1
|
Fan YS, Xu Y, Wan B, Sheng W, Wang C, Yang M, Valk SL, Chen H. Anterior-posterior systematic deficits of cortical thickness in early-onset schizophrenia. Commun Biol 2025; 8:778. [PMID: 40399456 DOI: 10.1038/s42003-025-08216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
Schizophrenia is a neurodevelopmental condition with alterations in both sensory and association cortical areas. These alterations have been reported to follow structural connectivity patterning, and to occur in a system-level fashion. Here we investigated whether pathological alterations of schizophrenia originate from an early disruption of cortical organization. We found a structural covariance gradient axis of cortical thickness discriminated anterior from posterior region and was compressed in early-onset schizophrenia (EOS) patients. Patients showed increased structural covariance between two ends of the anterior-posterior axis, with increased geodesic distance of covarying regions between two ends. Positive symptoms increased with the strengthening of structural covariance between two ends. Our findings revealed a contracted organizational axis in EOS patients, which was attributed to excessive distally coordinated changes between anterior and posterior cortical regions. Our study from a systematic perspective suggests disturbed maturational processes of cortical thickness in EOS, supporting the neurodevelopmental hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Yun-Shuang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Yong Xu
- Department of Clinical Psychology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Bin Wan
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Wei Sheng
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Chong Wang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Mi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Sofie Louise Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Wei W, Benn RA, Scholz R, Shevchenko V, Klatzmann U, Alberti F, Chiou R, Wassermann D, Vanderwal T, Smallwood J, Margulies DS. A function-based mapping of sensory integration along the cortical hierarchy. Commun Biol 2024; 7:1593. [PMID: 39613829 PMCID: PMC11607388 DOI: 10.1038/s42003-024-07224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/06/2024] [Indexed: 12/01/2024] Open
Abstract
Sensory information mainly travels along a hierarchy spanning unimodal to transmodal regions, forming multisensory integrative representations crucial for higher-order cognitive functions. Here, we develop an fMRI based two-dimensional framework to characterize sensory integration based on the anchoring role of the primary cortex in the organization of sensory processing. Sensory magnitude captures the percentage of variance explained by three primary sensory signals and decreases as the hierarchy ascends, exhibiting strong similarity to the known hierarchy and high stability across different conditions. Sensory angle converts associations with three primary sensory signals to an angle representing the proportional contributions of different sensory modalities. This dimension identifies differences between brain states and emphasizes how sensory integration changes flexibly in response to varying cognitive demands. Furthermore, meta-analytic functional decoding with our model highlights the close relationship between cognitive functions and sensory integration, showing its potential for future research of human cognition through sensory information processing.
Collapse
Affiliation(s)
- Wei Wei
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - R Austin Benn
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Robert Scholz
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Max Planck School of Cognition, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Victoria Shevchenko
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ulysse Klatzmann
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Francesco Alberti
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Rocco Chiou
- School of Psychology, University of Surrey, Surrey, United Kingdom
| | | | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| | | | - Daniel S Margulies
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
3
|
Weber CF, Kebets V, Benkarim O, Lariviere S, Wang Y, Ngo A, Jiang H, Chai X, Park BY, Milham MP, Di Martino A, Valk S, Hong SJ, Bernhardt BC. Contracted functional connectivity profiles in autism. Mol Autism 2024; 15:38. [PMID: 39261969 PMCID: PMC11391747 DOI: 10.1186/s13229-024-00616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is a neurodevelopmental condition that is associated with atypical brain network organization, with prior work suggesting differential connectivity alterations with respect to functional connection length. Here, we tested whether functional connectopathy in ASD specifically relates to disruptions in long- relative to short-range functional connections. Our approach combined functional connectomics with geodesic distance mapping, and we studied associations to macroscale networks, microarchitectural patterns, as well as socio-demographic and clinical phenotypes. METHODS We studied 211 males from three sites of the ABIDE-I dataset comprising 103 participants with an ASD diagnosis (mean ± SD age = 20.8 ± 8.1 years) and 108 neurotypical controls (NT, 19.2 ± 7.2 years). For each participant, we computed cortex-wide connectivity distance (CD) measures by combining geodesic distance mapping with resting-state functional connectivity profiling. We compared CD between ASD and NT participants using surface-based linear models, and studied associations with age, symptom severity, and intelligence scores. We contextualized CD alterations relative to canonical networks and explored spatial associations with functional and microstructural cortical gradients as well as cytoarchitectonic cortical types. RESULTS Compared to NT, ASD participants presented with widespread reductions in CD, generally indicating shorter average connection length and thus suggesting reduced long-range connectivity but increased short-range connections. Peak reductions were localized in transmodal systems (i.e., heteromodal and paralimbic regions in the prefrontal, temporal, and parietal and temporo-parieto-occipital cortex), and effect sizes correlated with the sensory-transmodal gradient of brain function. ASD-related CD reductions appeared consistent across inter-individual differences in age and symptom severity, and we observed a positive correlation of CD to IQ scores. LIMITATIONS Despite rigorous harmonization across the three different acquisition sites, heterogeneity in autism poses a potential limitation to the generalizability of our results. Additionally, we focussed male participants, warranting future studies in more balanced cohorts. CONCLUSIONS Our study showed reductions in CD as a relatively stable imaging phenotype of ASD that preferentially impacted paralimbic and heteromodal association systems. CD reductions in ASD corroborate previous reports of ASD-related imbalance between short-range overconnectivity and long-range underconnectivity.
