1
|
Xia K, Zhou Y, Wang W, Cai Y. Streptococcus anginosus: the potential role in the progression of gastric cancer. J Cancer Res Clin Oncol 2025; 151:143. [PMID: 40252119 PMCID: PMC12009222 DOI: 10.1007/s00432-025-06201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/11/2025] [Indexed: 04/21/2025]
Abstract
Gastric cancer (GC) is among the most common and aggressive malignancies worldwide, characterized by a poor prognosis. Research on its pathogenesis and progression continues to evolve. Streptococcus anginosus (S. anginosus, SA) is a Gram-positive coccus commonly found in the oral cavity and upper respiratory tract, serving as a commensal bacterium in the oral, gastrointestinal, and genitourinary tracts. It is frequently associated with abscess formation in various organs and tissues, as well as other purulent infections. In recent years, S. anginosus has gained increasing attention for its role in GC progression, potentially leading to chronic gastric inflammation and precancerous lesions, and ultimately promoting the development of GC. Emerging evidence indicates a strong association between S. anginosus and the malignant progression and unfavorable prognosis of GC. This review summarizes the role and underlying mechanisms of S. anginosus in GC and proposes that S. anginosus plays a pivotal role in its initiation and progression, underscoring its potential therapeutic significance.
Collapse
Affiliation(s)
- Kun Xia
- Department of General Surgery, People's Hospital of Ningxiang City, 209, North Road of 1st Ring, Ningxiang, Hunan, 410600, P. R. China
| | - Yaoxiang Zhou
- Department of General Surgery, People's Hospital of Ningxiang City, 209, North Road of 1st Ring, Ningxiang, Hunan, 410600, P. R. China
| | - Wei Wang
- Department of General Surgery, People's Hospital of Ningxiang City, 209, North Road of 1st Ring, Ningxiang, Hunan, 410600, P. R. China
| | - Yinzhong Cai
- Department of General Surgery, People's Hospital of Ningxiang City, 209, North Road of 1st Ring, Ningxiang, Hunan, 410600, P. R. China.
| |
Collapse
|
2
|
Lin YJ, Chen CH, Chang IYF, Chiang RL, Wang HY, Chiu CH, Chen YYM. Genomic and transcriptomic insights into the virulence and adaptation of shock syndrome-causing Streptococcus anginosus. MICROBIOLOGY (READING, ENGLAND) 2025; 171. [PMID: 39976625 DOI: 10.1099/mic.0.001535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Streptococcus anginosus is a common isolate of the oral cavity and an opportunistic pathogen for systemic infections. Although the pyogenic infections caused by S. anginosus are similar to those caused by Streptococcus pyogenes, S. anginosus lacks most of the well-characterized virulence factors of S. pyogenes. To investigate the pathogenicity of S. anginosus, we analysed the genome of a newly identified S. anginosus strain, KH1, which was associated with toxic shock-like syndrome in an immunocompetent adolescent. The genome of KH1 contains nine genomic islands, two Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated systems and many phage-related proteins, indicating that the genome is influenced by prophages and horizontal gene transfer. Comparative genome analysis of 355 S. anginosus strains revealed a significant difference between the sizes of the pan genome and core genome, reflecting notable strain variations. We further analysed the transcriptomes of KH1 under conditions mimicking either the oral cavity or the bloodstream. We found that in an artificial saliva medium, the expression of a putative quorum quenching system and pyruvate oxidase for H2O2 production was upregulated, which could optimize the competitiveness of S. anginosus in the oral ecosystem. Conversely, in a modified serum medium, purine and glucan biosynthesis, competence and bacteriocin production were significantly upregulated, likely facilitating the survival of KH1 in the bloodstream. These findings indicate that S. anginosus can utilize diverse mechanisms to adapt to different environmental niches and establish infection, despite its lack of toxin production.
Collapse
Affiliation(s)
- Yu-Juan Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Chih-Ho Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Ruei-Lin Chiang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Hsing-Yi Wang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC
| | - Yi-Ywan M Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| |
Collapse
|
3
|
Senthil Kumar S, Gunda V, Reinartz DM, Pond KW, Thorne CA, Santiago Raj PV, Johnson MDL, Wilson JE. Oral streptococci S. anginosus and S. mitis induce distinct morphological, inflammatory, and metabolic signatures in macrophages. Infect Immun 2024; 92:e0053623. [PMID: 38289109 PMCID: PMC10929413 DOI: 10.1128/iai.00536-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 03/13/2024] Open
Abstract
Oral streptococci, key players in oral biofilm formation, are implicated in oral dysbiosis and various clinical conditions, including dental caries, gingivitis, periodontal disease, and oral cancer. Specifically, Streptococcus anginosus is associated with esophageal, gastric, and pharyngeal cancers, while Streptococcus mitis is linked to oral cancer. However, no study has investigated the mechanistic links between these Streptococcus species and cancer-related inflammatory responses. As an initial step, we probed the innate immune response triggered by S. anginosus and S. mitis in RAW264.7 macrophages. These bacteria exerted time- and dose-dependent effects on macrophage morphology without affecting cell viability. Compared with untreated macrophages, macrophages infected with S. anginosus exhibited a robust proinflammatory response characterized by significantly increased levels of inflammatory cytokines and mediators, including TNF, IL-6, IL-1β, NOS2, and COX2, accompanied by enhanced NF-κB activation. In contrast, S. mitis-infected macrophages failed to elicit a robust inflammatory response. Seahorse Xfe96 analysis revealed an increased extracellular acidification rate in macrophages infected with S. anginosus compared with S. mitis. At the 24-h time point, the presence of S. anginosus led to reduced extracellular itaconate, while S. mitis triggered increased itaconate levels, highlighting distinct metabolic profiles in macrophages during infection in contrast to aconitate decarboxylase expression observed at the 6-h time point. This initial investigation highlights how S. anginosus and S. mitis, two Gram-positive bacteria from the same genus, can prompt distinct immune responses and metabolic shifts in macrophages during infection.IMPORTANCEThe surge in head and neck cancer cases among individuals devoid of typical risk factors such as Human Papilloma Virus (HPV) infection and tobacco and alcohol use sparks an argumentative discussion around the emerging role of oral microbiota as a novel risk factor in oral squamous cell carcinoma (OSCC). While substantial research has dissected the gut microbiome's influence on physiology, the oral microbiome, notably oral streptococci, has been underappreciated during mucosal immunopathogenesis. Streptococcus anginosus, a viridans streptococci group, has been linked to abscess formation and an elevated presence in esophageal cancer and OSCC. The current study aims to probe the innate immune response to S. anginosus compared with the early colonizer Streptococcus mitis as an important first step toward understanding the impact of distinct oral Streptococcus species on the host immune response, which is an understudied determinant of OSCC development and progression.
