1
|
Huang YQ, Sun P, Chen Y, Liu HX, Hao GF, Song BA. Bioinformatics toolbox for exploring target mutation-induced drug resistance. Brief Bioinform 2023; 24:7026012. [PMID: 36738254 DOI: 10.1093/bib/bbad033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/25/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Drug resistance is increasingly among the main issues affecting human health and threatening agriculture and food security. In particular, developing approaches to overcome target mutation-induced drug resistance has long been an essential part of biological research. During the past decade, many bioinformatics tools have been developed to explore this type of drug resistance, and they have become popular for elucidating drug resistance mechanisms in a low cost, fast and effective way. However, these resources are scattered and underutilized, and their strengths and limitations have not been systematically analyzed and compared. Here, we systematically surveyed 59 freely available bioinformatics tools for exploring target mutation-induced drug resistance. We analyzed and summarized these resources based on their functionality, data volume, data source, operating principle, performance, etc. And we concisely discussed the strengths, limitations and application examples of these tools. Specifically, we tested some predictive tools and offered some thoughts from the clinician's perspective. Hopefully, this work will provide a useful toolbox for researchers working in the biomedical, pesticide, bioinformatics and pharmaceutical engineering fields, and a good platform for non-specialists to quickly understand drug resistance prediction.
Collapse
Affiliation(s)
- Yuan-Qin Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Ping Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Yi Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Huan-Xiang Liu
- Faculty of Applied Science, Macao Polytechnic University, Macao 999078, SAR, China
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Bao-An Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
2
|
Korniy N, Goyal A, Hoffmann M, Samatova E, Peske F, Pöhlmann S, Rodnina MV. Modulation of HIV-1 Gag/Gag-Pol frameshifting by tRNA abundance. Nucleic Acids Res 2019; 47:5210-5222. [PMID: 30968122 PMCID: PMC6547452 DOI: 10.1093/nar/gkz202] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/12/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
A hallmark of translation in human immunodeficiency virus type 1 (HIV-1) is a –1 programmed ribosome frameshifting event that produces the Gag-Pol fusion polyprotein. The constant Gag to Gag-Pol ratio is essential for the virion structure and infectivity. Here we show that the frameshifting efficiency is modulated by Leu-tRNALeu that reads the UUA codon at the mRNA slippery site. This tRNALeu isoacceptor is particularly rare in human cell lines derived from T-lymphocytes, the cells that are targeted by HIV-1. When UUA decoding is delayed, the frameshifting follows an alternative route, which maintains the Gag to Gag-Pol ratio constant. A second potential slippery site downstream of the first one is normally inefficient but can also support –1-frameshifting when altered by a compensatory resistance mutation in response to current antiviral drug therapy. Together these different regimes allow the virus to maintain a constant –1-frameshifting efficiency to ensure successful virus propagation.
Collapse
Affiliation(s)
- Natalia Korniy
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Akanksha Goyal
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany.,Faculty of Biology and Psychology, University of Göttingen, Wilhelm-Weber-Str. 2, 37073 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Korniy N, Samatova E, Anokhina MM, Peske F, Rodnina MV. Mechanisms and biomedical implications of -1 programmed ribosome frameshifting on viral and bacterial mRNAs. FEBS Lett 2019; 593:1468-1482. [PMID: 31222875 PMCID: PMC6771820 DOI: 10.1002/1873-3468.13478] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/14/2019] [Accepted: 05/26/2019] [Indexed: 12/11/2022]
Abstract
Some proteins are expressed as a result of a ribosome frameshifting event that is facilitated by a slippery site and downstream secondary structure elements in the mRNA. This review summarizes recent progress in understanding mechanisms of –1 frameshifting in several viral genes, including IBV 1a/1b, HIV‐1 gag‐pol, and SFV 6K, and in Escherichia coli dnaX. The exact frameshifting route depends on the availability of aminoacyl‐tRNAs: the ribosome normally slips into the –1‐frame during tRNA translocation, but can also frameshift during decoding at condition when aminoacyl‐tRNA is in limited supply. Different frameshifting routes and additional slippery sites allow viruses to maintain a constant production of their key proteins. The emerging idea that tRNA pools are important for frameshifting provides new direction for developing antiviral therapies.