Collapse
Affiliation(s)
- Clara F Weber
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Valeria Kebets
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Oualid Benkarim
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sara Lariviere
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yezhou Wang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Hongxiu Jiang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Research, Suwon, South Korea
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, USA
| | | | - Sofie Valk
- Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Research, Suwon, South Korea
- Center for the Developing Brain, Child Mind Institute, New York, USA
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Vogel JW, Alexander-Bloch AF, Wagstyl K, Bertolero MA, Markello RD, Pines A, Sydnor VJ, Diaz-Papkovich A, Hansen JY, Evans AC, Bernhardt B, Misic B, Satterthwaite TD, Seidlitz J. Deciphering the functional specialization of whole-brain spatiomolecular gradients in the adult brain. Proc Natl Acad Sci U S A 2024; 121:e2219137121. [PMID: 38861593 PMCID: PMC11194492 DOI: 10.1073/pnas.2219137121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/27/2024] [Indexed: 06/13/2024] Open
Abstract
Cortical arealization arises during neurodevelopment from the confluence of molecular gradients representing patterned expression of morphogens and transcription factors. However, whether similar gradients are maintained in the adult brain remains unknown. Here, we uncover three axes of topographic variation in gene expression in the adult human brain that specifically capture previously identified rostral-caudal, dorsal-ventral, and medial-lateral axes of early developmental patterning. The interaction of these spatiomolecular gradients i) accurately reconstructs the position of brain tissue samples, ii) delineates known functional territories, and iii) can model the topographical variation of diverse cortical features. The spatiomolecular gradients are distinct from canonical cortical axes differentiating the primary sensory cortex from the association cortex, but radiate in parallel with the axes traversed by local field potentials along the cortex. We replicate all three molecular gradients in three independent human datasets as well as two nonhuman primate datasets and find that each gradient shows a distinct developmental trajectory across the lifespan. The gradients are composed of several well-known transcription factors (e.g., PAX6 and SIX3), and a small set of genes shared across gradients are strongly enriched for multiple diseases. Together, these results provide insight into the developmental sculpting of functionally distinct brain regions, governed by three robust transcriptomic axes embedded within brain parenchyma.
Collapse
Affiliation(s)
- Jacob W. Vogel
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden202 13
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Aaron F. Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, LondonWC1N 3AR, United Kingdom
| | - Maxwell A. Bertolero
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Ross D. Markello
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Adam Pines
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94305
| | - Valerie J. Sydnor
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Alex Diaz-Papkovich
- Quantitative Life Sciences, McGill University, Montreal, QCH3A 1E3, Canada
- McGill Genome Centre, McGill University, Montreal, QCH3A 0G1, Canada
| | - Justine Y. Hansen
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Alan C. Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Theodore D. Satterthwaite
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
5
|
Mei T, Forde NJ, Floris DL, Dell'Acqua F, Stones R, Ilioska I, Durston S, Moessnang C, Banaschewski T, Holt RJ, Baron-Cohen S, Rausch A, Loth E, Oakley B, Charman T, Ecker C, Murphy DGM, Beckmann CF, Llera A, Buitelaar JK. Autism Is Associated With Interindividual Variations of Gray and White Matter Morphology. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1084-1093. [PMID: 36075529 DOI: 10.1016/j.bpsc.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Although many studies have explored atypicalities in gray matter (GM) and white matter (WM) morphology of autism, most of them relied on unimodal analyses that did not benefit from the likelihood that different imaging modalities may reflect common neurobiology. We aimed to establish brain patterns of modalities that differentiate between individuals with and without autism and explore associations between these brain patterns and clinical measures in the autism group. METHODS We studied 183 individuals with autism and 157 nonautistic individuals (age range, 6-30 years) in a large, deeply phenotyped autism dataset (EU-AIMS LEAP [European Autism Interventions-A Multicentre Study for Developing New Medications Longitudinal European Autism Project]). Linked independent component analysis was used to link all participants' GM volume and WM diffusion tensor images, and group comparisons of modality shared variances were examined. Subsequently, we performed univariate and multivariate brain-behavior correlation analyses to separately explore the relationships between brain patterns and clinical profiles. RESULTS One multimodal pattern was significantly related to autism. This pattern was primarily associated with GM volume in bilateral insula and frontal, precentral and postcentral, cingulate, and caudate areas and co-occurred with altered WM features in the superior longitudinal fasciculus. The brain-behavior correlation analyses showed a significant multivariate association primarily between brain patterns that involved variation of WM and symptoms of restricted and repetitive behavior in the autism group. CONCLUSIONS Our findings demonstrate the assets of integrated analyses of GM and WM alterations to study the brain mechanisms that underpin autism and show that the complex clinical autism phenotype can be interpreted by brain covariation patterns that are spread across the brain involving both cortical and subcortical areas.
Collapse
Affiliation(s)
- Ting Mei
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands.
| | - Natalie J Forde
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Dorothea L Floris
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Flavio Dell'Acqua
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Richard Stones
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Iva Ilioska
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Sarah Durston
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rosemary J Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Annika Rausch
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Bethany Oakley
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Christian F Beckmann
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| | - Alberto Llera
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands.
| |
Collapse
|
6
|
Liu ZQ, Shafiei G, Baillet S, Misic B. Spatially heterogeneous structure-function coupling in haemodynamic and electromagnetic brain networks. Neuroimage 2023; 278:120276. [PMID: 37451374 DOI: 10.1016/j.neuroimage.2023.120276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
The relationship between structural and functional connectivity in the brain is a key question in connectomics. Here we quantify patterns of structure-function coupling across the neocortex, by comparing structural connectivity estimated using diffusion MRI with functional connectivity estimated using both neurophysiological (MEG-based) and haemodynamic (fMRI-based) recordings. We find that structure-function coupling is heterogeneous across brain regions and frequency bands. The link between structural and functional connectivity is generally stronger in multiple MEG frequency bands compared to resting state fMRI. Structure-function coupling is greater in slower and intermediate frequency bands compared to faster frequency bands. We also find that structure-function coupling systematically follows the archetypal sensorimotor-association hierarchy, as well as patterns of laminar differentiation, peaking in granular layer IV. Finally, structure-function coupling is better explained using structure-informed inter-regional communication metrics than using structural connectivity alone. Collectively, these results place neurophysiological and haemodynamic structure-function relationships in a common frame of reference and provide a starting point for a multi-modal understanding of structure-function coupling in the brain.