Collapse
Affiliation(s)
- Sangeetha Senthil Kumar
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
- The University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Venugopal Gunda
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Dakota M. Reinartz
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
- The University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Kelvin W. Pond
- The University of Arizona Cancer Center, Tucson, Arizona, USA
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Curtis A. Thorne
- The University of Arizona Cancer Center, Tucson, Arizona, USA
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA
| | | | - Michael D. L. Johnson
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
- Valley Fever Center for Excellence, The University of Arizona Health Sciences, Tucson, Arizona, USA
- BIO5 Institute, The University of Arizona, Tucson, Arizona, USA
- Asthma and Airway Disease Research Center, The University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Justin E. Wilson
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
- The University of Arizona Cancer Center, Tucson, Arizona, USA
| |
Collapse
|
4
|
Yamada T, Yamamori Y, Matsuda N, Nagamune H, Ohkura K, Tomoyasu T, Tabata A. Streptolysin S induces pronounced calcium-ion influx-dependent expression of immediate early genes encoding transcription factors. Sci Rep 2023; 13:13720. [PMID: 37608082 PMCID: PMC10444759 DOI: 10.1038/s41598-023-40981-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/19/2023] [Indexed: 08/24/2023] Open
Abstract
Anginosus group streptococci (AGS) are opportunistic human pathogens of the oral cavity. The β-hemolytic subgroup of Streptococcus anginosus subsp. anginosus secretes streptolysin S (SLS) and exhibits not only hemolytic activity but also cytotoxicity toward cultured human cell lines. However, the detailed mechanism of action of SLS and the cellular responses of host cells have not yet been fully clarified. To determine the pathogenic potential of SLS-producing β-hemolytic S. anginosus subsp. anginosus, the SLS-dependent response induced in the human oral squamous cell carcinoma HSC-2 cells was investigated to determine the pathogenic potential of SLS-producing β-hemolytic S. anginosus subsp. anginosus. This study revealed that the Ca2+ influx and the expression of immediate early genes (IEGs) encoding transcription factors such as early growth responses (EGRs) and activator protein-1 (AP-1) were greatly increased in HSC-2 cells incubated with the culture supernatant of SLS-producing β-hemolytic S. anginosus subsp. anginosus. Moreover, this SLS-dependent increase in expression was significantly suppressed by Ca2+ chelation, except for jun. These results suggest that SLS caused Ca2+ influx into the cells following greatly enhanced expression of IEG-encoding transcription factors. The results of this study may help in understanding the pathogenicity of SLS-producing AGS.
Collapse
Affiliation(s)
- Takuya Yamada
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8506, Japan
| | - Yugo Yamamori
- Faculty of Bioscience and Bioindustry, Bioengineering Course, Tokushima University, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
| | - Nanami Matsuda
- Faculty of Bioscience and Bioindustry, Bioengineering Course, Tokushima University, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
| | - Hideaki Nagamune
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8506, Japan
- Faculty of Bioscience and Bioindustry, Bioengineering Course, Tokushima University, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
| | - Kazuto Ohkura
- Division of Clinical Pharmacy and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-Cho, Suzuka, Mie, 513-8670, Japan
| | - Toshifumi Tomoyasu
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8506, Japan
- Faculty of Bioscience and Bioindustry, Bioengineering Course, Tokushima University, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan
| | - Atsushi Tabata
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8506, Japan.
- Faculty of Bioscience and Bioindustry, Bioengineering Course, Tokushima University, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan.
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, 2-1 Minamijousanjima-Cho, Tokushima, Tokushima, 770-8513, Japan.
| |
Collapse
|
5
|
Budziaszek J, Pilarczyk-Zurek M, Dobosz E, Kozinska A, Nowicki D, Obszanska K, Szalewska-Pałasz A, Kern-Zdanowicz I, Sitkiewicz I, Koziel J. Studies of Streptococcus anginosus Virulence in Dictyostelium discoideum and Galleria mellonella Models. Infect Immun 2023; 91:e0001623. [PMID: 37097148 DOI: 10.1128/iai.00016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
For many years, Streptococcus anginosus has been considered a commensal colonizing the oral cavity, as well as the gastrointestinal and genitourinary tracts. However, recent epidemiological and clinical data designate this bacterium as an emerging opportunistic pathogen. Despite the reported pathogenicity of S. anginosus, the molecular mechanism underpinning its virulence is poorly described. Therefore, our goal was to develop and optimize efficient and simple infection models that can be applied to examine the virulence of S. anginosus and to study host-pathogen interactions. Using 23 S. anginosus isolates collected from different infections, including severe and superficial infections, as well as an attenuated strain devoid of CppA, we demonstrate for the first time that Dictyostelium discoideum is a suitable model for initial, fast, and large-scale screening of virulence. Furthermore, we found that another nonvertebrate animal model, Galleria mellonella, can be used to study the pathogenesis of S. anginosus infection, with an emphasis on the interactions between the pathogen and host innate immunity. Examining the profile of immune defense genes, including antimicrobial peptides, opsonins, regulators of nodulation, and inhibitors of proteases, by quantitative PCR (qPCR) we identified different immune response profiles depending on the S. anginosus strain. Using these models, we show that S. anginosus is resistant to the bactericidal activity of phagocytes, a phenomenon confirmed using human neutrophils. Notably, since we found that the data from these models corresponded to the clinical severity of infection, we propose their further application to studies of the virulence of S. anginosus.
