1
|
Lacroix A, Harquel S, Barbosa LS, Kovarski K, Garrido MI, Vercueil L, Kauffmann L, Dutheil F, Gomot M, Mermillod M. Reduced spatial frequency differentiation and sex-related specificities in fearful face detection in autism: Insights from EEG and the predictive brain model. Autism Res 2024; 17:1778-1795. [PMID: 39092565 DOI: 10.1002/aur.3209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Face processing relies on predictive processes driven by low spatial frequencies (LSF) that convey coarse information prior to fine information conveyed by high spatial frequencies. However, autistic individuals might have atypical predictive processes, contributing to facial processing difficulties. This may be more normalized in autistic females, who often exhibit better socio-communicational abilities than males. We hypothesized that autistic females would display a more typical coarse-to-fine processing for socio-emotional stimuli compared to autistic males. To test this hypothesis, we asked adult participants (44 autistic, 51 non-autistic) to detect fearful faces among neutral faces, filtered in two orders: from coarse-to-fine (CtF) and from fine-to-coarse (FtC). Results show lower d' values and longer reaction times for fearful detection in autism compared to non-autistic (NA) individuals, regardless of the filtering order. Both groups presented shorter P100 latency after CtF compared to FtC, and larger amplitude for N170 after FtC compared to CtF. However, autistic participants presented a reduced difference in source activity between CtF and FtC in the fusiform. There was also a more spatially spread activation pattern in autistic females compared to NA females. Finally, females had faster P100 and N170 latencies, as well as larger occipital activation for FtC sequences than males, irrespective of the group. Overall, the results do not suggest impaired predictive processes from LSF in autism despite behavioral differences in fear detection. However, they do indicate reduced brain modulation by spatial frequency in autism. In addition, the findings highlight sex differences that warrant consideration in understanding autistic females.
Collapse
Affiliation(s)
- Adeline Lacroix
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Sylvain Harquel
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, EPFL, Geneva, Switzerland
| | - Leonardo S Barbosa
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, Virginia, USA
| | - Klara Kovarski
- Sorbonne Université, Faculté des Lettres, INSPE, Paris, France
- LaPsyDÉ, Université Paris-Cité, CNRS, Paris, France
| | - Marta I Garrido
- Cognitive Neuroscience and Computational Psychiatry Lab, Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Laurent Vercueil
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Louise Kauffmann
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Marie Gomot
- Université de Tours, INSERM, Imaging Brain and Neuropsychiatry iBraiN U1253, Tours, France
| | - Martial Mermillod
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| |
Collapse
|
2
|
Spence H, Mengoa-Fleming S, Sneddon AA, McNeil CJ, Waiter GD. Associations between sex, systemic iron and inflammatory status and subcortical brain iron. Eur J Neurosci 2024; 60:5069-5085. [PMID: 39113267 DOI: 10.1111/ejn.16467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Brain iron increases in several neurodegenerative diseases are associated with disease progression. However, the causes of increased brain iron remain unclear. This study investigates relationships between subcortical iron, systemic iron and inflammatory status. Brain magnetic resonance imaging (MRI) scans and blood plasma samples were collected from cognitively healthy females (n = 176, mean age = 61.4 ± 4.5 years, age range = 28-72 years) and males (n = 152, mean age = 62.0 ± 5.1 years, age range = 32-74 years). Regional brain iron was quantified using quantitative susceptibility mapping. To assess systemic iron, haematocrit, ferritin and soluble transferrin receptor were measured, and total body iron index was calculated. To assess systemic inflammation, C-reactive protein (CRP), neutrophil:lymphocyte ratio (NLR), macrophage colony-stimulating factor 1 (MCSF), interleukin 6 (IL6) and interleukin 1β (IL1β) were measured. We demonstrated that iron levels in the right hippocampus were higher in males compared with females, while iron in the right caudate was higher in females compared with males. There were no significant associations observed between subcortical iron levels and blood markers of iron and inflammatory status indicating that such blood measures are not markers of brain iron. These results suggest that brain iron may be regulated independently of blood iron and so directly targeting global iron change in the treatment of neurodegenerative disease may have differential impacts on blood and brain iron.
Collapse
Affiliation(s)
- Holly Spence
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Stephanie Mengoa-Fleming
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Christopher J McNeil
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Gordon D Waiter
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
3
|
Karahan M, Kiziltan Eliacik BB, Baydili KN. The interplay of spiritual health, resilience, and happiness: an evaluation among a group of dental students at a state university in Turkey. BMC Oral Health 2024; 24:587. [PMID: 38773472 PMCID: PMC11106855 DOI: 10.1186/s12903-024-04297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/26/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Dental education is one of the disciplines where students are most significantly affected psychologically. The aim of this study was to evaluate the relationship between spiritual health, resilience and happiness levels of dental students at a state university in Turkey. METHODS This cross- sectional study included 212 students from the 3rd, 4th and 5th grades of the faculty of dentistry. A questionnaire consisting of 4 sections was used in the study. The sections of the questionnaire include students' general and academic information, Turkish adaptations of the Spiritual Well-Being Scale, The Brief Resilience Scale, and the Oxford Happiness Questionnaire-Short Form. Data analysis was performed with IBM SPSS 25 package program. The Shapiro-Wilk test was used to assess the normal distribution of the data. The Mann-Whitney U test was preferred for comparisons between two categorical variables and one numerical variable. The Kruskal-Wallis H test was employed for comparisons involving two categorical variables and one numerical variable. The presence of a relationship between two numerical variables was examined using the Spearman test. RESULTS In terms of resilience and happiness scores, males had higher scores than females. It was determined that third graders scored higher than fifth graders in harmony with nature scores, and third graders scored higher than fourth graders in deregulation scores. There was a positive correlation between happiness, spiritual well-being and resilience; a negative correlation between happiness and anomie. There was no significant relationship between age and happiness scores. As a result of multiple linear regression to determine the factors affecting happiness; increases in spiritual well-being and resilience will lead to an increase in happiness levels. CONCLUSION This study concluded that increased levels of spiritual well-being and resilience among a group of dental students would lead to increased levels of happiness. However, further research is needed to understand the relationship between mental health, resilience and happiness levels during dental education.
