1
|
Yonk AJ, Linares-García I, Pasternak L, Juliani SE, Gradwell MA, George AJ, Margolis DJ. Role of posterior medial thalamus in the modulation of striatal circuitry and choice behavior. eLife 2025; 13:RP98563. [PMID: 40359003 PMCID: PMC12074639 DOI: 10.7554/elife.98563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
The posterior medial (POm) thalamus is heavily interconnected with sensory and motor circuitry and is likely involved in behavioral modulation and sensorimotor integration. POm provides axonal projections to the dorsal striatum, a hotspot of sensorimotor processing, yet the role of POm-striatal projections has remained undetermined. Using optogenetics with mouse brain slice electrophysiology, we found that POm provides robust synaptic input to direct and indirect pathway striatal spiny projection neurons (D1- and D2-SPNs, respectively) and parvalbumin-expressing fast spiking interneurons (PVs). During the performance of a whisker-based tactile discrimination task in head-restrained mice, POm-striatal projections displayed learning-related activation correlating with anticipatory, but not reward-related, pupil dilation. Inhibition of POm-striatal axons across learning caused slower reaction times and an increase in the number of training sessions for expert performance. Our data indicate that POm-striatal inputs provide a behaviorally relevant arousal-related signal, which may prime striatal circuitry for efficient integration of subsequent choice-related inputs.
Collapse
Affiliation(s)
- Alex J Yonk
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Ivan Linares-García
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Logan Pasternak
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Sofia E Juliani
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Mark A Gradwell
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - Arlene J George
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New JerseyPiscatawayUnited States
| |
Collapse
|
2
|
Smith JB, Hong SS, Murphy DJ, Dangcil E, Nacipucha J, Tucker A, Carayannopoulos NL, Beshy M, Chandrasekar S, Peci E, Kiel MY, Wackym PA, Yao JD, Mowery TM. Neuroanatomical Mapping of Gerbil Corticostriatal and Thalamostriatal Projections Reveals the Parafascicular Nucleus as a Relay for Vestibular Information to the Entire Striatum. eNeuro 2025; 12:ENEURO.0246-24.2025. [PMID: 39952676 PMCID: PMC11913323 DOI: 10.1523/eneuro.0246-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 02/17/2025] Open
Abstract
The striatum is the primary input nucleus of the basal ganglia, integrating a dense plexus of inputs from the cerebral cortex and thalamus to regulate action selection and learning. Neuroanatomical mapping of the striatum and its subcompartments has been carried out extensively in rats and mice, nonhuman primates, and cats allowing comparative neuroanatomy studies to derive heuristics about striatal composition and function. Here, we systematically map corticostriatal topography from motor, somatosensory, auditory, and visual cortices as well as thalamostriatal parafascicular (PfN) inputs in the Mongolian gerbil. We also map a pathway reported in mice from medial vestibular nucleus to the PfN that could convey vestibular information to the striatum. Our findings align with those of similar studies in other rodents, indicating homologous neuroanatomical connectivity patterns within the corticostriatal projectome across Rodentia. We observed corticostriatal peaks of dense labeling for each input with a diffuse projection throughout striatal subregions from each cortical region, suggesting a global integration of all cortical information by the striatum. Thalamostriatal projections from PfN covered most of the striatum with a peak of PfN-specific compartmentalized labeling similar to other sensory and motor systems. We also confirm the connection from the medial vestibular nucleus to PfN thalamus, indicating that vestibular information may be widely integrated throughout the striatum. The findings build upon our body of knowledge on striatal connectivity across mammalian species and provide a foundation for striatal research focusing on vestibulothalamostriatal circuits in Rodentia.
