defect with a significant log-odds score (Zmax = 3.43; θ = 0.00; P < 3.53 × 10−5). We demonstrate the mitochondrial location of human SAMD9L protein, and its decreased levels in patients’ fibroblasts in addition to mitochondrial perturbations. Furthermore, mutant SAMD9L in zebrafish impaired mobility and vestibular/sensory functions. This study describes a novel spinocerebellar ataxia subtype caused by SAMD9L mutation, SCA49, which triggers mitochondrial alterations pointing to a role of SAMD9L in neurological motor and sensory functions.
Collapse
Affiliation(s)
- Marc Corral-Juan
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Pilar Casquero
- Neurology and Neurophysiology Section, Hospital Mateu Orfila, Mahón, Menorca, Spain
| | | | - Steve Laurie
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alicia Martinez-Piñeiro
- Neuromuscular and Functional Studies Unit, Neurology Service, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | | | - Lourdes Ispierto
- Neurodegenerative Diseases Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Dolores Vilas
- Neurodegenerative Diseases Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Spain
| | - Eduardo Tolosa
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Spain
| | | | - Ramiro Alvarez-Ramo
- Neurodegenerative Diseases Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Ivelisse Sánchez
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Antoni Matilla-Dueñas
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
- Correspondence to: Dr Antoni Matilla-Dueñas Head of the Neurogenetics Unit Health Sciences Research Institute Germans Trias i Pujol (IGTP) Ctra. de Can Ruti, Camí de les Escoles s/n 08916 Badalona, Barcelona, Spain E-mail:
| |
Collapse
|
12
|
Veshchitskii AA, Musienko PE, Merkulyeva NS. Distribution of Calretinin-Immunopositive Neurons in the Cat Lumbar Spinal Cord. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Locomotion dependent neuron-glia interactions control neurogenesis and regeneration in the adult zebrafish spinal cord. Nat Commun 2021; 12:4857. [PMID: 34381039 PMCID: PMC8357999 DOI: 10.1038/s41467-021-25052-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/21/2021] [Indexed: 01/09/2023] Open
Abstract
Physical exercise stimulates adult neurogenesis, yet the underlying mechanisms remain poorly understood. A fundamental component of the innate neuroregenerative capacity of zebrafish is the proliferative and neurogenic ability of the neural stem/progenitor cells. Here, we show that in the intact spinal cord, this plasticity response can be activated by physical exercise by demonstrating that the cholinergic neurotransmission from spinal locomotor neurons activates spinal neural stem/progenitor cells, leading to neurogenesis in the adult zebrafish. We also show that GABA acts in a non-synaptic fashion to maintain neural stem/progenitor cell quiescence in the spinal cord and that training-induced activation of neurogenesis requires a reduction of GABAA receptors. Furthermore, both pharmacological stimulation of cholinergic receptors, as well as interference with GABAergic signaling, promote functional recovery after spinal cord injury. Our findings provide a model for locomotor networks’ activity-dependent neurogenesis during homeostasis and regeneration in the adult zebrafish spinal cord. The mechanisms stimulating adult neurogenesis are unclear. Here, the authors show the contribution of cholinergic and GABAergic signalling within the locomotor network to spinal cord neurogenesis during homeostasis and regeneration, showing neurogenesis depends on circuit activity in the adult zebrafish.
Collapse
|
14
|
Picton LD, Bertuzzi M, Pallucchi I, Fontanel P, Dahlberg E, Björnfors ER, Iacoviello F, Shearing PR, El Manira A. A spinal organ of proprioception for integrated motor action feedback. Neuron 2021; 109:1188-1201.e7. [PMID: 33577748 DOI: 10.1016/j.neuron.2021.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/11/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Proprioception is essential for behavior and provides a sense of our body movements in physical space. Proprioceptor organs are thought to be only in the periphery. Whether the central nervous system can intrinsically sense its own movement remains unclear. Here we identify a segmental organ of proprioception in the adult zebrafish spinal cord, which is embedded by intraspinal mechanosensory neurons expressing Piezo2 channels. These cells are late-born, inhibitory, commissural neurons with unique molecular and physiological profiles reflecting a dual sensory and motor function. The central proprioceptive organ locally detects lateral body movements during locomotion and provides direct inhibitory feedback onto rhythm-generating interneurons responsible for the central motor program. This dynamically aligns central pattern generation with movement outcome for efficient locomotion. Our results demonstrate that a central proprioceptive organ monitors self-movement using hybrid neurons that merge sensory and motor entities into a unified network.