Collapse
Affiliation(s)
- Joanna Budziaszek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Pilarczyk-Zurek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Kozinska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Warsaw, Poland
| | - Dariusz Nowicki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Obszanska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Warsaw, Poland
| | | | | | - Izabela Sitkiewicz
- Institute of Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
6
|
Kuryłek A, Stasiak M, Kern-Zdanowicz I. Virulence factors of Streptococcus anginosus - a molecular perspective. Front Microbiol 2022; 13:1025136. [PMID: 36386673 PMCID: PMC9643698 DOI: 10.3389/fmicb.2022.1025136] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 07/21/2023] Open
Abstract
Streptococcus anginosus together with S. constellatus and S. intermedius constitute the Streptococcus anginosus group (SAG), until recently considered to be benign commensals of the human mucosa isolated predominantly from oral cavity, but also from upper respiratory, intestinal, and urogenital tracts. For years the virulence potential of SAG was underestimated, mainly due to complications in correct species identification and their assignment to the physiological microbiota. Still, SAG representatives have been associated with purulent infections at oral and non-oral sites resulting in abscesses formation and empyema. Also, life threatening blood infections caused by SAG have been reported. However, the understanding of SAG as potential pathogen is only fragmentary, albeit certain aspects of SAG infection seem sufficiently well described to deserve a systematic overview. In this review we summarize the current state of knowledge of the S. anginosus pathogenicity factors and their mechanisms of action.
Collapse
|
7
|
Jiang Z, Wang J, Shen Z, Zhang Z, Wang S. Characterization of Esophageal Microbiota in Patients With Esophagitis and Esophageal Squamous Cell Carcinoma. Front Cell Infect Microbiol 2021; 11:774330. [PMID: 34858881 PMCID: PMC8632060 DOI: 10.3389/fcimb.2021.774330] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022] Open
Abstract
Microbial imbalances have been well elucidated in esophageal adenocarcinoma. However, few studies address the microbiota in esophageal squamous cell carcinoma (ESCC) and esophagitis (ES). We aimed to explore the association of esophageal microbiota with these patients. Esophageal tissues were obtained from healthy controls and ES and ESCC patients undergoing upper endoscopy. 16S rRNA gene sequencing was applied to analyze the microbiome. The α and β diversity differences were tested by Tukey test and partial least squares-discriminant analysis (PLS-DA), respectively. Linear discriminant analysis effect size (LEfSe) analysis was performed to assess taxonomic differences between groups. A total of 68 individuals were enrolled (control = 21, ES = 15, ESCC = 32). Microbial diversity was significantly different between the ESCC patients and healthy controls by Chao1 index, Shannon index, and PLS-DA. Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria were the five dominant bacterial phyla among the three groups. Megamonas, Collinsella, Roseburia, and Ruminococcus_2 showed a significantly continuous decreasing trend from the control group to the ESCC group at the genus level. When compared with the control group, decreased Fusobacteria at phylum level and Faecalibacterium, Bacteroides, Curvibacter, and Blautia at genus level were detected. ESCC samples also displayed a striking reduction of Bacteroidetes, Faecalibacterium, Bacteroides, and Blautia in comparison with the ES patients. LEfSe analysis indicated a greater abundance of Streptococcus, Actinobacillus, Peptostreptococcus, Fusobacterium, and Prevotella in the ESCC group. Our study suggests a potential association between esophageal microbiome dysbiosis and ESCC and provides insights into potential screening markers for esophageal cancer.
Collapse
Affiliation(s)
- Zongdan Jiang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Gastroenterology and Hepatology, Jinhu County People's Hospital, Huaian, China
| | - Ziyang Shen
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhenyu Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Tabata A, Nagamune H. Diversity of β-hemolysins produced by the human opportunistic streptococci. Microbiol Immunol 2021; 65:512-529. [PMID: 34591320 DOI: 10.1111/1348-0421.12936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022]
Abstract
The genus Streptococcus infects a broad range of hosts, including humans. Some species, such as S. pyogenes, S. agalactiae, S. pneumoniae, and S. mutans, are recognized as the major human pathogens, and their pathogenicity toward humans has been investigated. However, many of other streptococcal species have been recognized as opportunistic pathogens in humans, and their clinical importance has been underestimated. In our previous study, the Anginosus group streptococci (AGS) and Mitis group streptococci (MGS) showed clear β-hemolysis on blood agar, and the factors responsible for the hemolysis were homologs of two types of β-hemolysins, cholesterol-dependent cytolysin (CDC) and streptolysin S (SLS). In contrast to the regular β-hemolysins produced by streptococci (typical CDCs and SLSs), genetically, structurally, and functionally atypical β-hemolysins have been observed in AGS and MGS. These atypical β-hemolysins are thought to affect and contribute to the pathogenic potential of opportunistic streptococci mainly inhabiting the human oral cavity. In this review, we introduce the diverse characteristics of β-hemolysin produced by opportunistic streptococci, focusing on the species/strains belonging to AGS and MGS, and discuss their pathogenic potential.
Collapse
Affiliation(s)
- Atsushi Tabata
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hideaki Nagamune
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
9
|
Xu Y, Jia Y, Chen L, Gao J, Yang D. Effect of Streptococcus anginosus on biological response of tongue squamous cell carcinoma cells. BMC Oral Health 2021; 21:141. [PMID: 33743656 PMCID: PMC7981962 DOI: 10.1186/s12903-021-01505-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/09/2021] [Indexed: 01/25/2023] Open
Abstract
Background Streptococcus anginosus (S. anginosus) was reported increased in oral squamous cell carcinoma (OSCC) tissue. The aim of this study was to investigate the response of oral cancer cells in the biological characteristics evoked by the S. anginosus and investigate its potential mechanisms. Methods The growth curve and concentration standard curve of S. anginosus were determined, and a series of concentrations of S. anginosus supernatant were applied to OSCC cell lines SCC15, then selected an optimal time and concentration by CCK-8 assay. Then autophagic response, proliferative activity, cell cycle and apoptosis, invasion and migration abilities were evaluated in SCC15. Results The results showed that when the ratio of S. anginosus supernatant to cell culture medium was 1:1 and the co-culture time was 16 h, the inhibitory effect on SCC15 was the most obvious; Furthermore, the supernatant of Streptococcus upregulated the autophagy activity of SCC15, thus significantly inhibiting its proliferation, migration and invasion ability. Compared with control groups, the cell cycle showed G1 arrest, S and G2/M phases decreased, and the percentage of apoptotic cells relatively increased (P < 0.05). Conclusion S. anginosus reduced the proliferation, migration and invasion of SCC15 cells and promoted cell apoptosis; Moreover, autophagy may be one of the mechanisms in this process. Supplementary information The online version contains supplementary material available at 10.1186/s12903-021-01505-3.