Collapse
Affiliation(s)
| | - Bahar Basak Kiziltan Eliacik
- Department of Pediatric Dentistry, Hamidiye Faculty of Dental Medicine, University of Health Sciences, İstanbul, Turkey
| | - Kursad Nuri Baydili
- Department of Biostatistics and Medical Informatics, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
4
|
Ishihara T, Hashimoto S, Tamba N, Hyodo K, Matsuda T, Takagishi H. The links between physical activity and prosocial behavior: an fNIRS hyperscanning study. Cereb Cortex 2024; 34:bhad509. [PMID: 38183181 DOI: 10.1093/cercor/bhad509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/07/2024] Open
Abstract
The prevalence of physically inactive lifestyles in modern society raises concerns about the potential association with poor brain health, particularly in the lateral prefrontal cortex, which is crucial for human prosocial behavior. Here, we explored the relationship between physical activity and prosocial behavior, focusing on potential neural markers, including intra-brain functional connectivity and inter-brain synchrony in the lateral prefrontal cortex. Forty participants, each paired with a stranger, completed two experimental conditions in a randomized order: (i) face-to-face and (ii) face stimulus (eye-to-eye contact with a face stimulus of a fictitious person displayed on the screen). Following each condition, participants played economic games with either their partner or an assumed person displayed on the screen. Neural activity in the lateral prefrontal cortex was recorded by functional near-infrared spectroscopy hyperscanning. Sparse multiset canonical correlation analysis showed that a physically inactive lifestyle was covaried with poorer reciprocity, greater trust, shorter decision-making time, and weaker intra-brain connectivity in the dorsal lateral prefrontal cortex and poorer inter-brain synchrony in the ventral lateral prefrontal cortex. These associations were observed exclusively in the face-to-face condition. Our findings suggest that a physically inactive lifestyle may alter human prosocial behavior by impairing adaptable prosocial decision-making in response to social factors through altered intra-brain functional connectivity and inter-brain synchrony.
Collapse
Affiliation(s)
- Toru Ishihara
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe 657-8501, Japan
| | - Shinnosuke Hashimoto
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe 657-8501, Japan
| | - Natsuki Tamba
- Faculty of Global Human Sciences, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe 657-8501, Japan
| | - Kazuki Hyodo
- Physical Fitness Research Institute, Meiji Yasuda Life Foundation of Health and Welfare, Tobuki 150, Hachioji, Tokyo 192-0001, Japan
| | - Tetsuya Matsuda
- Tamagawa University Brain Science Institute, 6-1-1 Tamagawagakuen, Machida, Tokyo 194-8610, Japan
| | - Haruto Takagishi
- Tamagawa University Brain Science Institute, 6-1-1 Tamagawagakuen, Machida, Tokyo 194-8610, Japan
| |
Collapse
|
5
|
Andrushko JW, Rinat S, Kirby ED, Dahlby J, Ekstrand C, Boyd LA. Females exhibit smaller volumes of brain activation and lower inter-subject variability during motor tasks. Sci Rep 2023; 13:17698. [PMID: 37848679 PMCID: PMC10582116 DOI: 10.1038/s41598-023-44871-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Past work has shown that brain structure and function differ between females and males. Males have larger cortical and sub-cortical volume and surface area (both total and subregional), while females have greater cortical thickness in most brain regions. Functional differences are also reported in the literature, yet to date little work has systematically considered whether patterns of brain activity indexed with functional magnetic resonance imaging (fMRI) differ between females and males. The current study sought to remediate this issue by employing task-based whole brain motor mapping analyses using an openly available dataset. We tested differences in patterns of functional brain activity associated with 12 voluntary movement patterns in females versus males. Results suggest that females exhibited smaller volumes of brain activation across all 12 movement tasks, and lower patterns of variability in 10 of the 12 movements. We also observed that females had greater cortical thickness, which is in alignment with previous analyses of structural differences. Overall, these findings provide a basis for considering biological sex in future fMRI research and provide a foundation of understanding differences in how neurological pathologies present in females vs males.
Collapse
Affiliation(s)
- Justin W Andrushko
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Shie Rinat
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Eric D Kirby
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
| | - Julia Dahlby
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Chelsea Ekstrand
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| | - Lara A Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.
| |
Collapse
|