Collapse
Affiliation(s)
- Zhen-Qi Liu
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Golia Shafiei
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
7
|
Wang Y, Royer J, Park BY, Vos de Wael R, Larivière S, Tavakol S, Rodriguez-Cruces R, Paquola C, Hong SJ, Margulies DS, Smallwood J, Valk SL, Evans AC, Bernhardt BC. Long-range functional connections mirror and link microarchitectural and cognitive hierarchies in the human brain. Cereb Cortex 2023; 33:1782-1798. [PMID: 35596951 PMCID: PMC9977370 DOI: 10.1093/cercor/bhac172] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Higher-order cognition is hypothesized to be implemented via distributed cortical networks that are linked via long-range connections. However, it is unknown how computational advantages of long-range connections reflect cortical microstructure and microcircuitry. METHODS We investigated this question by (i) profiling long-range cortical connectivity using resting-state functional magnetic resonance imaging (MRI) and cortico-cortical geodesic distance mapping, (ii) assessing how long-range connections reflect local brain microarchitecture, and (iii) examining the microarchitectural similarity of regions connected through long-range connections. RESULTS Analysis of 2 independent datasets indicated that sensory/motor areas had more clustered short-range connections, while transmodal association systems hosted distributed, long-range connections. Meta-analytical decoding suggested that this topographical difference mirrored shifts in cognitive function, from perception/action towards emotional/social processing. Analysis of myelin-sensitive in vivo MRI as well as postmortem histology and transcriptomics datasets established that gradients in functional connectivity distance are paralleled by those present in cortical microarchitecture. Notably, long-range connections were found to link spatially remote regions of association cortex with an unexpectedly similar microarchitecture. CONCLUSIONS By mapping covarying topographies of long-range functional connections and cortical microcircuits, the current work provides insights into structure-function relations in human neocortex.
Collapse
Affiliation(s)
- Yezhou Wang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Bo-Yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.,Department of Data Science, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea
| | - Daniel S Margulies
- Cognitive Neuroanatomy Lab, Integrative Neuroscience and Cognition Centre, University of Paris and CRNS, INCC - UMR 8002, Rue des Saint-Pères 75006, Paris
| | - Jonathan Smallwood
- Department of Psychology, Queen's University, 62 Arch Street, Humphrey Hall, Room 232 Kingston, Ontario K7L 3N6, Canada
| | - Sofie L Valk
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A. Leipzig D-04103, Germany.,Institute of Systems Neuroscience, Heinrich Heine University, Moorenstr. 5, Düsseldorf 40225, Germany
| | - Alan C Evans
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| |
Collapse
|
8
|
Liu ZQ, Vázquez-Rodríguez B, Spreng RN, Bernhardt BC, Betzel RF, Misic B. Time-resolved structure-function coupling in brain networks. Commun Biol 2022; 5:532. [PMID: 35654886 PMCID: PMC9163085 DOI: 10.1038/s42003-022-03466-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/09/2022] [Indexed: 12/23/2022] Open
Abstract
The relationship between structural and functional connectivity in the brain is a key question in systems neuroscience. Modern accounts assume a single global structure-function relationship that persists over time. Here we study structure-function coupling from a dynamic perspective, and show that it is regionally heterogeneous. We use a temporal unwrapping procedure to identify moment-to-moment co-fluctuations in neural activity, and reconstruct time-resolved structure-function coupling patterns. We find that patterns of dynamic structure-function coupling are region-specific. We observe stable coupling in unimodal and transmodal cortex, and dynamic coupling in intermediate regions, particularly in insular cortex (salience network) and frontal eye fields (dorsal attention network). Finally, we show that the variability of a region’s structure-function coupling is related to the distribution of its connection lengths. Collectively, our findings provide a way to study structure-function relationships from a dynamic perspective. Temporal unwrapping analysis of diffusion weighted MRI connectivity and functional MRI scans reveals that the coupling between structure and function in the human brain is regionally heterogeneous and provides a framework to evaluate these relationships from a dynamic perspective.
Collapse
|
9
|
Zamani Esfahlani F, Faskowitz J, Slack J, Mišić B, Betzel RF. Local structure-function relationships in human brain networks across the lifespan. Nat Commun 2022; 13:2053. [PMID: 35440659 PMCID: PMC9018911 DOI: 10.1038/s41467-022-29770-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
A growing number of studies have used stylized network models of communication to predict brain function from structure. Most have focused on a small set of models applied globally. Here, we compare a large number of models at both global and regional levels. We find that globally most predictors perform poorly. At the regional level, performance improves but heterogeneously, both in terms of variance explained and the optimal model. Next, we expose synergies among predictors by using pairs to jointly predict FC. Finally, we assess age-related differences in global and regional coupling across the human lifespan. We find global decreases in the magnitude of structure-function coupling with age. We find that these decreases are driven by reduced coupling in sensorimotor regions, while higher-order cognitive systems preserve local coupling with age. Our results describe patterns of structure-function coupling across the cortex and how this may change with age.
Collapse
Affiliation(s)
- Farnaz Zamani Esfahlani
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jonah Slack
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Bratislav Mišić
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
- Cognitive Science Program, Indiana University, Bloomington, IN, 47405, USA.
- Network Science Institute, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
10
|
Safron A, Klimaj V, Hipólito I. On the Importance of Being Flexible: Dynamic Brain Networks and Their Potential Functional Significances. Front Syst Neurosci 2022; 15:688424. [PMID: 35126062 PMCID: PMC8814434 DOI: 10.3389/fnsys.2021.688424] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
In this theoretical review, we begin by discussing brains and minds from a dynamical systems perspective, and then go on to describe methods for characterizing the flexibility of dynamic networks. We discuss how varying degrees and kinds of flexibility may be adaptive (or maladaptive) in different contexts, specifically focusing on measures related to either more disjoint or cohesive dynamics. While disjointed flexibility may be useful for assessing neural entropy, cohesive flexibility may potentially serve as a proxy for self-organized criticality as a fundamental property enabling adaptive behavior in complex systems. Particular attention is given to recent studies in which flexibility methods have been used to investigate neurological and cognitive maturation, as well as the breakdown of conscious processing under varying levels of anesthesia. We further discuss how these findings and methods might be contextualized within the Free Energy Principle with respect to the fundamentals of brain organization and biological functioning more generally, and describe potential methodological advances from this paradigm. Finally, with relevance to computational psychiatry, we propose a research program for obtaining a better understanding of ways that dynamic networks may relate to different forms of psychological flexibility, which may be the single most important factor for ensuring human flourishing.
