1
|
Rocha-Almeida F, Conde-Moro AR, Fernández-Ruiz A, Delgado-García JM, Gruart A. Cortical and subcortical activities during food rewards versus social interaction in rats. Sci Rep 2025; 15:4389. [PMID: 39910316 PMCID: PMC11799384 DOI: 10.1038/s41598-025-87880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
Balancing food foraging with social interaction is crucial for survival and reproduction in many species of mammals. We wanted to investigate the reward preferences in adult male rats by allowing them to lever-press for both food and social rewards (interaction with another rat), while their performance and electrophysiological activities were recorded. Local field potentials (LFPs) were analyzed across five neuroanatomical regions involved in reward processing, decision-making, and social behavior. Despite ad libitum food availability, rats consistently prioritized food. LFP analysis revealed a decrease in nucleus accumbens (NAc) spectral power following social interaction, accompanied by specific alterations in delta and theta bands within the medial prefrontal cortex (mPFC). The spectral power of LFPs delta and/or theta bands were different for the five selected regions following food reward vs. social interactions. Cross-frequency coupling analysis provided further insights, demonstrating dynamic changes in theta-to-gamma coupling during both food and social rewards, with distinct roles for slow- and fast-gamma frequencies. These findings shed light on the intricate neural processes underlying reward preferences and/or decision-making choices, highlighting the NAc's potential role in social reward processing, and the mPFC's involvement in modulating theta-gamma rhythms during reward-related decision-making.
Collapse
Affiliation(s)
| | - Ana R Conde-Moro
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| | | | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| |
Collapse
|
2
|
Wongveerakul P, Cheaha D, Kumarnsit E, Samerphob N. Theta and gamma modulation in the nucleus accumbens as drivers of neurophysiological responses to acute methamphetamine sensitization in mice. Exp Brain Res 2024; 243:7. [PMID: 39611892 DOI: 10.1007/s00221-024-06968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Methamphetamine (METH) has well-documented long-term effects on the brain, including increased psychomotor activity and behavioral sensitization. However, its immediate effects on the brain's reward system following acute exposure, which may contribute to the development of addiction, are less understood. This study aimed to investigate the effects of acute METH on brain oscillations in the nucleus accumbens of C57BL/6 mice. Mice in the METH group received 5 mg/kg of METH for 5 days during the conditioning phase, followed by an 8-day abstinence period. Afterward, they underwent a 6-minute tail suspension test and were given a 1 mg/kg METH challenge. Local field potential (LFP) data were analyzed for percent total power, mean frequency indices, and phase-amplitude coupling (PAC) to assess the neural effects of METH exposure across these phases. A reduction in theta power was observed across the conditioning, abstinence, and challenge phases of METH exposure. The subsequent METH challenge enhanced gamma oscillations, and PAC analysis revealed a consistent theta-gamma coupling index during both the METH administration and challenge phases. It highlights the sensitivity of the reward system to intense, short-term drug exposure, providing new insights into how acute neural stimulation may contribute to the development of addictive behaviors, reinforcing the brain's vulnerability to drug-induced changes in neural circuitry.
Collapse
Affiliation(s)
- Pongpanot Wongveerakul
- Division of Health and Applied Science Physiology Program, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Dania Cheaha
- Division of Biological Science Biology Program, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Ekkasit Kumarnsit
- Division of Health and Applied Science Physiology Program, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Nifareeda Samerphob
- Division of Health and Applied Science Physiology Program, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand.
| |
Collapse
|
3
|
Douton JE, Carelli RM. Unraveling Sex Differences in Affect Processing: Unique Oscillatory Signaling Dynamics in the Infralimbic Cortex and Nucleus Accumbens Shell. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:354-362. [PMID: 38298775 PMCID: PMC10829636 DOI: 10.1016/j.bpsgos.2023.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 02/02/2024] Open
Abstract
Background Negative affect is prevalent in psychiatric diseases such as depression and addiction. Projections from the infralimbic cortex (IL) to the nucleus accumbens shell (NAcSh) are causally linked to learned negative affect as 20 Hz optogenetic stimulation of this circuit reduces conditioned taste aversion (CTA) in male but not female rats. However, the prior study did not provide insight into how innate versus learned negative affect are processed in these areas across sex. Methods To address this issue, local field potential activity was simultaneously recorded in the IL and NAcSh in response to intraoral infusion of rewarding (saccharin) and aversive (quinine) tastants and following induction of a CTA in male and female Sprague Dawley rats. Results Local field potential oscillatory activity within each brain region to saccharin varied across sex. In males, CTA increased IL resting-state power, which was correlated with the strength of the learned aversion, and reduced beta power and IL-NAcSh coherence. In females, CTA increased gamma power in the NAcSh. Similar effects were observed in males and females after CTA in theta-low gamma phase-amplitude coupling. Finally, while quinine produced similar effects in oscillatory power across sex, females showed differences in phase-amplitude coupling within the NAcSh that may be linked to aversion resistance. Conclusions We revealed sex-specific hedonic processing in the IL and NAcSh and how oscillatory signaling is disrupted in learned negative affect, revealing translationally relevant insight into potential treatment strategies that can help to reduce the deleterious effects of learned negative affect in psychiatric illnesses.