Collapse
Affiliation(s)
- Yuan Xu
- College of Stomatology, Chongqing Medical University, Songshi Road No. 426, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Songshi Road No. 426, Yubei District, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Songshi Road No. 426, Yubei District, Chongqing, China
| | - Yuhuan Jia
- College of Stomatology, Chongqing Medical University, Songshi Road No. 426, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Songshi Road No. 426, Yubei District, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Songshi Road No. 426, Yubei District, Chongqing, China
| | - Liang Chen
- College of Stomatology, Chongqing Medical University, Songshi Road No. 426, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Songshi Road No. 426, Yubei District, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Songshi Road No. 426, Yubei District, Chongqing, China
| | - Jing Gao
- College of Stomatology, Chongqing Medical University, Songshi Road No. 426, Yubei District, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Songshi Road No. 426, Yubei District, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Songshi Road No. 426, Yubei District, Chongqing, China
| | - DeQin Yang
- College of Stomatology, Chongqing Medical University, Songshi Road No. 426, Yubei District, Chongqing, China. .,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Songshi Road No. 426, Yubei District, Chongqing, China. .,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Songshi Road No. 426, Yubei District, Chongqing, China.
| |
Collapse
|
10
|
Fernández Hidalgo N, Gharamti AA, Aznar ML, Almirante B, Yasmin M, Fortes CQ, Plesiat P, Doco-Lecompte T, Rizk H, Wray D, Lamas C, Durante-Mangoni E, Tattevin P, Snygg-Martin U, Hannan MM, Chu VH, Kanafani ZA. Beta-Hemolytic Streptococcal Infective Endocarditis: Characteristics and Outcomes From a Large, Multinational Cohort. Open Forum Infect Dis 2020; 7:ofaa120. [PMID: 32462042 PMCID: PMC7240340 DOI: 10.1093/ofid/ofaa120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/08/2020] [Indexed: 12/02/2022] Open
Abstract
Background Beta-hemolytic streptococci (BHS) are an uncommon cause of infective endocarditis (IE). The aim of this study was to describe the clinical features and outcomes of patients with BHS IE in a large multinational cohort and compare them with patients with viridans streptococcal IE. Methods The International Collaboration on Endocarditis Prospective Cohort Study (ICE-PCS) is a large multinational database that recruited patients with IE prospectively using a standardized data set. Sixty-four sites in 28 countries reported patients prospectively using a standard case report form developed by ICE collaborators. Results Among 1336 definite cases of streptococcal IE, 823 were caused by VGS and 147 by BHS. Patients with BHS IE had a lower prevalence of native valve (P < .005) and congenital heart disease predisposition (P = .002), but higher prevalence of implantable cardiac device predisposition (P < .005). Clinically, they were more likely to present acutely (P < .005) and with fever (P = .024). BHS IE was more likely to be complicated by stroke and other systemic emboli (P < .005). The overall in-hospital mortality of BHS IE was significantly higher than that of VGS IE (P = .001). In univariate analysis, variables associated with in-hospital mortality for BHS IE were age (odds ratio [OR], 1.044; P = .004), prosthetic valve IE (OR, 3.029; P = .022), congestive heart failure (OR, 2.513; P = .034), and stroke (OR, 3.198; P = .009). Conclusions BHS IE is characterized by an acute presentation and higher rate of stroke, systemic emboli, and in-hospital mortality than VGS IE. Implantable cardiac devices as a predisposing factor were more often found in BHS IE compared with VGS IE.
Collapse
Affiliation(s)
| | - Amal A Gharamti
- American University of Beirut Medical Center, Beirut, Lebanon
| | | | | | - Mohamad Yasmin
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | | | | | | | | | - Dannah Wray
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Cristiane Lamas
- Instituto Nacional de Cardiologia and Unigranrio, Rio de Janeiro, Brazil
| | | | | | | | | | - Vivian H Chu
- Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
11
|
Mogrovejo DC, Perini L, Gostinčar C, Sepčić K, Turk M, Ambrožič-Avguštin J, Brill FHH, Gunde-Cimerman N. Prevalence of Antimicrobial Resistance and Hemolytic Phenotypes in Culturable Arctic Bacteria. Front Microbiol 2020; 11:570. [PMID: 32318045 PMCID: PMC7147505 DOI: 10.3389/fmicb.2020.00570] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Many Arctic biomes, which are populated with abundant and diverse microbial life, are under threat: climate change and warming temperatures have raised concerns about diversity loss and possible emergence of pathogenic microorganisms. At present, there is little information on the occurrence of Arctic virulence-associated phenotypes. In this study we worked with 118 strains of bacteria (from 10 sampling sites in the Arctic region, located in Greenland and the Svalbard Archipelago) isolated using R2A medium. These strains belong to 4 phyla and represent 36 different bacterial genera. Phenotypic resistance to 8 clinically important antimicrobials (ampicillin, chloramphenicol, ciprofloxacin, cefotaxime, erythromycin, imipenem, kanamycin, and tetracycline) and thermotolerance range were determined. In addition, a screening of all isolates on blood agar media and erythrocytes suspension of bovine and sheep erythrocytes for virulence-linked hemolytic activity was performed. Although antimicrobial resistance profiles varied among the isolates, they were consistent within bacterial families and genera. Interestingly, a high number of isolates (83/104) were resistant to the tested concentration of imipenem (4 mg/L). In addition, one third of the isolates showed hemolytic activity on blood agar, however, in only 5% of the isolates hemolytic activity was also observed in the cell extracts when added to erythrocyte suspensions for 60 min. The observed microbial phenotypes contribute to our understanding of the presence of virulence-associated factors in the Arctic environments, while highlighting the potential risks associated with changes in the polar areas in the light of climate change.