Collapse
Affiliation(s)
- Adam Safron
- Center for Psychedelic and Consciousness Research, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kinsey Institute, Indiana University, Bloomington, IN, United States
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
| | - Victoria Klimaj
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
- Complex Networks and Systems, Informatics Department, Indiana University, Bloomington, IN, United States
| | - Inês Hipólito
- Department of Philosophy, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| |
Collapse
|
11
|
Haber SN, Liu H, Seidlitz J, Bullmore E. Prefrontal connectomics: from anatomy to human imaging. Neuropsychopharmacology 2022; 47:20-40. [PMID: 34584210 PMCID: PMC8617085 DOI: 10.1038/s41386-021-01156-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022]
Abstract
The fundamental importance of prefrontal cortical connectivity to information processing and, therefore, disorders of cognition, emotion, and behavior has been recognized for decades. Anatomic tracing studies in animals have formed the basis for delineating the direct monosynaptic connectivity, from cells of origin, through axon trajectories, to synaptic terminals. Advances in neuroimaging combined with network science have taken the lead in developing complex wiring diagrams or connectomes of the human brain. A key question is how well these magnetic resonance imaging (MRI)-derived networks and hubs reflect the anatomic "hard wiring" first proposed to underlie the distribution of information for large-scale network interactions. In this review, we address this challenge by focusing on what is known about monosynaptic prefrontal cortical connections in non-human primates and how this compares to MRI-derived measurements of network organization in humans. First, we outline the anatomic cortical connections and pathways for each prefrontal cortex (PFC) region. We then review the available MRI-based techniques for indirectly measuring structural and functional connectivity, and introduce graph theoretical methods for analysis of hubs, modules, and topologically integrative features of the connectome. Finally, we bring these two approaches together, using specific examples, to demonstrate how monosynaptic connections, demonstrated by tract-tracing studies, can directly inform understanding of the composition of PFC nodes and hubs, and the edges or pathways that connect PFC to cortical and subcortical areas.
Collapse
Affiliation(s)
- Suzanne N. Haber
- grid.412750.50000 0004 1936 9166Department of Pharmacology and Physiology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642 USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478 USA
| | - Hesheng Liu
- grid.259828.c0000 0001 2189 3475Department of Neuroscience, Medical University of South Carolina, Charleston, SC USA ,grid.38142.3c000000041936754XDepartment of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Jakob Seidlitz
- grid.25879.310000 0004 1936 8972Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Ed Bullmore
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Cambridge Biomedical Campus, Cambridge, CB2 0SZ UK
| |
Collapse
|
12
|
Du J, Buckner RL. Precision Estimates of Macroscale Network Organization in the Human and Their Relation to Anatomical Connectivity in the Marmoset Monkey. Curr Opin Behav Sci 2021; 40:144-152. [PMID: 34722833 DOI: 10.1016/j.cobeha.2021.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Precision estimates of network organization from functional connectivity MRI in the human and tract-tracing data in the marmoset monkey converge to reveal an orderly macroscale gradient of sequential networks across the cerebral cortex. Parallel networks begin with a sequence of multiple nested sensory-motor networks in both species progressing to more distributed association networks in rostral prefrontal and temporal association zones, which are expanded and differentiated in the human. From this perspective, the spatially-distributed motif encountered in association networks appears to be on a continuum with primary sensory-motor networks. Network motifs supporting sophisticated forms of human cognition may arise from specializations of distributed anatomical networks formed in an ancestor at least 45 million years ago.
Collapse
Affiliation(s)
- Jingnan Du
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
13
|
Choi SH, Jeong G, Hwang YE, Kim YB, Lee H, Cho ZH. Track-Density Ratio Mapping With Fiber Types in the Cerebral Cortex Using Diffusion-Weighted MRI. Front Neuroanat 2021; 15:715571. [PMID: 34539354 PMCID: PMC8441551 DOI: 10.3389/fnana.2021.715571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
The nerve fibers are divided into three categories: projection, commissural, and association fibers. This study demonstrated a novel cortical mapping method based on these three fiber categories using MR tractography data. The MR fiber-track data were extracted using the diffusion-weighted 3T-MRI data from 19 individuals’ Human Connectome Project dataset. Anatomical MR images in each dataset were parcellated using FreeSurfer software and Brainnetome atlas. The 5 million extracted tracks per subject by MRtrix software were classified based on the basic cortical structure (cortical area in the left and right hemisphere, subcortical area), after the tracks validation procedure. The number of terminals for each categorized track per unit-sized cortical area (1 mm3) was defined as the track-density in that cortical area. Track-density ratio mapping with fiber types was achieved by mapping the density-dependent color intensity for each categorized tracks with a different primary color. The mapping results showed a highly localized, unique density ratio map determined by fiber types. Furthermore, the quantitative group data analysis based on the parcellation information revealed that the majority of nerve fibers in the brain are association fibers, particularly in temporal, inferior parietal, and occipital lobes, while the projection and commissural fibers were mainly located in the superior part of the brain. Hemispheric asymmetries in the fiber density were also observed, such as long association fiber in the Broca’s and Wernicke’s areas. We believe this new dimensional brain mapping information allows us to further understand brain anatomy, function.
Collapse
Affiliation(s)
- Sang-Han Choi
- Neuroscience Convergence Center, Korea University, Seoul, South Korea
| | | | - Young-Eun Hwang
- Neuroscience Convergence Center, Korea University, Seoul, South Korea
| | - Yong-Bo Kim
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
| | - Haigun Lee
- Green Manufacturing Research Center, Korea University, Seoul, South Korea
| | - Zang-Hee Cho
- Neuroscience Convergence Center, Korea University, Seoul, South Korea.,AICT, Seoul National University, Seoul, South Korea
| |
Collapse
|
14
|
Bazinet V, Vos de Wael R, Hagmann P, Bernhardt BC, Misic B. Multiscale communication in cortico-cortical networks. Neuroimage 2021; 243:118546. [PMID: 34478823 DOI: 10.1016/j.neuroimage.2021.118546] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022] Open
Abstract
Signaling in brain networks unfolds over multiple topological scales. Areas may exchange information over local circuits, encompassing direct neighbours and areas with similar functions, or over global circuits, encompassing distant neighbours with dissimilar functions. Here we study how the organization of cortico-cortical networks mediate localized and global communication by parametrically tuning the range at which signals are transmitted on the white matter connectome. We show that brain regions vary in their preferred communication scale. By investigating the propensity for brain areas to communicate with their neighbors across multiple scales, we naturally reveal their functional diversity: unimodal regions show preference for local communication and multimodal regions show preferences for global communication. We show that these preferences manifest as region- and scale-specific structure-function coupling. Namely, the functional connectivity of unimodal regions emerges from monosynaptic communication in small-scale circuits, while the functional connectivity of transmodal regions emerges from polysynaptic communication in large-scale circuits. Altogether, the present findings reveal that communication preferences are highly heterogeneous across the cortex, shaping regional differences in structure-function coupling.