Collapse
Affiliation(s)
- Laurence D Picton
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Maria Bertuzzi
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Irene Pallucchi
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Pierre Fontanel
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Elin Dahlberg
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Francesco Iacoviello
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, UK
| | - Paul R Shearing
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, UK
| | | |
Collapse
|
15
|
Flaive A, Cabelguen JM, Ryczko D. The serotonin reuptake blocker citalopram destabilizes fictive locomotor activity in salamander axial circuits through 5-HT 1A receptors. J Neurophysiol 2020; 123:2326-2342. [PMID: 32401145 DOI: 10.1152/jn.00179.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Serotoninergic (5-HT) neurons are powerful modulators of spinal locomotor circuits. Most studies on 5-HT modulation focused on the effect of exogenous 5-HT and these studies provided key information about the cellular mechanisms involved. Less is known about the effects of increased release of endogenous 5-HT with selective serotonin reuptake inhibitors. In mammals, such molecules were shown to destabilize the fictive locomotor output of spinal limb networks through 5-HT1A receptors. However, in tetrapods little is known about the effects of increased 5-HT release on the locomotor output of axial networks, which are coordinated with limb circuits during locomotion from basal vertebrates to mammals. Here, we examined the effect of citalopram on fictive locomotion generated in axial segments of isolated spinal cords in salamanders, a tetrapod where raphe 5-HT reticulospinal neurons and intraspinal 5-HT neurons are present as in other vertebrates. Using electrophysiological recordings of ventral roots, we show that fictive locomotion generated by bath-applied glutamatergic agonists is destabilized by citalopram. Citalopram-induced destabilization was prevented by a 5-HT1A receptor antagonist, whereas a 5-HT1A receptor agonist destabilized fictive locomotion. Using immunofluorescence experiments, we found 5-HT-positive fibers and varicosities in proximity with motoneurons and glutamatergic interneurons that are likely involved in rhythmogenesis. Our results show that increasing 5-HT release has a deleterious effect on axial locomotor activity through 5-HT1A receptors. This is consistent with studies in limb networks of turtle and mouse, suggesting that this part of the complex 5-HT modulation of spinal locomotor circuits is common to limb and axial networks in limbed vertebrates.NEW & NOTEWORTHY Little is known about the modulation exerted by endogenous serotonin on axial locomotor circuits in tetrapods. Using axial ventral root recordings in salamanders, we found that a serotonin reuptake blocker destabilized fictive locomotor activity through 5-HT1A receptors. Our anatomical results suggest that serotonin is released on motoneurons and glutamatergic interneurons possibly involved in rhythmogenesis. Our study suggests that common serotoninergic mechanisms modulate axial motor circuits in amphibians and limb motor circuits in reptiles and mammals.