Collapse
Affiliation(s)
- Jared B Smith
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Sean S Hong
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Damian J Murphy
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Evelynne Dangcil
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Jacqueline Nacipucha
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Aaron Tucker
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Nicolas L Carayannopoulos
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Mina Beshy
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Shrivaishnavi Chandrasekar
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Eran Peci
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Matthew Y Kiel
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - P Ashley Wackym
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
- Rutgers Brain Health Institute, New Brunswick, New Jersey 08854
| | - Justin D Yao
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
- Rutgers Brain Health Institute, New Brunswick, New Jersey 08854
| | - Todd M Mowery
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
- Rutgers Brain Health Institute, New Brunswick, New Jersey 08854
| |
Collapse
|
3
|
Øvsthus M, van Swieten MMH, Puchades MA, Tocco C, Studer M, Bjaalie JG, Leergaard TB. Spatially integrated cortico-subcortical tracing data for analyses of rodent brain topographical organization. Sci Data 2024; 11:1214. [PMID: 39532918 PMCID: PMC11557934 DOI: 10.1038/s41597-024-04060-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The cerebral cortex extends axonal projections to several subcortical brain regions, including the striatum, thalamus, superior colliculus, and pontine nuclei. Experimental tract-tracing studies have shown that these subcortical projections are topographically organized, reflecting the spatial organization of sensory surfaces and body parts. Several public collections of mouse- and rat- brain tract-tracing data are available, with the Allen mouse brain connectivity atlas being most prominent. There, a large body of image data can be inspected, but it is difficult to combine data from different experiments and compare spatial distribution patterns. To enable co-visualization and comparison of topographical organization in mouse brain cortico-subcortical projections across experiments, we represent axonal labelling data as point data in a common 3D brain atlas space. We here present a collection of point-cloud data representing spatial distribution of corticostriatal, corticothalamic, corticotectal, and corticopontine projections in mice and exemplify how these spatially integrated point data can be used as references for experimental investigations of topographic organization in transgenic mice, and for cross-species comparison with corticopontine projections in rats.
Collapse
Affiliation(s)
- Martin Øvsthus
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maaike M H van Swieten
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Chiara Tocco
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Jan G Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Sampathkumar V, Koster KP, Carroll BJ, Sherman SM, Kasthuri N. Synaptic integration of somatosensory and motor cortical inputs onto spiny projection neurons of mice caudoputamen. Eur J Neurosci 2024; 60:6107-6122. [PMID: 39315531 PMCID: PMC11483202 DOI: 10.1111/ejn.16538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
The basal ganglia play pivotal roles in motor control and cognitive functioning. These nuclei are embedded in an anatomical loop: cortex to basal ganglia to thalamus back to cortex. We focus here on an essential synapse for descending control, from cortical layer 5 (L5) onto the GABAergic spiny projection neurons (SPNs) of the caudoputamen (CP). We employed genetic labeling to distinguish L5 neurons from somatosensory (S1) and motor (M1) cortices in large volume serial electron microscopy and electrophysiology datasets to better detail these inputs. First, M1 and S1 synapses showed a strong preference to innervate the spines of SPNs and rarely contacted aspiny cells, which are likely to be interneurons. Second, L5 inputs commonly converge from both areas onto single SPNs. Third, compared to unlabeled terminals in CP, those labeled from M1 and S1 show ultrastructural hallmarks of strong driver synapses: They innervate larger spines that were more likely to contain a spine apparatus, more often had embedded mitochondria, and more often contacted multiple targets. Finally, these inputs also demonstrated driver-like functional properties: SPNs responded to optogenetic activation from S1 and M1 with large EPSP/Cs that depressed and were dependent on ionotropic but not metabotropic receptors. Together, our findings suggest that individual SPNs integrate driver input from multiple cortical areas with implications for how the basal ganglia relay cortical input to provide inhibitory innervation of motor thalamus.
Collapse
Affiliation(s)
- Vandana Sampathkumar
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
- Argonne National Laboratory
| | - Kevin P Koster
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - Briana J Carroll
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - Narayanan Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
- Argonne National Laboratory
| |
Collapse
|
5
|
Sanabria BD, Baskar SS, Yonk AJ, Linares-Garcia I, Abraira VE, Lee CR, Margolis DJ. Cell-Type Specific Connectivity of Whisker-Related Sensory and Motor Cortical Input to Dorsal Striatum. eNeuro 2024; 11:ENEURO.0503-23.2023. [PMID: 38164611 PMCID: PMC10849041 DOI: 10.1523/eneuro.0503-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
The anterior dorsolateral striatum (DLS) is heavily innervated by convergent excitatory projections from the primary motor (M1) and sensory cortex (S1) and considered an important site of sensorimotor integration. M1 and S1 corticostriatal synapses have functional differences in their connection strength with striatal spiny projection neurons (SPNs) and fast-spiking interneurons (FSIs) in the DLS and, as a result, exert distinct influences on sensory-guided behaviors. In the present study, we tested whether M1 and S1 inputs exhibit differences in the subcellular anatomical distribution of striatal neurons. We injected adeno-associated viral vectors encoding spaghetti monster fluorescent proteins (sm.FPs) into M1 and S1 in male and female mice and used confocal microscopy to generate 3D reconstructions of corticostriatal inputs to single identified SPNs and FSIs obtained through ex vivo patch clamp electrophysiology. We found that M1 and S1 dually innervate SPNs and FSIs; however, there is a consistent bias towards the M1 input in SPNs that is not found in FSIs. In addition, M1 and S1 inputs were distributed similarly across the proximal, medial, and distal regions of SPN and FSI dendrites. Notably, closely localized M1 and S1 clusters of inputs were more prevalent in SPNs than FSIs, suggesting that cortical inputs are integrated through cell-type specific mechanisms. Our results suggest that the stronger functional connectivity from M1 to SPNs compared to S1, as previously observed, is due to a higher quantity of synaptic inputs. Our results have implications for how sensorimotor integration is performed in the striatum through cell-specific differences in corticostriatal connections.