Collapse
Affiliation(s)
- Vincent Bazinet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital (CHUV-UNIL), Lausanne, Switzerland
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
15
|
Raut RV, Snyder AZ, Mitra A, Yellin D, Fujii N, Malach R, Raichle ME. Global waves synchronize the brain's functional systems with fluctuating arousal. SCIENCE ADVANCES 2021; 7:7/30/eabf2709. [PMID: 34290088 PMCID: PMC8294763 DOI: 10.1126/sciadv.abf2709] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/04/2021] [Indexed: 05/04/2023]
Abstract
We propose and empirically support a parsimonious account of intrinsic, brain-wide spatiotemporal organization arising from traveling waves linked to arousal. We hypothesize that these waves are the predominant physiological process reflected in spontaneous functional magnetic resonance imaging (fMRI) signal fluctuations. The correlation structure ("functional connectivity") of these fluctuations recapitulates the large-scale functional organization of the brain. However, a unifying physiological account of this structure has so far been lacking. Here, using fMRI in humans, we show that ongoing arousal fluctuations are associated with global waves of activity that slowly propagate in parallel throughout the neocortex, thalamus, striatum, and cerebellum. We show that these waves can parsimoniously account for many features of spontaneous fMRI signal fluctuations, including topographically organized functional connectivity. Last, we demonstrate similar, cortex-wide propagation of neural activity measured with electrocorticography in macaques. These findings suggest that traveling waves spatiotemporally pattern brain-wide excitability in relation to arousal.
Collapse
Affiliation(s)
- Ryan V Raut
- Department of Radiology, Washington University, St. Louis, MO 63110, USA.
| | - Abraham Z Snyder
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Anish Mitra
- Department of Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Dov Yellin
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Naotaka Fujii
- Laboratory for Adaptive Intelligence, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Rafael Malach
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Marcus E Raichle
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
16
|
Gong H, Yuan N, Shen Z, Tang C, Shipp S, Qian L, Lu Y, Andolina IM, Zhang S, Wu J, Yang H, Wang W. Transduction catalysis: Doxorubicin amplifies rAAV-mediated gene expression in the cortex of higher-order vertebrates. iScience 2021; 24:102685. [PMID: 34195565 PMCID: PMC8233199 DOI: 10.1016/j.isci.2021.102685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/24/2021] [Accepted: 06/01/2021] [Indexed: 12/26/2022] Open
Abstract
Rapid and efficient gene transduction via recombinant adeno-associated viruses (rAAVs) is highly desirable across many basic and clinical research domains. Here, we report that vector co-infusion with doxorubicin, a clinical anti-cancer drug, markedly enhanced rAAV-mediated transgene expression in the cerebral cortex across mammalian species (cat, mouse, and macaque), acting throughout the time period examined and detectable at just three days after transfection. This enhancement showed serotype generality, being common to all rAAV serotypes tested (2, 8, 9, and PHP.eB) and was observed both locally and at remote locations consistent with doxorubicin undergoing retrograde axonal transport. All these effects were observed at doses matching human blood plasma levels in clinical therapy and lacked detectable cytotoxicity as assessed by cell morphology, activity, apoptosis, and behavioral testing. Altogether, this study identifies an effective means to improve the capability and scope of in vivo rAAV applications, amplifying cell transduction at doxorubicin concentrations paralleling medical practice.
Collapse
Affiliation(s)
- Hongliang Gong
- Institute of Neuroscience, the Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nini Yuan
- Institute of Neuroscience, the Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiming Shen
- Institute of Neuroscience, the Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cheng Tang
- Institute of Neuroscience, the Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Stewart Shipp
- Institute of Neuroscience, the Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liling Qian
- Institute of Neuroscience, the Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yiliang Lu
- Institute of Neuroscience, the Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ian Max Andolina
- Institute of Neuroscience, the Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shenghai Zhang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - Jihong Wu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - Hui Yang
- Institute of Neuroscience, the Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Center for Brain and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Wei Wang
- Institute of Neuroscience, the Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Center for Brain and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| |
Collapse
|
17
|
Park BY, Bethlehem RAI, Paquola C, Larivière S, Rodríguez-Cruces R, Vos de Wael R, Bullmore ET, Bernhardt BC. An expanding manifold in transmodal regions characterizes adolescent reconfiguration of structural connectome organization. eLife 2021; 10:e64694. [PMID: 33787489 PMCID: PMC8087442 DOI: 10.7554/elife.64694] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Adolescence is a critical time for the continued maturation of brain networks. Here, we assessed structural connectome development in a large longitudinal sample ranging from childhood to young adulthood. By projecting high-dimensional connectomes into compact manifold spaces, we identified a marked expansion of structural connectomes, with strongest effects in transmodal regions during adolescence. Findings reflected increased within-module connectivity together with increased segregation, indicating increasing differentiation of higher-order association networks from the rest of the brain. Projection of subcortico-cortical connectivity patterns into these manifolds showed parallel alterations in pathways centered on the caudate and thalamus. Connectome findings were contextualized via spatial transcriptome association analysis, highlighting genes enriched in cortex, thalamus, and striatum. Statistical learning of cortical and subcortical manifold features at baseline and their maturational change predicted measures of intelligence at follow-up. Our findings demonstrate that connectome manifold learning can bridge the conceptual and empirical gaps between macroscale network reconfigurations, microscale processes, and cognitive outcomes in adolescent development.