Collapse
Affiliation(s)
- Aurélie Flaive
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Marie Cabelguen
- Neurocentre Magendie, INSERM U 862, Université de Bordeaux, Bordeaux Cedex, France
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre des neurosciences de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
16
|
Royds J, Conroy MJ, Dunne MR, Cassidy H, Matallanas D, Lysaght J, McCrory C. Examination and characterisation of burst spinal cord stimulation on cerebrospinal fluid cellular and protein constituents in patient responders with chronic neuropathic pain - A Pilot Study. J Neuroimmunol 2020; 344:577249. [PMID: 32361148 DOI: 10.1016/j.jneuroim.2020.577249] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/11/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Patients with neuropathic pain have altered proteomic and neuropeptide constituents in cerebrospinal fluid (CSF) compared to controls. Tonic spinal cord stimulation (SCS) has demonstrated differential expression of neuropeptides in CSF before and after treatment suggesting potential mechanisms of action. Burst-SCS is an evidence-based paraesthesia free waveform utilised for neuropathic pain with a potentially different mechanistic action to tonic SCS. This study examines the dynamic biological changes of CSF at a cellular and proteome level after Burst-SCS. METHODS Patients with neuropathic pain selected for SCS had CSF sampled prior to implant of SCS and following 8 weeks of continuous Burst-SCS. Baseline and 8-week pain scores with demographics were recorded. T cell frequencies were analysed by flow cytometry, proteome analysis was performed using mass spectrometry and secreted cytokines, chemokines and neurotrophins were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS 4 patients (2 females, 2 males) with a mean age of 51 years (+/-SEM 2.74, SD 5.48) achieved a reduction in pain of >50% following 8 weeks of Burst-SCS. Analysis of the CSF proteome indicated a significant alteration in protein expression most related to synapse assembly and immune regulators. There was significantly lower expression of the proteins: growth hormone A1 (PRL), somatostatin (SST), nucleobindin-2 (NUCB2), Calbindin (CALB1), acyl-CoA binding protein (DBI), proSAAS (PCSK1N), endothelin-3 (END3) and cholecystokinin (CCK) after Burst-SCS. The concentrations of secreted chemokines and cytokines and the frequencies of T cells were not significantly changed following Burst-SCS. CONCLUSION This study characterised the alteration in the CSF proteome in response to burst SCS in vivo. Functional analysis indicated that the alterations in the CSF proteome is predominately linked to synapse assembly and immune effectors. Individual protein analysis also suggests potential supraspinal mechanisms.
Collapse
Affiliation(s)
- Jonathan Royds
- Department of Pain Medicine, St. James Hospital, Dublin and School of Medicine, Trinity College Dublin, Ireland.
| | - Melissa J Conroy
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland
| | - Margaret R Dunne
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland
| | - Hilary Cassidy
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Joanne Lysaght
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland
| | - Connail McCrory
- Department of Pain Medicine, St. James Hospital, Dublin and School of Medicine, Trinity College Dublin, Ireland
| |
Collapse
|
17
|
Furlan S, Campione M, Murgia M, Mosole S, Argenton F, Volpe P, Nori A. Calsequestrins New Calcium Store Markers of Adult Zebrafish Cerebellum and Optic Tectum. Front Neuroanat 2020; 14:15. [PMID: 32372920 PMCID: PMC7188384 DOI: 10.3389/fnana.2020.00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/18/2020] [Indexed: 12/26/2022] Open
Abstract
Calcium stores in neurons are heterogeneous in compartmentalization and molecular composition. Danio rerio (zebrafish) is an animal model with a simply folded cerebellum similar in cellular organization to that of mammals. The aim of the study was to identify new endoplasmic reticulum (ER) calcium store markers in zebrafish adult brain with emphasis on cerebellum and optic tectum. By quantitative polymerase chain reaction, we found three RNA transcripts coding for the intra-ER calcium binding protein calsequestrin: casq1a, casq1b, and casq2. In brain homogenates, two isoforms were detected by mass spectrometry and western blotting. Fractionation experiments of whole brain revealed that Casq1a and Casq2 were enriched in a heavy fraction containing ER microsomes and synaptic membranes. By in situ hybridization, we found the heterogeneous expression of casq1a and casq2 mRNA to be compatible with the cellular localization of calsequestrins investigated by immunofluorescence. Casq1 was expressed in neurogenic differentiation 1 expressing the granule cells of the cerebellum and the periventricular zone of the optic tectum. Casq2 was concentrated in parvalbumin expressing Purkinje cells. At a subcellular level, Casq1 was restricted to granular cell bodies, and Casq2 was localized in cell bodies, dendrites, and axons. Data are discussed in relation to the differential cellular and subcellular distribution of other cerebellum calcium store markers and are evaluated with respect to the putative relevance of calsequestrins in the neuron-specific functional activity.