Collapse
Affiliation(s)
- Branden D Sanabria
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - Sindhuja S Baskar
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - Alex J Yonk
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - Iván Linares-Garcia
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - Victoria E Abraira
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - Christian R Lee
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey
| |
Collapse
|
6
|
Sanabria BD, Baskar SS, Yonk AJ, Lee CR, Margolis DJ. Cell-Type Specific Connectivity of Whisker-Related Sensory and Motor Cortical Input to Dorsal Striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531405. [PMID: 36945420 PMCID: PMC10028946 DOI: 10.1101/2023.03.06.531405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The anterior dorsolateral striatum (DLS) is heavily innervated by convergent excitatory projections from the primary motor (M1) and sensory cortex (S1) and is considered an important site of sensorimotor integration. M1 and S1 corticostriatal synapses have functional differences in the strength of their connections with striatal spiny projection neurons (SPNs) and fast-spiking interneurons (FSIs) in the DLS, and as a result exert an opposing influence on sensory-guided behaviors. In the present study, we tested whether M1 and S1 inputs exhibit differences in the subcellular anatomical distribution onto striatal neurons. We injected adeno-associated viral vectors encoding spaghetti monster fluorescent proteins (sm.FPs) into M1 and S1, and used confocal microscopy to generate 3D reconstructions of corticostriatal inputs to single identified SPNs and FSIs obtained through ex-vivo patch-clamp electrophysiology. We found that SPNs are less innervated by S1 compared to M1, but FSIs receive a similar number of inputs from both M1 and S1. In addition, M1 and S1 inputs were distributed similarly across the proximal, medial, and distal regions of SPNs and FSIs. Notably, clusters of inputs were prevalent in SPNs but not FSIs. Our results suggest that SPNs have stronger functional connectivity to M1 compared to S1 due to a higher density of synaptic inputs. The clustering of M1 and S1 inputs onto SPNs but not FSIs suggest that cortical inputs are integrated through cell-type specific mechanisms and more generally have implications for how sensorimotor integration is performed in the striatum. Significance Statement The dorsolateral striatum (DLS) is a key brain area involved in sensorimotor integration due to its dense innervation by the primary motor (M1) and sensory cortex (S1). However, the quantity and anatomical distribution of these inputs to the striatal cell population has not been well characterized. In this study we demonstrate that corticostriatal projections from M1 and S1 differentially innervate spiny projection neurons (SPNs) and fast-spiking interneurons (FSIs) in the DLS. S1 inputs innervate SPNs less than M1 and are likely to form synaptic clusters in SPNs but not in FSIs. These findings suggest that sensorimotor integration is partly achieved by differences in the synaptic organization of corticostriatal inputs to local striatal microcircuits.
Collapse
|
7
|
Wu X, Sarpong GA, Zhang J, Sugihara I. Divergent topographic projection of cerebral cortical areas to overlapping cerebellar lobules through distinct regions of the pontine nuclei. Heliyon 2023; 9:e14352. [PMID: 37025843 PMCID: PMC10070096 DOI: 10.1016/j.heliyon.2023.e14352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/09/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
The massive axonal projection from the cerebrum to the cerebellum through the pontine nuclei supports the cerebrocerebellar coordination of motor and nonmotor functions. However, the cerebrum and cerebellum have distinct patterns of functional localization in their cortices. We addressed this issue by bidirectional neuronal tracing from 22 various locations of the pontine nuclei in the mouse in a comprehensive manner. Cluster analyses of the distribution patterns of labeled cortical pyramidal cells and cerebellar mossy fiber terminals classified all cases into six groups located in six different subareas of the pontine nuclei. The lateral (insular), mediorostral (cingulate and prefrontal), and caudal (visual and auditory) cortical areas of the cerebrum projected to the medial, rostral, and lateral subareas of the pontine nuclei, respectively. These pontine subareas then projected mainly to the crus I, central vermis, and paraflocculus divergently. The central (motor and somatosensory) cortical areas projected to the centrorostral, centrocaudal and caudal subareas of the pontine nuclei, which then projected mainly to the rostral and caudal lobules with a somatotopic arrangement. The results indicate a new pontine nuclei-centric view of the corticopontocerebellar projection: the generally parallel corticopontine projection to pontine nuclei subareas is relayed to the highly divergent pontocerebellar projection terminating in overlapping specific lobules of the cerebellum. Consequently, the mode of the pontine nuclei relay underlies the cerebellar functional organization.