Collapse
Affiliation(s)
- Bo-yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
- Department of Data Science, Inha UniversityIncheonRepublic of Korea
| | - Richard AI Bethlehem
- Autism Research Centre, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
- Brain Mapping Unit, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum JülichJülichGermany
| | - Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Raul Rodríguez-Cruces
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Edward T Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of CambridgeCambridgeUnited Kingdom
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| |
Collapse
|
18
|
Jung B, Taylor PA, Seidlitz J, Sponheim C, Perkins P, Ungerleider LG, Glen D, Messinger A. A comprehensive macaque fMRI pipeline and hierarchical atlas. Neuroimage 2021; 235:117997. [PMID: 33789138 PMCID: PMC9272767 DOI: 10.1016/j.neuroimage.2021.117997] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/27/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Functional neuroimaging research in the non-human primate (NHP) has been advancing at a remarkable rate. The increase in available data establishes a need for robust analysis pipelines designed for NHP neuroimaging and accompanying template spaces to standardize the localization of neuroimaging results. Our group recently developed the NIMH Macaque Template (NMT), a high-resolution population average anatomical template and associated neuroimaging resources, providing researchers with a standard space for macaque neuroimaging . Here, we release NMT v2, which includes both symmetric and asymmetric templates in stereotaxic orientation, with improvements in spatial contrast, processing efficiency, and segmentation. We also introduce the Cortical Hierarchy Atlas of the Rhesus Macaque (CHARM), a hierarchical parcellation of the macaque cerebral cortex with varying degrees of detail. These tools have been integrated into the neuroimaging analysis software AFNI to provide a comprehensive and robust pipeline for fMRI processing, visualization and analysis of NHP data. AFNI's new @animal_warper program can be used to efficiently align anatomical scans to the NMT v2 space, and afni_proc.py integrates these results with full fMRI processing using macaque-specific parameters: from motion correction through regression modeling. Taken together, the NMT v2 and AFNI represent an all-in-one package for macaque functional neuroimaging analysis, as demonstrated with available demos for both task and resting state fMRI.
Collapse
Affiliation(s)
- Benjamin Jung
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA; Department of Neuroscience, Brown University, Providence, RI, USA
| | - Paul A Taylor
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, USA
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Caleb Sponheim
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Pierce Perkins
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Leslie G Ungerleider
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Daniel Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, USA.
| | - Adam Messinger
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Numssen O, Bzdok D, Hartwigsen G. Functional specialization within the inferior parietal lobes across cognitive domains. eLife 2021; 10:63591. [PMID: 33650486 PMCID: PMC7946436 DOI: 10.7554/elife.63591] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
The inferior parietal lobe (IPL) is a key neural substrate underlying diverse mental processes, from basic attention to language and social cognition, that define human interactions. Its putative domain-global role appears to tie into poorly understood differences between cognitive domains in both hemispheres. Across attentional, semantic, and social cognitive tasks, our study explored functional specialization within the IPL. The task specificity of IPL subregion activity was substantiated by distinct predictive signatures identified by multivariate pattern-learning algorithms. Moreover, the left and right IPL exerted domain-specific modulation of effective connectivity among their subregions. Task-evoked functional interactions of the anterior and posterior IPL subregions involved recruitment of distributed cortical partners. While anterior IPL subregions were engaged in strongly lateralized coupling links, both posterior subregions showed more symmetric coupling patterns across hemispheres. Our collective results shed light on how under-appreciated hemispheric specialization in the IPL supports some of the most distinctive human mental capacities.
Collapse
Affiliation(s)
- Ole Numssen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Canada.,Mila - Quebec Artificial Intelligence Institute, Montreal, Canada
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
| |
Collapse
|
20
|
Multiscale modeling of cortical gradients: The role of mesoscale circuits for linking macro- and microscale gradients of cortical organization and hierarchical information processing. Neuroimage 2021; 232:117846. [PMID: 33636345 DOI: 10.1016/j.neuroimage.2021.117846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/16/2020] [Accepted: 02/04/2021] [Indexed: 11/21/2022] Open
Abstract
The gradient concept in neuroscience describes systematic and continuous progressions of features of cortical organization across the entire cortex. Recent multimodal studies revealed a macroscale gradient from primary sensory to transmodal association areas which is linked to increasing representational abstraction along the cortical hierarchy, and which is paralleled by microscale gradients of cytoarchitecture and gene expression profiles. Convergent or divergent evidence from these multimodal studies is then used to support inferences about the existence of one common or multiple scale-specific gradients of hierarchical information processing. This paper evaluates the validity of such inferences within the framework of multiscale modeling. In branches of physics and biology where multiscale modeling techniques are used, the simple averaging of microscale details can introduce errors in macroscale modeling if it ignores structures at the intermediate mesoscales of organization which affect system behavior. Conversely, information about mesoscale structures can be used to determine which microscale details are actually relevant to macroscale behavior. In this paper, I similarly argue that multiscale modeling of cortical gradients needs to take organization of mesoscale circuits into account if it affects the structure-function relation that the models describe. Information about these circuits provides crucial evidence for evaluating inferences from micro- and macroscale data to the role of cortical gradients in hierarchical information processing. My application of the multiscale modeling framework reveals that the gradient concept tracks multiple overlapping progressions of cortical properties, rather than one overall gradient of hierarchical information processing. I support this argument by proposing a mesoscale gradient of connectivity which describes architectural differences between granular and agranular circuits, and which helps us better understand the relation between neural connectivity and hierarchical information processing.
Collapse
|
21
|
Coletta L, Pagani M, Whitesell JD, Harris JA, Bernhardt B, Gozzi A. Network structure of the mouse brain connectome with voxel resolution. SCIENCE ADVANCES 2020; 6:eabb7187. [PMID: 33355124 PMCID: PMC11206455 DOI: 10.1126/sciadv.abb7187] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Fine-grained descriptions of brain connectivity are required to understand how neural information is processed and relayed across spatial scales. Previous investigations of the mouse brain connectome have used discrete anatomical parcellations, limiting spatial resolution and potentially concealing network attributes critical to connectome organization. Here, we provide a voxel-level description of the network and hierarchical structure of the directed mouse connectome, unconstrained by regional partitioning. We report a number of previously unappreciated organizational principles in the mammalian brain, including a directional segregation of hub regions into neural sink and sources, and a strategic wiring of neuromodulatory nuclei as connector hubs and critical orchestrators of network communication. We also find that the mouse cortical connectome is hierarchically organized along two superimposed cortical gradients reflecting unimodal-transmodal functional processing and a modality-specific sensorimotor axis, recapitulating a phylogenetically conserved feature of higher mammals. These findings advance our understanding of the foundational wiring principles of the mammalian connectome.