Collapse
Affiliation(s)
- Sandra Furlan
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Padova, Italy
| | - Marina Campione
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Padova, Italy
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Istituto Interuniversitario di Miologia, Padova, Italy.,Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Simone Mosole
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | | | - Pompeo Volpe
- Department of Biomedical Sciences, University of Padova, Istituto Interuniversitario di Miologia, Padova, Italy
| | - Alessandra Nori
- Department of Biomedical Sciences, University of Padova, Istituto Interuniversitario di Miologia, Padova, Italy
| |
Collapse
|
18
|
Sceniak MP, Spitsbergen JB, Sabo SL, Yuan Y, Atchison WD. Acute neurotoxicant exposure induces hyperexcitability in mouse lumbar spinal motor neurons. J Neurophysiol 2020; 123:1448-1459. [PMID: 32159428 DOI: 10.1152/jn.00775.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal motor neurons (MNs) are susceptible to glutamatergic excitotoxicity, an effect associated with lumbar MN degeneration in amyotrophic lateral sclerosis (ALS). MN susceptibility to environmental toxicant exposure, one prospective contributor to sporadic ALS, has not been systematically studied. The goal of this study was to test the ability of a well-known environmental neurotoxicant to induce hyperexcitability in mouse lumbar MNs. Methylmercury (MeHg) causes neurotoxicity through mechanisms involving elevated intracellular Ca2+ concentration ([Ca2+]i), a hallmark of excitotoxicity. We tested whether acute exposure to MeHg induces hyperexcitability in MNs by altering synaptic transmission, using whole cell patch-clamp recordings of lumbar spinal MNs in vitro. Acute MeHg exposure (20 μM) led to an increase in the frequency of both spontaneous excitatory postsynaptic currents (EPSCs) and miniature EPSCs. The frequency of inhibitory postsynaptic currents (IPSCs) was also increased by MeHg. Action potential firing rates, both spontaneous and evoked, were increased by MeHg, despite increases in both EPSCs and IPSCs, indicating a shift toward hyperexcitability. Also consistent with hyperexcitability, fluo 4-AM microfluorimetry indicated that MeHg exposure induced an increase in [Ca2+]i. Spinal cord hyperexcitability is partially mediated by Ca2+-permeable AMPA receptors, as MeHg-dependent increases in EPSCs were blocked by 1-napthyl spermine. Therefore, spinal MNs appear highly susceptible to MeHg exposure, leading to significant increases in spontaneous network excitability and disruption of normal function. Prolonged hyperexcitability could lead to eventual neurodegeneration and loss of motor function as observed in spinal cord after MeHg exposure in vivo and may contribute to MeHg-induced acceleration of ALS symptoms.NEW & NOTEWORTHY Spinal motor neurons (MN) are susceptible to glutamatergic excitotoxicity, an effect associated with lumbar MN degeneration in amyotrophic lateral sclerosis (ALS). This study investigated MN susceptibility to environmental toxicant exposure, one prospective contributor to sporadic ALS. Spinal MNs appear highly susceptible to methylmercury exposure, leading to significant increases in spontaneous network excitability and disruption of normal function. Prolonged hyperexcitability could lead to neurodegeneration and loss of motor function as observed in ALS spinal cord symptoms.