Collapse
Affiliation(s)
- Natalia Korniy
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Maria M Anokhina
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
4
|
Penno C, Kumari R, Baranov PV, van Sinderen D, Atkins JF. Specific reverse transcriptase slippage at the HIV ribosomal frameshift sequence: potential implications for modulation of GagPol synthesis. Nucleic Acids Res 2017; 45:10156-10167. [PMID: 28973470 PMCID: PMC5737442 DOI: 10.1093/nar/gkx690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/24/2017] [Indexed: 12/28/2022] Open
Abstract
Synthesis of HIV GagPol involves a proportion of ribosomes translating a U6A shift site at the distal end of the gag gene performing a programmed -1 ribosomal frameshift event to enter the overlapping pol gene. In vitro studies here show that at the same shift motif HIV reverse transcriptase generates -1 and +1 indels with their ratio being sensitive to the relative concentration ratio of dNTPs specified by the RNA template slippage-prone sequence and its 5' adjacent base. The GGG sequence 3' adjacent to the U6A shift/slippage site, which is important for ribosomal frameshifting, is shown here to limit reverse transcriptase base substitution and indel 'errors' in the run of A's in the product. The indels characterized here have either 1 more or less A, than the corresponding number of template U's. cDNA with 5 A's may yield novel Gag product(s), while cDNA with an extra base, 7 A's, may only be a minor contributor to GagPol polyprotein. Synthesis of a proportion of non-ribosomal frameshift derived GagPol would be relevant in efforts to identify therapeutically useful compounds that perturb the ratio of GagPol to Gag, and pertinent to the extent in which specific polymerase slippage is utilized in gene expression.
Collapse
Affiliation(s)
- Christophe Penno
- School of Biochemistry, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Romika Kumari
- School of Biochemistry, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - John F Atkins
- School of Biochemistry, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
5
|
HIV-1 subtypes and drug resistance profiles in a cohort of heterosexual patients in Istanbul, Turkey. Med Microbiol Immunol 2015; 204:551-5. [PMID: 25916350 DOI: 10.1007/s00430-015-0419-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/20/2015] [Indexed: 12/23/2022]
Abstract
Turkey is seeing a steady rise in rates of HIV infection in the country. The number of individuals with HIV/AIDS was greater than 7000 in 2014 according to data released by the Ministry of Health, and heterosexual contacts were reported to be the main transmission routes. Istanbul has the highest number of reported cases of HIV infection. The aim of the study was to determine the prevalence of HIV-1 drug resistance in 50 heterosexual patients from Istanbul. The most prevalent subtype was found to be subtype B (56.2 %). Resistance-associated mutations were found in 14 patients with 6/14 patients being therapy-experienced and 8/14 therapy naive at the time point of analysis. With increasing number of patients who require treatment and the rapid up-scaling of the antiretroviral therapy in Turkey, HIV-1 drug resistance testing is recommended before starting treatment in order to achieve better clinical outcomes.
Collapse
|
6
|
Flynn WF, Chang MW, Tan Z, Oliveira G, Yuan J, Okulicz JF, Torbett BE, Levy RM. Deep sequencing of protease inhibitor resistant HIV patient isolates reveals patterns of correlated mutations in Gag and protease. PLoS Comput Biol 2015; 11:e1004249. [PMID: 25894830 PMCID: PMC4404092 DOI: 10.1371/journal.pcbi.1004249] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/19/2015] [Indexed: 11/18/2022] Open
Abstract
While the role of drug resistance mutations in HIV protease has been studied comprehensively, mutations in its substrate, Gag, have not been extensively cataloged. Using deep sequencing, we analyzed a unique collection of longitudinal viral samples from 93 patients who have been treated with therapies containing protease inhibitors (PIs). Due to the high sequence coverage within each sample, the frequencies of mutations at individual positions were calculated with high precision. We used this information to characterize the variability in the Gag polyprotein and its effects on PI-therapy outcomes. To examine covariation of mutations between two different sites using deep sequencing data, we developed an approach to estimate the tight bounds on the two-site bivariate probabilities in each viral sample, and the mutual information between pairs of positions based on all the bounds. Utilizing the new methodology we found that mutations in the matrix and p6 proteins contribute to continued therapy failure and have a major role in the network of strongly correlated mutations in the Gag polyprotein, as well as between Gag and protease. Although covariation is not direct evidence of structural propensities, we found the strongest correlations between residues on capsid and matrix of the same Gag protein were often due to structural proximity. This suggests that some of the strongest inter-protein Gag correlations are the result of structural proximity. Moreover, the strong covariation between residues in matrix and capsid at the N-terminus with p1 and p6 at the C-terminus is consistent with residue-residue contacts between these proteins at some point in the viral life cycle. Understanding the structure of HIV proteins and the function of drug-resistant mutations of these proteins is critical for the development of effective HIV treatments. Selected gag mutations have been shown to provide compensatory functions for protease resistance mutations and may directly contribute to the development of drug resistance. To determine associations between protease inhibitor mutations and gag, we utilized deep sequencing of HIV gag and protease from a collection of viral isolates from patients treated with highly active retroviral protease inhibitors. Deep sequencing allows for accurate measurement of mutation frequencies at each position, allowing estimation, using a novel method we developed, of the covariation between any two residues on gag. Using this information, we characterize the variation within gag and protease and identify the most strongly correlated pairs of inter- and intra-protein residues. Our results suggest that matrix and p1/p6 mutations form the core of a network of strongly correlated gag mutations and contribute to recurrent treatment failure. Extracting gag residue covariation information from the deep sequencing of patient viral samples may provide insight into structural aspects of the Gag polyprotein as well new areas for small molecule targeting to disrupt Gag function.