Collapse
Affiliation(s)
- Diana C. Mogrovejo
- Dr. Brill + Partner GmbH Institut für Hygiene und Mikrobiologie, Hamburg, Germany
| | - Laura Perini
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Lars Bolund Institute of Regenerative Medicine, Qingdao, China
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Martina Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Florian H. H. Brill
- Dr. Brill + Partner GmbH Institut für Hygiene und Mikrobiologie, Hamburg, Germany
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
12
|
Hu Y, Wang L, Shao D, Wang Q, Wu Y, Han Y, Shi S. Selectived and Reshaped Early Dominant Microbial Community in the Cecum With Similar Proportions and Better Homogenization and Species Diversity Due to Organic Acids as AGP Alternatives Mediate Their Effects on Broilers Growth. Front Microbiol 2020; 10:2948. [PMID: 31993028 PMCID: PMC6971172 DOI: 10.3389/fmicb.2019.02948] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/06/2019] [Indexed: 01/16/2023] Open
Abstract
Understanding the differences in microbial communities shaped by different food selective forces, especially during early post-hatch period, is critical to gain insight into how to select, evaluate, and improve antibiotic growth promoters (AGPs) alternatives in food animals. As a model system, commercial diet-administered OAs (DOAs) and water-administered OAs (WOAs) were used separately or in combination as Virginiamycin alternatives for broiler feeding during two growth phases: 1–21 days and 22–42 days. Among these three OA-treated groups, the DOA group was most similar to the AGP group in the composition and the proportion of these dominant bacterial communities at the level of phylum, family, and genus in cecal chyme of broilers. Sub-therapeutic Virginiamycin decreased the richness, homogenization, and species diversity of gut microbiota, especially in the early growth stage from days 1 to 21. Among these three OA supplementation schemes, it was clear that DOA supplementation was more likely to increase or maintain the richness, homogenization, species diversity, and predicted gene functions of cecal microbiota in treated broilers than either no supplementation or AGP supplementation during two experimental stages. The interference of DOA treatment with early colonization of probiotics and pathogens in broiler cecum was the most similar to AGP treatment, and OAs did not cause the occurrence of Virginiamycin-resistant strains of Enterococcus at the end of this trial. In terms of the predicted gene functions of the microbiota, AGP and DOA treatments provided a similar selective force for microbial metabolism functions in the cecum of broiler chickens, especially in the early growth stage. Noticeably, the relative abundance of some microbiome that was modified by Virginiamycin or DOA supplementation was significantly correlated with body weight gain and KEGG pathway analysis-annotated gene functions such as replication and repair, translation, nucleotide metabolism, and so on. With the comprehensive analysis of these results and practical application, shortened DOA supplementation, after optimization of the amount of addition, would be a suitable alternative to sub-therapeutic Virginiamycin. It was suggested that the programed intestinal microecology under such early selection forces and the effective addition time may be the key elements to focus on the designed alternate strategies of AGPs in food animals.
Collapse
Affiliation(s)
- Yan Hu
- Poultry Institute, Chinese Academy of Agriculture Sciences, Yangzhou, China.,Center of Effective Evaluation of Feed and Feed Additive, Poultry Institute, Ministry of Agriculture, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Laidi Wang
- Poultry Institute, Chinese Academy of Agriculture Sciences, Yangzhou, China.,Center of Effective Evaluation of Feed and Feed Additive, Poultry Institute, Ministry of Agriculture, Yangzhou, China
| | - Dan Shao
- Poultry Institute, Chinese Academy of Agriculture Sciences, Yangzhou, China.,Center of Effective Evaluation of Feed and Feed Additive, Poultry Institute, Ministry of Agriculture, Yangzhou, China
| | - Qiang Wang
- Poultry Institute, Chinese Academy of Agriculture Sciences, Yangzhou, China.,Center of Effective Evaluation of Feed and Feed Additive, Poultry Institute, Ministry of Agriculture, Yangzhou, China
| | - Yuanyuan Wu
- Trouw Nutrition R&D, Amersfoort, Netherlands
| | - Yanming Han
- Trouw Nutrition R&D, Amersfoort, Netherlands
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agriculture Sciences, Yangzhou, China.,Center of Effective Evaluation of Feed and Feed Additive, Poultry Institute, Ministry of Agriculture, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
13
|
Troy E, Sillau S, Bernard TJ, Rao S. Incidence and Clinical Outcomes of Streptococcus anginosus in Acute Complicated Sinusitis: A Pediatric Cohort. J Pediatric Infect Dis Soc 2020; 10:168-171. [PMID: 31925948 PMCID: PMC7996638 DOI: 10.1093/jpids/piz098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
We conducted a retrospective cohort study of 160 hospitalized children admitted for acute complicated sinusitis and compared children with S anginosus-associated infection to children with other or no pathogens identified. The incidence of S anginosus-associated infections increased 12% per year, and infections with S anginosus are associated with increased morbidity.
Collapse
Affiliation(s)
- Elizabeth Troy
- Department of Pediatrics (Neurology), University of Colorado School of Medicine and Children’s Hospital of Colorado, Aurora, Colorado, USA
| | - Stefan Sillau
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Timothy J Bernard
- Department of Pediatrics (Neurology), University of Colorado School of Medicine and Children’s Hospital of Colorado, Aurora, Colorado, USA
| | - Suchitra Rao
- Department of Pediatrics (Infectious Diseases, Hospital Medicine and Epidemiology), University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado, USA,Correspondence: Suchitra Rao, MBBS, MSCS, Department of Pediatrics (Infectious Diseases, Hospital Medicine and Epidemiology), University of Colorado School of Medicine and Children’s Hospital Colorado, Box 055, 13123 E 16th Ave, Aurora, CO 80045.