Collapse
Affiliation(s)
- Michael P Sceniak
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.,Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Jake B Spitsbergen
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Shasta L Sabo
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Yukun Yuan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - William D Atchison
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
19
|
Ijomone OM, Aluko OM, Okoh COA, Martins AC, Aschner M. Role for calcium signaling in manganese neurotoxicity. J Trace Elem Med Biol 2019; 56:146-155. [PMID: 31470248 DOI: 10.1016/j.jtemb.2019.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Calcium is an essential macronutrient that is involved in many cellular processes. Homeostatic control of intracellular levels of calcium ions [Ca2+] is vital to maintaining cellular structure and function. Several signaling molecules are involved in regulating Ca2+ levels in cells and perturbation of calcium signaling processes is implicated in several neurodegenerative and neurologic conditions. Manganese [Mn] is a metal which is essential for basic physiological functions. However, overexposure to Mn from environmental contamination and workplace hazards is a global concern. Mn overexposure leads to its accumulation in several human organs particularly the brain. Mn accumulation in the brain results in a manganism, a Parkinsonian-like syndrome. Additionally, Mn is a risk factor for several neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. Mn neurotoxicity also affects several neurotransmitter systems including dopaminergic, cholinergic and GABAergic. The mechanisms of Mn neurotoxicity are still being elucidated. AIM The review will highlight a potential role for calcium signaling molecules in the mechanisms of Mn neurotoxicity. CONCLUSION Ca2+ regulation influences the neurodegenerative process and there is possible role for perturbed calcium signaling in Mn neurotoxicity. Mechanisms implicated in Mn-induced neurodegeneration include oxidative stress, generation of free radicals, and apoptosis. These are influenced by mitochondrial integrity which can be dependent on intracellular Ca2+ homeostasis. Nevertheless, further elucidation of the direct effects of calcium signaling dysfunction and calcium-binding proteins activities in Mn neurotoxicity is required.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro- Lab, Department of Human Anatomy, Federal University of Technology Akure, Ondo, Nigeria.
| | - Oritoke M Aluko
- Department of Physiology, Federal University of Technology Akure, Ondo, Nigeria
| | - Comfort O A Okoh
- The Neuro- Lab, Department of Human Anatomy, Federal University of Technology Akure, Ondo, Nigeria
| | - Airton Cunha Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
20
|
Abstract
Ca2+ binding proteins (CBP) are of key importance for calcium to play its role as a pivotal second messenger. CBP bind Ca2+ in specific domains, contributing to the regulation of its concentration at the cytosol and intracellular stores. They also participate in numerous cellular functions by acting as Ca2+ transporters across cell membranes or as Ca2+-modulated sensors, i.e. decoding Ca2+ signals. Since CBP are integral to normal physiological processes, possible roles for them in a variety of diseases has attracted growing interest in recent years. In addition, research on CBP has been reinforced with advances in the structural characterization of new CBP family members. In this chapter we have updated a previous review on CBP, covering in more depth potential participation in physiopathological processes and candidacy for pharmacological targets in many diseases. We review intracellular CBP that contain the structural EF-hand domain: parvalbumin, calmodulin, S100 proteins, calcineurin and neuronal Ca2+ sensor proteins (NCS). We also address intracellular CBP lacking the EF-hand domain: annexins, CBP within intracellular Ca2+ stores (paying special attention to calreticulin and calsequestrin), proteins that contain a C2 domain (such as protein kinase C (PKC) or synaptotagmin) and other proteins of interest, such as regucalcin or proprotein convertase subtisilin kexins (PCSK). Finally, we summarise the latest findings on extracellular CBP, classified according to their Ca2+ binding structures: (i) EF-hand domains; (ii) EGF-like domains; (iii) ɣ-carboxyl glutamic acid (GLA)-rich domains; (iv) cadherin domains; (v) Ca2+-dependent (C)-type lectin-like domains; (vi) Ca2+-binding pockets of family C G-protein-coupled receptors.