Collapse
Affiliation(s)
- Ludovico Coletta
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
- Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto TN, Italy
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | | | | | - Boris Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy.
| |
Collapse
|
22
|
Friedrich P, Forkel SJ, Thiebaut de Schotten M. Mapping the principal gradient onto the corpus callosum. Neuroimage 2020; 223:117317. [PMID: 32882387 PMCID: PMC7116113 DOI: 10.1016/j.neuroimage.2020.117317] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 11/25/2022] Open
Abstract
Gradients capture some of the variance of the resting-state functional magnetic resonance imaging (rsfMRI) signal. Amongst these, the principal gradient depicts a functional processing hierarchy that spans from sensory-motor cortices to regions of the default-mode network. While the cortex has been well characterised in terms of gradients little is known about its underlying white matter. For instance, comprehensive mapping of the principal gradient on the largest white matter tract, the corpus callosum, is still missing. Here, we mapped the principal gradient onto the midsection of the corpus callosum using the 7T human connectome project dataset. We further explored how quantitative measures and variability in callosal midsection connectivity relate to the principal gradient values. In so doing, we demonstrated that the extreme values of the principal gradient are located within the callosal genu and the posterior body, have lower connectivity variability but a larger spatial extent along the midsection of the corpus callosum than mid-range values. Our results shed light on the relationship between the brain's functional hierarchy and the corpus callosum. We further speculate about how these results may bridge the gap between functional hierarchy, brain asymmetries, and evolution.
Collapse
Affiliation(s)
- Patrick Friedrich
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionelle, CEA, Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux F-33000, France.
| | - Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionelle, CEA, Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux F-33000, France; Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionelle, CEA, Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux F-33000, France
| |
Collapse
|
23
|
Vézquez-Rodríguez B, Liu ZQ, Hagmann P, Misic B. Signal propagation via cortical hierarchies. Netw Neurosci 2020; 4:1072-1090. [PMID: 33195949 PMCID: PMC7657265 DOI: 10.1162/netn_a_00153] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
The wiring of the brain is organized around a putative unimodal-transmodal hierarchy. Here we investigate how this intrinsic hierarchical organization of the brain shapes the transmission of information among regions. The hierarchical positioning of individual regions was quantified by applying diffusion map embedding to resting-state functional MRI networks. Structural networks were reconstructed from diffusion spectrum imaging and topological shortest paths among all brain regions were computed. Sequences of nodes encountered along a path were then labeled by their hierarchical position, tracing out path motifs. We find that the cortical hierarchy guides communication in the network. Specifically, nodes are more likely to forward signals to nodes closer in the hierarchy and cover a range of unimodal and transmodal regions, potentially enriching or diversifying signals en route. We also find evidence of systematic detours, particularly in attention networks, where communication is rerouted. Altogether, the present work highlights how the cortical hierarchy shapes signal exchange and imparts behaviorally relevant communication patterns in brain networks. In the present report we asked how signals travel on brain networks and what types of nodes they potentially visit en route. We traced individual path motifs to investigate the propensity of communication paths to explore the putative unimodal-transmodal cortical hierarchy. We find that the architecture of the network promotes signaling via the hierarchy, suggesting a link between the structure and function of the network. Importantly, we also find instances where detours are promoted, particularly as paths traverse attention-related networks. Finally, information about hierarchical position aids navigation in some parts of the network, over and above spatial location. Altogether, the present results touch on several emerging themes in network neuroscience, including the nature of structure-function relationships, network communication and the role of cortical hierarchies.
Collapse
Affiliation(s)
- Bertha Vézquez-Rodríguez
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Zhen-Qi Liu
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Patric Hagmann
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
24
|
Mei T, Llera A, Floris DL, Forde NJ, Tillmann J, Durston S, Moessnang C, Banaschewski T, Holt RJ, Baron-Cohen S, Rausch A, Loth E, Dell'Acqua F, Charman T, Murphy DGM, Ecker C, Beckmann CF, Buitelaar JK. Gray matter covariations and core symptoms of autism: the EU-AIMS Longitudinal European Autism Project. Mol Autism 2020; 11:86. [PMID: 33126911 PMCID: PMC7596954 DOI: 10.1186/s13229-020-00389-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Voxel-based morphometry (VBM) studies in autism spectrum disorder (autism) have yielded diverging results. This might partly be attributed to structural alterations being associating with the combined influence of several regions rather than with a single region. Further, these structural covariation differences may relate to continuous measures of autism rather than with categorical case-control contrasts. The current study aimed to identify structural covariation alterations in autism, and assessed canonical correlations between brain covariation patterns and core autism symptoms. METHODS We studied 347 individuals with autism and 252 typically developing individuals, aged between 6 and 30 years, who have been deeply phenotyped in the Longitudinal European Autism Project. All participants' VBM maps were decomposed into spatially independent components using independent component analysis. A generalized linear model (GLM) was used to examine case-control differences. Next, canonical correlation analysis (CCA) was performed to separately explore the integrated effects between all the brain sources of gray matter variation and two sets of core autism symptoms. RESULTS GLM analyses showed significant case-control differences for two independent components. The first component was primarily associated with decreased density of bilateral insula, inferior frontal gyrus, orbitofrontal cortex, and increased density of caudate nucleus in the autism group relative to typically developing individuals. The second component was related to decreased densities of the bilateral amygdala, hippocampus, and parahippocampal gyrus in the autism group relative to typically developing individuals. The CCA results showed significant correlations between components that involved variation of thalamus, putamen, precentral gyrus, frontal, parietal, and occipital lobes, and the cerebellum, and repetitive, rigid and stereotyped behaviors and abnormal sensory behaviors in autism individuals. LIMITATIONS Only 55.9% of the participants with autism had complete questionnaire data on continuous parent-reported symptom measures. CONCLUSIONS Covaried areas associated with autism diagnosis and/or symptoms are scattered across the whole brain and include the limbic system, basal ganglia, thalamus, cerebellum, precentral gyrus, and parts of the frontal, parietal, and occipital lobes. Some of these areas potentially subserve social-communicative behavior, whereas others may underpin sensory processing and integration, and motor behavior.