Collapse
Affiliation(s)
- Joaquin E. Douton
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| | - Regina M. Carelli
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
4
|
Ajaz R, Mousavi SR, Mirsattari SM, Leung LS. Paroxysmal slow-wave discharges in a model of absence seizure are coupled to gamma oscillations in the thalamocortical and limbic systems. Epilepsy Res 2023; 191:107103. [PMID: 36841021 DOI: 10.1016/j.eplepsyres.2023.107103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/21/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
OBJECTIVE Using the gamma-butyrolactone (GBL) model of absence seizures in Long-Evans rats, this study investigated if gamma (30-160 Hz) activity were cross-frequency modulated by the 2-6 Hz slow-wave discharges induced by GBL in the limbic system. We hypothesized that inactivation of the nucleus reuniens (RE), which projects to frontal cortex (FC) and hippocampus, would affect the cross-frequency coupling of gamma (γ) in different brain regions. METHODS Local field potentials were recorded by electrodes implanted in the FC, ventrolateral thalamus (TH), basolateral amygdala (BLA), nucleus accumbens (NAC), and dorsal hippocampus (CA1) of behaving rats. At each electrode, the coupling between the γ amplitude envelope to the phase of the 2-6 Hz slow-waves (SW) was measured by modulation index (MI) or cross-frequency coherence (CFC) of γ amplitude with SW. In separate experiments, the RE was infused with saline or GABAA receptor agonist, muscimol, before the injection of GBL. RESULTS Following GBL injection, an increase in MI and CFC of SW to γ1 (30-58 Hz), γ2 (62-100 Hz) and γ3 (100-160 Hz) bands was observed at the FC, hippocampus and BLA, with significant increase in SW-γ1 and SW-γ3 coupling at TH, and increase in peak SW-γ1 CFC at NAC. Strong SW-γ modulation was also found during baseline immobility high-voltage spindles. Muscimol inactivation of RE, as compared to saline infusion, significantly decreased SW-γ1 CFC in the FC, and peak frequency of the SW-γ1 CFC in the thalamus, but did not significantly alter SW-γ CFCs in the hippocampus, BLA or NAC. SIGNIFICANCE The paroxysmal 2-6 Hz SW discharges, a hallmark of absence seizure, significantly modulate γ activity in the hippocampus, BLA and NAC, suggesting a modulation of limbic functions. RE inactivation disrupted the SW modulation of FC and TH, partly supporting our hypothesis that RE participates in the modulation of SW discharges.
Collapse
Affiliation(s)
- Rukham Ajaz
- Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| | - Seyed Reza Mousavi
- Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Seyed M Mirsattari
- Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada; Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - L Stan Leung
- Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada; Departments of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
5
|
Chen G, Lai S, Bao G, Ke J, Meng X, Lu S, Wu X, Xu H, Wu F, Xu Y, Xu F, Bi GQ, Peng G, Zhou K, Zhu Y. Distinct reward processing by subregions of the nucleus accumbens. Cell Rep 2023; 42:112069. [PMID: 36753418 DOI: 10.1016/j.celrep.2023.112069] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/11/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
The nucleus accumbens (NAc) plays an important role in motivation and reward processing. Recent studies suggest that different NAc subnuclei differentially contribute to reward-related behaviors. However, how reward is encoded in individual NAc neurons remains unclear. Using in vivo single-cell resolution calcium imaging, we find diverse patterns of reward encoding in the medial and lateral shell subdivision of the NAc (NAcMed and NAcLat, respectively). Reward consumption increases NAcLat activity but decreases NAcMed activity, albeit with high variability among neurons. The heterogeneity in reward encoding could be attributed to differences in their synaptic inputs and transcriptional profiles. Specific optogenetic activation of Nts-positive neurons in the NAcLat promotes positive reinforcement, while activation of Cartpt-positive neurons in the NAcMed induces behavior aversion. Collectively, our study shows the organizational and transcriptional differences in NAc subregions and provides a framework for future dissection of NAc subregions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Gaowei Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Shishi Lai
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Yunnan University School of Medicine, Yunnan University, Kunming 650091, China
| | - Guo Bao
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Jincan Ke
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaogao Meng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Science and Technology of China, Hefei 230026, China
| | - Shanshan Lu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xiaocong Wu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650032, China
| | - Hua Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Fengyi Wu
- Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Xu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650032, China
| | - Fang Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guo-Qiang Bi
- University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guangdun Peng
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Kuikui Zhou
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|