Collapse
|
21
|
Adult spinal motoneurons change their neurotransmitter phenotype to control locomotion. Proc Natl Acad Sci U S A 2018; 115:E9926-E9933. [PMID: 30275331 PMCID: PMC6196516 DOI: 10.1073/pnas.1809050115] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An intriguing feature of the nervous system is its plasticity—the remarkable lifelong capacity to change and adapt in light of intrinsic and extrinsic stimuli. Among the many different adaptive mechanisms that occur within the nervous system, changes in neurotransmission form an important plasticity-bestowing mechanism in the reconfiguration of neuronal circuits. Here, we reveal that physical activity and spinal cord injury can switch the neurotransmitter phenotype of the fast axial motoneurons to coexpress glutamate. Furthermore, our study shows that the adult vertebrate spinal motoneurons corelease glutamate alongside ACh in neuromuscular junctions to regulate motor behaviors. Thus, our findings suggest that fast motoneuron glutamatergic respecification enables a motor function-enhancing mechanism in vertebrates. A particularly essential determinant of a neuron’s functionality is its neurotransmitter phenotype. While the prevailing view is that neurotransmitter phenotypes are fixed and determined early during development, a growing body of evidence suggests that neurons retain the ability to switch between different neurotransmitters. However, such changes are considered unlikely in motoneurons due to their crucial functional role in animals’ behavior. Here we describe the expression and dynamics of glutamatergic neurotransmission in the adult zebrafish spinal motoneuron circuit assembly. We demonstrate that part of the fast motoneurons retain the ability to switch their neurotransmitter phenotype under physiological (exercise/training) and pathophysiological (spinal cord injury) conditions to corelease glutamate in the neuromuscular junctions to enhance animals’ motor output. Our findings suggest that motoneuron neurotransmitter switching is an important plasticity-bestowing mechanism in the reconfiguration of spinal circuits that control movements.
Collapse
|
22
|
Lienbacher K, Ono S, Fleuriet J, Mustari M, Horn AKE. A Subset of Palisade Endings Only in the Medial and Inferior Rectus Muscle in Monkey Contain Calretinin. Invest Ophthalmol Vis Sci 2018; 59:2944-2954. [PMID: 30025142 PMCID: PMC5989861 DOI: 10.1167/iovs.18-24322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/06/2018] [Indexed: 12/11/2022] Open
Abstract
Purpose To further chemically characterize palisade endings in extraocular muscles in rhesus monkeys. Methods Extraocular muscles of three rhesus monkeys were studied for expression of the calcium-binding protein calretinin (CR) in palisade endings and multiple endings. The complete innervation was visualized with antibodies against the synaptosomal-associated protein of 25 kDa and combined with immunofluorescence for CR. Six rhesus monkeys received tracer injections of choleratoxin subunit B or wheat germ agglutinin into either the belly or distal myotendinous junction of the medial or inferior rectus muscle to allow retrograde tracing in the C-group of the oculomotor nucleus. Double-immunofluorescence methods were used to study the CR content in retrogradely labeled neurons in the C-group. Results A subgroup of palisade and multiple endings was found to express CR, only in the medial and inferior rectus muscle. In contrast, the en plaque endings lacked CR. Accordingly, within the tracer-labeled neurons of the C-group, a subgroup expressed CR. Conclusions The study indicates that two different neuron populations targeting nontwitch muscle fibers are present within the C-group for inferior rectus and medial rectus, respectively, one expressing CR, one lacking CR. It is possible that the CR-negative neurons represent the basic population for all extraocular muscles, whereas the CR-positive neurons giving rise to CR-positive palisade endings represent a specialized, perhaps more excitable type of nerve ending in the medial and inferior rectus muscles, being more active in vergence. The malfunction of this CR-positive population of neurons that target nontwitch muscle fibers could play a significant role in strabismus.
Collapse
Affiliation(s)
- Karoline Lienbacher
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Vertigo and Balance Disorders, Klinikum Grosshadern, Ludwig-Maximilians Universität, Munich, Germany
| | - Seiji Ono
- Faculty of Health and Sport Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Jérome Fleuriet
- Washington National Primate Research Center, Seattle, Washington, United States
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Michael Mustari
- Washington National Primate Research Center, Seattle, Washington, United States
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Anja K. E. Horn
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Vertigo and Balance Disorders, Klinikum Grosshadern, Ludwig-Maximilians Universität, Munich, Germany
| |
Collapse
|