| |
Collapse
|
14
|
Tao Z, Zhang L, Zhang Q, Lv T, Chen R, Wang L, Huang Z, Hu L, Liao Q. The Pathogenesis Of Streptococcus anginosus In Aerobic Vaginitis. Infect Drug Resist 2019; 12:3745-3754. [PMID: 31824176 PMCID: PMC6900474 DOI: 10.2147/idr.s227883] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/31/2019] [Indexed: 11/23/2022] Open
Abstract
Background Aerobic vaginitis (AV) is a newly defined type of bacterial vaginitis, but its pathogenesis is not yet clear. Streptococcus anginosus appears as an emerging pathogen in recent case reports, and colonizes in vagina of patients with AV. In this study, we investigate the pathogenesis of S. anginosus in AV. Materials and methods (1) We collected 41 vaginal specimens from 21 healthy, fertile women with normal vaginal flora (NM), 10 with bacterial vaginosis (BV) and 10 with AV; their microbiome structure was analysed by 16S rRNA gene sequencing. (2) S. anginosus and vaginal epithelial cells were cocultured in vitro, and cytotoxicity was tested by an LDH kit. (3) The S. anginosus virulence gene sag was knocked out, and the cytotoxicity of the mutant in vaginal epithelial cells was tested. Results (1) The microbiome structure of AV was dramatically different from that of BV and NM. The predominant genera of the three groups were Streptococcus spp., Gardnerella spp. and Lactobacillus spp. Streptococcus spp. were significantly more abundant in AV than in BV (95% CI [0.1391, 0.8676], P<0.01) and NM (95% CI [0.1391, 0.8676], P<0.01). (2) S. anginosus was the dominant species in AV (95% CI [0.04672, 0.1097], P<0.01). (3) The mean cytotoxicity of S. anginosus in vaginal epithelial cells was 58.34% for the wild type (WT) and 16.43% for the mutant; this difference was significant (95% CI [−60.55, −23.28], P<0.01). Conclusion S. anginosus was the predominant microorganism in patients with AV in our study. S. anginosus caused vaginal epithelial cell lysis, indicating that S. anginosus is an AV pathogen. The S. anginosus virulence gene sag is vital for vaginal epithelial cell lysis.
Collapse
Affiliation(s)
- Zhi Tao
- School of Clinical Medicine, Tsinghua University, Beijing 100084, People's Republic of China.,Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Lei Zhang
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Qiongqiong Zhang
- School of Clinical Medicine, Tsinghua University, Beijing 100084, People's Republic of China.,Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Tao Lv
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Rui Chen
- School of Clinical Medicine, Tsinghua University, Beijing 100084, People's Republic of China.,Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Lijun Wang
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Zhenyu Huang
- School of Clinical Medicine, Tsinghua University, Beijing 100084, People's Republic of China.,Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| | - Long Hu
- School of Clinical Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Qinping Liao
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, People's Republic of China
| |
Collapse
|
15
|
Tabata A, Yamada T, Ohtani H, Ohkura K, Tomoyasu T, Nagamune H. β-Hemolytic Streptococcus anginosus subsp. anginosus causes streptolysin S-dependent cytotoxicity to human cell culture lines in vitro. J Oral Microbiol 2019; 11:1609839. [PMID: 31105901 PMCID: PMC6508071 DOI: 10.1080/20002297.2019.1609839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 11/30/2022] Open
Abstract
Background: Streptococcus anginosus subsp. anginosus (SAA) is one of the opportunistic pathogens in humans that inhabits the oral cavity. The type strain of SAA, NCTC10713T, showed clear β-hemolysis on blood agar plates, and the sole β-hemolytic factor revealed two streptolysin S (SLS) molecules. SLS is well known as the peptide hemolysin produced from the human pathogen S. pyogenes and shows not only hemolytic activity on erythrocytes but also cytotoxic activity in cell culture lines in vitro and in vivo, such as in a mouse infection model. However, no cytotoxic activity of SLS produced from β-hemolytic SAA (β-SAA) has been reported so far. Objective and Design: In this study, the SLS-dependent cytotoxicity of the β-SAA strains including the genetically modified strains was investigated in vitro. Results: The SLS-producing β-SAA showed cytotoxicity in human cell culture lines under the co-cultivation condition and it was found that this cytotoxicity was caused by the SLS secreted into the extracellular milieu. Conclusion: The results from this study suggest that the SLS produced from β-SAA might indicate the cytotoxic potential similar to that of the SLS from S. pyogenes and the SLS-producing β-SAA would be recognized as “a wolf in sheep’s clothing” More attention will be paid to the pathogenicity of β-hemolytic Anginosus group streptococci.
Collapse
Affiliation(s)
- Atsushi Tabata
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| | - Takuya Yamada
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| | - Hiromi Ohtani
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuto Ohkura
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Toshifumi Tomoyasu
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| | - Hideaki Nagamune
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
16
|
Magi G, Marini E, Brenciani A, Di Lodovico S, Gentile D, Ruberto G, Cellini L, Nostro A, Facinelli B, Napoli E. Chemical composition of Pistacia vera L. oleoresin and its antibacterial, anti-virulence and anti-biofilm activities against oral streptococci, including Streptococcus mutans. Arch Oral Biol 2018; 96:208-215. [PMID: 30296655 DOI: 10.1016/j.archoralbio.2018.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/07/2018] [Accepted: 09/20/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The aim of this study was to characterize the chemical composition of oleoresin of Pistacia vera L. and to determine its antimicrobial and anti-virulence activity versus selected oral streptococci. DESIGN A gaschromatografic analysis of the oleoresin was performed. The antimicrobial and anti-virulence activity of the oleoresin and its fractions was evaluated by the Minimum Inhibitory Concentration (MIC) and/or Minimum Bactericidal Concentration (MBC), biofilm production and haemolytic activity inhibition experiments. RESULTS The oleoresin MBCs were ≥1024 μg/mL for all tested strains; the neutral and acidic fraction MBCs ranged from 128 to 2048 μg/mL. Essential oil's MBCs (from 256 to 2048 μg/mL) were almost identical to MICs, suggesting a bactericidal effect. P. vera oleoresin at sub-lethal concentrations significantly reduced biofilm production by Streptococcus mutans (up to 49.4%) and by Streptococcus sanguinis (up to 71.2%). In addition, the acidic fraction showed a specific anti-biofilm activity against S. mutans (up to 41.3% reduction). A significant dose-dependent reduction in the haemolytic activity of S. mutans (up to 65.9%) and of S. anginosus (up to 78.3%) was observed after growth in the presence of oleoresin at sub-lethal concentrations. The acidic fraction reduced haemolytic activity (up to 54.3% at 64 μg/mL) of S. mutans only. CONCLUSIONS Given the anti-virulence activity of the P. vera oleoresin and its acidic fraction against S. mutans, our findings suggest their potential use in oral hygiene. These data represent the first step in the exploitation of P. vera L. oleoresin.