Collapse
Affiliation(s)
- William F. Flynn
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey, United States of America
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Max W. Chang
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Zhiqiang Tan
- Department of Statistics, Rutgers University, Piscataway, New Jersey, United States of America
| | - Glenn Oliveira
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jinyun Yuan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jason F. Okulicz
- Infectious Disease Service, San Antonio Military Medical Center, San Antonio, Texas, United States of America
| | - Bruce E. Torbett
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (BET); (RML)
| | - Ronald M. Levy
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Chemistry, and Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (BET); (RML)
| |
Collapse
|
7
|
Doerr HW, Berger A. Vaccination against infectious diseases: what is promising? Med Microbiol Immunol 2014; 203:365-71. [PMID: 25064610 DOI: 10.1007/s00430-014-0346-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/10/2014] [Indexed: 12/17/2022]
Abstract
Vaccination has proven to be one of the best weapons protecting the mankind against infectious diseases. Along with the huge progress in microbiology, numerous highly efficacious and safe vaccines have been produced by conventional technology (cultivation), by the use of molecular biology (genetic modification), or by synthetic chemistry. Sterilising prevention is achieved by the stimulation of antibody production, while the stimulation of cell-mediated immune responses may prevent the outbreak of disease in consequence of an acute or reactivated infection. From several examples, two rules are deduced to evaluate the perspectives of future vaccine developments: They are promising, if (1) the natural infectious disease induces immunity or (2) passive immunisation (transfer of antibodies, adoptive transfer of lymphocytes) is successful in preventing infection.
Collapse
Affiliation(s)
- Hans Wilhelm Doerr
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University, Paul-Ehrlich-Str. 40, 60596, Frankfurt/M., Germany,
| | | |
Collapse
|
8
|
Hosseinipour MC, Gupta RK, Van Zyl G, Eron JJ, Nachega JB. Emergence of HIV drug resistance during first- and second-line antiretroviral therapy in resource-limited settings. J Infect Dis 2013; 207 Suppl 2:S49-56. [PMID: 23687289 DOI: 10.1093/infdis/jit107] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Antiretroviral therapy (ART) in resource-limited settings has expanded in the last decade, reaching >8 million individuals and reducing AIDS mortality and morbidity. Continued success of ART programs will require understanding the emergence of HIV drug resistance patterns among individuals in whom treatment has failed and managing ART from both an individual and public health perspective. We review data on the emergence of HIV drug resistance among individuals in whom first-line therapy has failed and clinical and resistance outcomes of those receiving second-line therapy in resource-limited settings. RESULTS Resistance surveys among patients initiating first-line nonnucleoside reverse-transcriptase inhibitor (NNRTI)-based therapy suggest that 76%-90% of living patients achieve HIV RNA suppression by 12 months after ART initiation. Among patients with detectable HIV RNA at 12 months, HIV drug resistance, primarily due to M184V and NNRTI mutations, has been identified in 60%-72%, although the antiretroviral activity of proposed second-line regimens has been preserved. Complex mutation patterns, including thymidine-analog mutations, K65R, and multinucleoside mutations, are prevalent among cases of treatment failure identified by clinical or immunologic methods. Approximately 22% of patients receiving second-line therapy do not achieve HIV RNA suppression by 6 months, with poor adherence, rather than HIV drug resistance, driving most failures. Major protease inhibitor resistance at the time of second-line failure ranges from 0% to 50%, but studies are limited. CONCLUSIONS Resistance of HIV to first-line therapy is predictable at 12 months when evaluated by means of HIV RNA monitoring and, when detected, largely preserves second-line therapy options. Optimizing adherence, performing resistance surveillance, and improving treatment monitoring are critical for long-term prevention of drug resistance.