Collapse
Affiliation(s)
- Ting Mei
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | - Alberto Llera
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Dorothea L Floris
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Natalie J Forde
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Julian Tillmann
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sarah Durston
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rosemary J Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Annika Rausch
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Flavio Dell'Acqua
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Christine Ecker
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Christian F Beckmann
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands.
| |
Collapse
|
25
|
Park BY, Vos de Wael R, Paquola C, Larivière S, Benkarim O, Royer J, Tavakol S, Cruces RR, Li Q, Valk SL, Margulies DS, Mišić B, Bzdok D, Smallwood J, Bernhardt BC. Signal diffusion along connectome gradients and inter-hub routing differentially contribute to dynamic human brain function. Neuroimage 2020; 224:117429. [PMID: 33038538 DOI: 10.1016/j.neuroimage.2020.117429] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/13/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Human cognition is dynamic, alternating over time between externally-focused states and more abstract, often self-generated, patterns of thought. Although cognitive neuroscience has documented how networks anchor particular modes of brain function, mechanisms that describe transitions between distinct functional states remain poorly understood. Here, we examined how time-varying changes in brain function emerge within the constraints imposed by macroscale structural network organization. Studying a large cohort of healthy adults (n = 326), we capitalized on manifold learning techniques that identify low dimensional representations of structural connectome organization and we decomposed neurophysiological activity into distinct functional states and their transition patterns using Hidden Markov Models. Structural connectome organization predicted dynamic transitions anchored in sensorimotor systems and those between sensorimotor and transmodal states. Connectome topology analyses revealed that transitions involving sensorimotor states traversed short and intermediary distances and adhered strongly to communication mechanisms of network diffusion. Conversely, transitions between transmodal states involved spatially distributed hubs and increasingly engaged long-range routing. These findings establish that the structure of the cortex is optimized to allow neural states the freedom to vary between distinct modes of processing, and so provides a key insight into the neural mechanisms that give rise to the flexibility of human cognition.
Collapse
Affiliation(s)
- Bo-Yong Park
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Oualid Benkarim
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Raul R Cruces
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Qiongling Li
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Sofie L Valk
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel S Margulies
- Frontlab, Institut du Cerveau et de la Moelle épinière, UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Bratislav Mišić
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Danilo Bzdok
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Jonathan Smallwood
- Department of Psychology, York Neuroimaging Centre, University of York, New York, United Kingdom
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
26
|
Chiou R, Humphreys GF, Lambon Ralph MA. Bipartite Functional Fractionation within the Default Network Supports Disparate Forms of Internally Oriented Cognition. Cereb Cortex 2020; 30:5484-5501. [PMID: 32494802 PMCID: PMC7472201 DOI: 10.1093/cercor/bhaa130] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/10/2020] [Accepted: 04/26/2020] [Indexed: 01/01/2023] Open
Abstract
Our understanding about the functionality of the brain's default network (DN) has significantly evolved over the past decade. Whereas traditional views define this network based on its suspension/disengagement during task-oriented behavior, contemporary accounts have characterized various situations wherein the DN actively contributes to task performance. However, it is unclear how different task-contexts drive componential regions of the DN to coalesce into a unitary network and fractionate into different subnetworks. Here we report a compendium of evidence that provides answers to these questions. Across multiple analyses, we found a striking dyadic structure within the DN in terms of the profiles of task-triggered fMRI response and effective connectivity, significantly extending beyond previous inferences based on meta-analysis and resting-state activities. In this dichotomy, one subset of DN regions prefers mental activities "interfacing with" perceptible events, while the other subset prefers activities "detached from" perceptible events. While both show a common "aversion" to sensory-motoric activities, their differential preferences manifest a subdivision that sheds light upon the taxonomy of the brain's memory systems. This dichotomy is consistent with proposals of a macroscale gradational structure spanning across the cerebrum. This gradient increases its representational complexity, from primitive sensory-motoric processing, through lexical-semantic representations, to elaborated self-generated thoughts.
Collapse
Affiliation(s)
- Rocco Chiou
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge UK
| | - Gina F Humphreys
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge UK
| | | |
Collapse
|
27
|
Myeloarchitecture gradients in the human insula: Histological underpinnings and association to intrinsic functional connectivity. Neuroimage 2020; 216:116859. [DOI: 10.1016/j.neuroimage.2020.116859] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/13/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
|
28
|
Open access resource for cellular-resolution analyses of corticocortical connectivity in the marmoset monkey. Nat Commun 2020; 11:1133. [PMID: 32111833 PMCID: PMC7048793 DOI: 10.1038/s41467-020-14858-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/03/2020] [Indexed: 12/25/2022] Open
Abstract
Understanding the principles of neuronal connectivity requires tools for efficient quantification and visualization of large datasets. The primate cortex is particularly challenging due to its complex mosaic of areas, which in many cases lack clear boundaries. Here, we introduce a resource that allows exploration of results of 143 retrograde tracer injections in the marmoset neocortex. Data obtained in different animals are registered to a common stereotaxic space using an algorithm guided by expert delineation of histological borders, allowing accurate assignment of connections to areas despite interindividual variability. The resource incorporates tools for analyses relative to cytoarchitectural areas, including statistical properties such as the fraction of labeled neurons and the percentage of supragranular neurons. It also provides purely spatial (parcellation-free) data, based on the stereotaxic coordinates of 2 million labeled neurons. This resource helps bridge the gap between high-density cellular connectivity studies in rodents and imaging-based analyses of human brains. Understanding principles of neuronal connectivity requires tools for quantification and visualization of large datasets. Here, the authors introduce an online resource encompassing the coordinates of two million neurons labelled by tracer injections in the marmoset cortex, and analysis tools.
Collapse
|