Collapse
Affiliation(s)
- Gloria Magi
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Emanuela Marini
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Silvia Di Lodovico
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Davide Gentile
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, Catania, Italy
| | - Giuseppe Ruberto
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, Catania, Italy
| | - Luigina Cellini
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Antonia Nostro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Bruna Facinelli
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Edoardo Napoli
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, Catania, Italy.
| |
Collapse
|
17
|
Hertzog BB, Kaufman Y, Biswas D, Ravins M, Ambalavanan P, Wiener R, Angeli V, Chen SL, Hanski E. A Sub-population of Group A Streptococcus Elicits a Population-wide Production of Bacteriocins to Establish Dominance in the Host. Cell Host Microbe 2018; 23:312-323.e6. [PMID: 29544095 DOI: 10.1016/j.chom.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/26/2017] [Accepted: 02/07/2018] [Indexed: 11/30/2022]
Abstract
Bacteria use quorum sensing (QS) to regulate gene expression. We identified a group A Streptococcus (GAS) strain possessing the QS system sil, which produces functional bacteriocins, through a sequential signaling pathway integrating host and bacterial signals. Host cells infected by GAS release asparagine (ASN), which is sensed by the bacteria to alter its gene expression and rate of proliferation. We show that upon ASN sensing, GAS upregulates expression of the QS autoinducer peptide SilCR. Initial SilCR expression activates the autoinduction cycle for further SilCR production. The autoinduction process propagates throughout the GAS population, resulting in bacteriocin production. Subcutaneous co-injection of mice with a bacteriocin-producing strain and the globally disseminated M1T1 GAS clone results in M1T1 killing within soft tissue. Thus, by sensing host signals, a fraction of a bacterial population can trigger an autoinduction mechanism mediated by QS, which acts on the entire bacterial community to outcompete other bacteria within the infection.
Collapse
Affiliation(s)
- Baruch B Hertzog
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Yael Kaufman
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Debabrata Biswas
- NUS-HUJ-CREATE Programme for Inflammation Research, Center for Research Excellence & Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore, Singapore 138602, Singapore
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Poornima Ambalavanan
- NUS-HUJ-CREATE Programme for Inflammation Research, Center for Research Excellence & Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore, Singapore 138602, Singapore
| | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Veronique Angeli
- Department of Microbiology and Immunology, National University of Singapore; LSI Immunology Programme, National University of Singapore, Singapore 117456, Singapore
| | - Swaine L Chen
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, and Infectious Diseases Group, Genome Institute of Singapore, Singapore 119074, Singapore
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel; NUS-HUJ-CREATE Programme for Inflammation Research, Center for Research Excellence & Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore, Singapore 138602, Singapore.
| |
Collapse
|
18
|
Bauer R, Mauerer S, Spellerberg B. Regulation of the β-hemolysin gene cluster of Streptococcus anginosus by CcpA. Sci Rep 2018; 8:9028. [PMID: 29899560 PMCID: PMC5998137 DOI: 10.1038/s41598-018-27334-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/30/2018] [Indexed: 11/09/2022] Open
Abstract
Streptococcus anginosus is increasingly recognized as an opportunistic pathogen. However, our knowledge about virulence determinants in this species is scarce. One exception is the streptolysin-S (SLS) homologue responsible for the β-hemolytic phenotype of the S. anginosus type strain. In S. anginosus the expression of the hemolysin is reduced in the presence of high glucose concentrations. To investigate the genetic mechanism of the hemolysin repression we created an isogenic ccpA deletion strain. In contrast to the wild type strain, this mutant exhibits hemolytic activity in presence of up to 25 mM glucose supplementation, a phenotype that could be reverted by ccpA complementation. To further demonstrate that CcpA directly regulates the hemolysin expression, we performed an in silico analysis of the promoter of the SLS gene cluster and we verified the binding of CcpA to the promoter by electrophoretic mobility shift assays. This allowed us to define the CcpA binding site in the SLS promoter region of S. anginosus. In conclusion, we report for the first time the characterization of a potential virulence regulator in S. anginosus.
Collapse
Affiliation(s)
- Richard Bauer
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| | - Stefanie Mauerer
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany.
| |
Collapse
|
19
|
Sitkiewicz I. How to become a killer, or is it all accidental? Virulence strategies in oral streptococci. Mol Oral Microbiol 2017; 33:1-12. [PMID: 28727895 DOI: 10.1111/omi.12192] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2017] [Indexed: 01/03/2023]
Abstract
Streptococci are a diverse group of Gram-positive microorganisms sharing common virulence traits and similar strategies to escape the oral niche and establish an infection in other parts of the host organism. Invasive infection with oral streptococci is "a perfect storm" that requires the concerted action of multiple biotic and abiotic factors. Our understanding of streptococcal pathogenicity and infectivity should probably be less mechanistic and driven not only by the identification of novel virulence factors. The observed diversity of the genus, including the range of virulence and pathogenicity mechanisms, is most likely the result of interspecies interactions, a massive horizontal gene transfer between streptococci within a shared oral niche, recombination events, selection of specialized clones, and modification of regulatory circuits. Selective pressure by the host and bacterial communities is a driving force for the selection of virulence traits and shaping the streptococcal genome. Global regulatory events driving niche adaptation and interactions with bacterial communities and the host steer research interests towards attempts to define the oral interactome on the transcriptional level and define signal cross-feeding and co-expression and co-regulation of virulence genes.