Collapse
|
9
|
Mouzakis KD, Lang AL, Vander Meulen KA, Easterday PD, Butcher SE. HIV-1 frameshift efficiency is primarily determined by the stability of base pairs positioned at the mRNA entrance channel of the ribosome. Nucleic Acids Res 2012; 41:1901-13. [PMID: 23248007 PMCID: PMC3561942 DOI: 10.1093/nar/gks1254] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The human immunodeficiency virus (HIV) requires a programmed −1 ribosomal frameshift for Pol gene expression. The HIV frameshift site consists of a heptanucleotide slippery sequence (UUUUUUA) followed by a spacer region and a downstream RNA stem–loop structure. Here we investigate the role of the RNA structure in promoting the −1 frameshift. The stem–loop was systematically altered to decouple the contributions of local and overall thermodynamic stability towards frameshift efficiency. No correlation between overall stability and frameshift efficiency is observed. In contrast, there is a strong correlation between frameshift efficiency and the local thermodynamic stability of the first 3–4 bp in the stem–loop, which are predicted to reside at the opening of the mRNA entrance channel when the ribosome is paused at the slippery site. Insertion or deletions in the spacer region appear to correspondingly change the identity of the base pairs encountered 8 nt downstream of the slippery site. Finally, the role of the surrounding genomic secondary structure was investigated and found to have a modest impact on frameshift efficiency, consistent with the hypothesis that the genomic secondary structure attenuates frameshifting by affecting the overall rate of translation.
Collapse
Affiliation(s)
- Kathryn D Mouzakis
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
10
|
Stephan C, Bartha V, Herrmann E, von Hentig N, Khaykin P, Knecht G, Gute P, Brodt HR, Stürmer M, Berger A, Bickel M. Impact of HIV-1 replication on immunological evolution during long-term dual-boosted protease inhibitor therapy. Med Microbiol Immunol 2012; 202:117-24. [PMID: 22983722 DOI: 10.1007/s00430-012-0276-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/31/2012] [Indexed: 10/27/2022]
Abstract
To explore CD4-cell and viral evolution in relation to different levels of HIV-1 replication, as observed during protease inhibitor (PI)-based antiretroviral therapy. Adult HIV-1 infected cohort patients, receiving historical salvage therapy with daily doses of saquinavir (2,000 mg), ritonavir (200 mg) and either lopinavir (800 mg) or atazanavir (300 mg) for >36 weeks were retrospectively analysed for highest detectable viral load up to week 96 and assigned to groups according to the viral load level: always <50 copies/ml (1), 50-199 copies/ml (2), 200-499 copies/ml (3) and ≥500 copies/ml (4). A total of 126 patients were evaluated; at baseline, median CD4-cell count was 204/mm(3), HIV-1 RNA was 5.13 Log10-copies/ml and duration of prior HIV-1 infection was 11.7 years. Patients were assigned by 43, 30, 7 and 20 % to groups 1-4. Median observation time was 136 weeks (range: 38-304); at weeks 48/96, the CD4-cell gains for groups 1-4 were +88/+209, +209/+349, +67/+300 and +114.5/+ 128, respectively. After fitting data in a linear fixed effect model, ascending CD4 slopes were continuously increasing for group 1, similarly for 2 and clearly decreasing for 3-4 (p = 0.0006). Of 25 individuals from group 4, patient number with major IAS-USA protease mutations increased from 5 to 10 before and after failing PI therapy, whereas minor mutations remained stable (n = 18). On double-boosted PI therapy, CD4-cell increases through week 96 were similar for patients at always undetectable or with detection of low viral load. Viral detection >200 copies/ml was associated with decreasing CD4-cell slopes and emergence of major mutations, supporting this as benchmark for virological failure definition on PI therapy.