Collapse
|
8
|
Li K, Ma X, Chen T, Xin J, Wang C, Wu B, Ogihara A, Zhou S, Liu J, Huang S, Wang Y, Li S, Chen Z, Xu R. A new early warning method for mild cognitive impairment due to Alzheimer's disease based on dynamic evaluation of the "spatial executive process". Digit Health 2023; 9:20552076231194938. [PMID: 37654709 PMCID: PMC10467230 DOI: 10.1177/20552076231194938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023] Open
Abstract
Objective Mild cognitive impairment (MCI) due to Alzheimer's disease (AD), as an early stage of AD, is an important point for early warning of AD. Neuropathological studies have shown that AD pathology in pre-dementia patients involves the hippocampus and caudate nucleus, which are responsible for controlling cognitive mechanisms such as the spatial executive process (SEP). The aim of this study is to design a new method for early warning of MCI due to AD by dynamically evaluating SEP. Methods We designed fingertip interaction handwriting digital evaluation paradigms and analyzed the dynamic trajectory of fingertip interaction and image data during "clock drawing" and "repetitive writing" tasks. Extracted fingertip interaction digital biomarkers were used to assess participants' SEP disorders, ultimately enabling intelligent diagnosis of MCI due to AD. A cross-sectional study demonstrated the predictive performance of this new method. Results We enrolled 30 normal cognitive (NC) elderly and 30 MCI due to AD patients, and clinical research results showed that there may be neurobehavioral differences between the two groups in digital biomarkers captured during SEP. The early warning performance for MCI due to AD of this new method (areas under the curve (AUC) = 0.880) is better than that of the Minimum Mental State Examination (MMSE) neuropsychological scale (AUC = 0.856) assessed by physicians. Conclusion Patients with MCI due to AD may have SEP disorders, and this new method based on dynamic evaluation of SEP will provide a novel human-computer interaction and intelligent early warning method for home and community screening of MCI due to AD.
Collapse
Affiliation(s)
- Kai Li
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou, China
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
- Joint Laboratory of Police Health Smart Surveillance, Zhejiang Police College, Hangzhou, China
| | - Xiaowen Ma
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou, China
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tong Chen
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Junyi Xin
- School of Information Engineering, Hangzhou Medical College, Hangzhou, China
| | - Chen Wang
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou, China
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Wu
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou, China
- School of Computer Science, Tokyo University of Technology, Hachioji City, Tokyo, Japan
| | - Atsushi Ogihara
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Health Sciences and Social Welfare, Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Siyu Zhou
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou, China
- School of Public health, Hangzhou Normal University, Hangzhou, China
| | - Jiakang Liu
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou, China
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shouqiang Huang
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou, China
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yujia Wang
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou, China
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuwu Li
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou, China
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zeyuan Chen
- Joint Laboratory of Police Health Smart Surveillance, Zhejiang Police College, Hangzhou, China
- School of International Studies and Cooperation, Zhejiang Police College, Hangzhou, China
| | - Runlong Xu
- School of Information Engineering, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
9
|
Takemura H, Rosa MGP. Understanding structure-function relationships in the mammalian visual system: part one. Brain Struct Funct 2021; 226:2741-2744. [PMID: 34652532 DOI: 10.1007/s00429-021-02406-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hiromasa Takemura
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan.
- Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University of Advanced Studies), Hayama, Japan.
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| | - Marcello G P Rosa
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Department of Physiology, Monash University, Clayton, VIC, 3800, Australia.
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Melbourne, VIC, 3800, Australia.
| |
Collapse
|