Collapse
Affiliation(s)
- I Sitkiewicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| |
Collapse
|
20
|
Stanaway IB, Wallace JC, Shojaie A, Griffith WC, Hong S, Wilder CS, Green FH, Tsai J, Knight M, Workman T, Vigoren EM, McLean JS, Thompson B, Faustman EM. Human Oral Buccal Microbiomes Are Associated with Farmworker Status and Azinphos-Methyl Agricultural Pesticide Exposure. Appl Environ Microbiol 2017; 83:e02149-16. [PMID: 27836847 PMCID: PMC5203616 DOI: 10.1128/aem.02149-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/24/2016] [Indexed: 12/24/2022] Open
Abstract
In a longitudinal agricultural community cohort sampling of 65 adult farmworkers and 52 adult nonfarmworkers, we investigated agricultural pesticide exposure-associated changes in the oral buccal microbiota. We found a seasonally persistent association between the detected blood concentration of the insecticide azinphos-methyl and the taxonomic composition of the buccal swab oral microbiome. Blood and buccal samples were collected concurrently from individual subjects in two seasons, spring/summer 2005 and winter 2006. Mass spectrometry quantified blood concentrations of the organophosphate insecticide azinphos-methyl. Buccal oral microbiome samples were 16S rRNA gene DNA sequenced, assigned to the bacterial taxonomy, and analyzed after "centered-log-ratio" transformation to handle the compositional nature of the proportional abundances of bacteria per sample. Nonparametric analysis of the transformed microbiome data for individuals with and without azinphos-methyl blood detection showed significant perturbations in seven common bacterial taxa (>0.5% of sample mean read depth), including significant reductions in members of the common oral bacterial genus Streptococcus Diversity in centered-log-ratio composition between individuals' microbiomes was also investigated using principal-component analysis (PCA) to reveal two primary PCA clusters of microbiome types. The spring/summer "exposed" microbiome cluster with significantly less bacterial diversity was enriched for farmworkers and contained 27 of the 30 individuals who also had azinphos-methyl agricultural pesticide exposure detected in the blood. IMPORTANCE In this study, we show in human subjects that organophosphate pesticide exposure is associated with large-scale significant alterations of the oral buccal microbiota composition, with extinctions of whole taxa suggested in some individuals. The persistence of this association from the spring/summer to the winter also suggests that long-lasting effects on the commensal microbiota have occurred. The important health-related outcomes of these agricultural community individuals' pesticide-associated microbiome perturbations are not understood at this time. Future investigations should index medical and dental records for common and chronic diseases that may be interactively caused by this association between pesticide exposure and microbiome alteration.
Collapse
Affiliation(s)
- Ian B Stanaway
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - James C Wallace
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - William C Griffith
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Sungwoo Hong
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Carly S Wilder
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Foad H Green
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Jesse Tsai
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Misty Knight
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Tomomi Workman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Eric M Vigoren
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Jeffrey S McLean
- School of Dentistry, Periodontics, University of Washington, Seattle, Washington, USA
| | - Beti Thompson
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| |
Collapse
|
21
|
Abstract
Since the discovery of the green fluorescent protein (GFP) from the jellyfish Aequorea victoria, outstanding fluorescent labeling tools with numerous applications in vastly different areas of life sciences have been developed. To optimize GFP for diverse life science applications, a large variety of GFP derivatives with different environmental characteristics have been generated by mutagenesis. The enhanced green fluorescent protein (EGFP) is a well-known GFP derivative with highly increased fluorescence intensity compared to the GFP wild-type molecule. Further optimization strategies include numerous GFP derivatives with blue- and yellow-shifted fluorescence and increased pH-stability. The methods reported herein describe in detail the construction of customized fluorescent GFP reporter plasmids where the fluorescence gene is expressed under the control of a certain bacterial promoter of interest. Special attention is given to the GFP derivatives EGFP and Sirius. We explain how to generate EGFP/Sirius expressing streptococci and how to employ recombinantly labeled streptococci in different downstream fluorescent applications.
Collapse
|
22
|
Bacteriocin from epidemic Listeria strains alters the host intestinal microbiota to favor infection. Proc Natl Acad Sci U S A 2016; 113:5706-11. [PMID: 27140611 DOI: 10.1073/pnas.1523899113] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Listeria monocytogenes is responsible for gastroenteritis in healthy individuals and for a severe invasive disease in immunocompromised patients. Among the three identified L. monocytogenes evolutionary lineages, lineage I strains are overrepresented in epidemic listeriosis outbreaks, but the mechanisms underlying the higher virulence potential of strains of this lineage remain elusive. Here, we demonstrate that Listeriolysin S (LLS), a virulence factor only present in a subset of lineage I strains, is a bacteriocin highly expressed in the intestine of orally infected mice that alters the host intestinal microbiota and promotes intestinal colonization by L. monocytogenes, as well as deeper organ infection. To our knowledge, these results therefore identify LLS as the first bacteriocin described in L. monocytogenes and associate modulation of host microbiota by L. monocytogenes epidemic strains to increased virulence.
Collapse
|
23
|
Barnett TC, Cole JN, Rivera-Hernandez T, Henningham A, Paton JC, Nizet V, Walker MJ. Streptococcal toxins: role in pathogenesis and disease. Cell Microbiol 2015; 17:1721-41. [PMID: 26433203 DOI: 10.1111/cmi.12531] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/13/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022]
Abstract
Group A Streptococcus (Streptococcus pyogenes), group B Streptococcus (Streptococcus agalactiae) and Streptococcus pneumoniae (pneumococcus) are host-adapted bacterial pathogens among the leading infectious causes of human morbidity and mortality. These microbes and related members of the genus Streptococcus produce an array of toxins that act against human cells or tissues, resulting in impaired immune responses and subversion of host physiological processes to benefit the invading microorganism. This toxin repertoire includes haemolysins, proteases, superantigens and other agents that ultimately enhance colonization and survival within the host and promote dissemination of the pathogen.
Collapse
Affiliation(s)
- Timothy C Barnett
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jason N Cole
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Anna Henningham
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|