Collapse
Affiliation(s)
- Christoph Stephan
- Infectious Diseases Unit at Medical Department No. 2, Hospital of the Johann Wolfgang Goethe-University, Frankfurt, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fun A, Wensing AMJ, Verheyen J, Nijhuis M. Human Immunodeficiency Virus Gag and protease: partners in resistance. Retrovirology 2012; 9:63. [PMID: 22867298 PMCID: PMC3422997 DOI: 10.1186/1742-4690-9-63] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/17/2012] [Indexed: 12/26/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) maturation plays an essential role in the viral life cycle by enabling the generation of mature infectious virus particles through proteolytic processing of the viral Gag and GagPol precursor proteins. An impaired polyprotein processing results in the production of non-infectious virus particles. Consequently, particle maturation is an excellent drug target as exemplified by inhibitors specifically targeting the viral protease (protease inhibitors; PIs) and the experimental class of maturation inhibitors that target the precursor Gag and GagPol polyproteins. Considering the different target sites of the two drug classes, direct cross-resistance may seem unlikely. However, coevolution of protease and its substrate Gag during PI exposure has been observed both in vivo and in vitro. This review addresses in detail all mutations in Gag that are selected under PI pressure. We evaluate how polymorphisms and mutations in Gag affect PI therapy, an aspect of PI resistance that is currently not included in standard genotypic PI resistance testing. In addition, we consider the consequences of Gag mutations for the development and positioning of future maturation inhibitors.
Collapse
Affiliation(s)
- Axel Fun
- Department of Virology, Medical Microbiology, University Medical Center Utrecht, HP G04,614, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | | | | | | |
Collapse
|
12
|
Brakier-Gingras L, Charbonneau J, Butcher SE. Targeting frameshifting in the human immunodeficiency virus. Expert Opin Ther Targets 2012; 16:249-58. [PMID: 22404160 DOI: 10.1517/14728222.2012.665879] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION HIV-1 uses a programmed –1 ribosomal frameshift to generate Gag-Pol, the precursor of its enzymes, when its full-length mRNA is translated by the ribosomes of the infected cells. This change in the reading frame occurs at a so-called slippery sequence that is followed by a specific secondary structure, the frameshift stimulatory signal. This signal controls the frameshift efficiency. The synthesis of HIV-1 enzymes is critical for virus replication and therefore, the –1 ribosomal frameshift could be the target of novel antiviral drugs. AREAS COVERED Various approaches were used to select drugs interfering with the –1 frameshift of HIV-1. These include the selection and modification of chemical compounds that specifically bind to the frameshift stimulatory signal, the use of antisense oligonucleotides targeting this signal and the selection of compounds that modulate HIV-1 frameshift, by using bicistronic reporters where the expression of the second cistron depends upon HIV-1 frameshift. EXPERT OPINION The most promising approach is the selection and modification of compounds specifically targeting the HIV-1 frameshift stimulatory signal. The use of antisense oligonucleotides binding to the frameshift stimulatory signal is still questionable. The use of bicistronic reporters preferentially selects compounds that modulate the frameshift by targeting the ribosomes, which is less promising.
Collapse
|
13
|
Lin Z, Gilbert RJC, Brierley I. Spacer-length dependence of programmed -1 or -2 ribosomal frameshifting on a U6A heptamer supports a role for messenger RNA (mRNA) tension in frameshifting. Nucleic Acids Res 2012; 40:8674-89. [PMID: 22743270 PMCID: PMC3458567 DOI: 10.1093/nar/gks629] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Programmed -1 ribosomal frameshifting is employed in the expression of a number of viral and cellular genes. In this process, the ribosome slips backwards by a single nucleotide and continues translation of an overlapping reading frame, generating a fusion protein. Frameshifting signals comprise a heptanucleotide slippery sequence, where the ribosome changes frame, and a stimulatory RNA structure, a stem-loop or RNA pseudoknot. Antisense oligonucleotides annealed appropriately 3' of a slippery sequence have also shown activity in frameshifting, at least in vitro. Here we examined frameshifting at the U6A slippery sequence of the HIV gag/pol signal and found high levels of both -1 and -2 frameshifting with stem-loop, pseudoknot or antisense oligonucleotide stimulators. By examining -1 and -2 frameshifting outcomes on mRNAs with varying slippery sequence-stimulatory RNA spacing distances, we found that -2 frameshifting was optimal at a spacer length 1-2 nucleotides shorter than that optimal for -1 frameshifting with all stimulatory RNAs tested. We propose that the shorter spacer increases the tension on the mRNA such that when the tRNA detaches, it more readily enters the -2 frame on the U6A heptamer. We propose that mRNA tension is central to frameshifting, whether promoted by stem-loop, pseudoknot or antisense oligonucleotide stimulator.
Collapse
Affiliation(s)
- Zhaoru Lin
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | |
Collapse
|