1
|
Qu W, Tian R, Yang B, Guo T, Wu Z, Li Y, Geng Z, Wang Z. Dual-Channel/Localization Single-Molecule Fluorescence Probe for Monitoring ATP and HOCl in Early Diagnosis and Therapy of Rheumatoid Arthritis. Anal Chem 2024; 96:5428-5436. [PMID: 38551643 DOI: 10.1021/acs.analchem.3c05342] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Rheumatoid arthritis (RA), a common chronic inflammatory illness, is still incurable, reducing the sufferers' quality of life significantly. Adenosine 5'-triphosphate (ATP) and hypochlorous acid (HOCl) are key indicators in RA, but their precise mechanisms in RA pathophysiology are unknown. As a result, in order to detect ATP and HOCl simultaneously, we created two new dual-channel/localization single-molecule fluorescence probes, RhTNMB and RhFNMB. Furthermore, RhFNMB outperformed RhTNMB in terms of detection performance. ATP and HOCl produce independent fluorescence responses in the light red channel (λex = 520 nm, λem = 586 nm) and deep red channel (λex = 620 nm, λem = 688 nm), respectively, without spectral crosstalk. It should be noted that the probe RhFNMB successfully imaged ATP in mitochondria and HOCl in cells. Surprisingly, the probe RhFNMB demonstrated remarkable detection ability in the diagnosis and treatment of Pseudomonas aeruginosa-induced abdominal inflammation in mice. We continued to apply the probe RhFNMB to track ATP and HOCl in RA and discovered that ATP and HOCl concentrations were considerably greater in RA joints than in normal joints. We also confirmed the therapeutic effect of methotrexate on RA. This study is the first to achieve dual-channel imaging of ATP and HOCl, which is of great value for the early diagnosis and therapy of RA.
Collapse
Affiliation(s)
- Wangbo Qu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Ruowei Tian
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Bin Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Taiyu Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Zhou Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Yong Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Zhirong Geng
- College of Pharmacy, Jiangsu Joint International Laboratory of Animal-Derived Chinese Medicine and Functional Peptides, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
2
|
Constantino-Teles P, Jouault A, Touqui L, Saliba AM. Role of Host and Bacterial Lipids in Pseudomonas aeruginosa Respiratory Infections. Front Immunol 2022; 13:931027. [PMID: 35860265 PMCID: PMC9289105 DOI: 10.3389/fimmu.2022.931027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is one of the most common agents of respiratory infections and has been associated with high morbidity and mortality rates. The ability of P. aeruginosa to cause severe respiratory infections results from the coordinated action of a variety of virulence factors that promote bacterial persistence in the lungs. Several of these P. aeruginosa virulence mechanisms are mediated by bacterial lipids, mainly lipopolysaccharide, rhamnolipid, and outer membrane vesicles. Other mechanisms arise from the activity of P. aeruginosa enzymes, particularly ExoU, phospholipase C, and lipoxygenase A, which modulate host lipid signaling pathways. Moreover, host phospholipases, such as cPLA2α and sPLA2, are also activated during the infectious process and play important roles in P. aeruginosa pathogenesis. These mechanisms affect key points of the P. aeruginosa-host interaction, such as: i) biofilm formation that contributes to bacterial colonization and survival, ii) invasion of tissue barriers that allows bacterial dissemination, iii) modulation of inflammatory responses, and iv) escape from host defenses. In this mini-review, we present the lipid-based mechanism that interferes with the establishment of P. aeruginosa in the lungs and discuss how bacterial and host lipids can impact the outcome of P. aeruginosa respiratory infections.
Collapse
Affiliation(s)
- Pamella Constantino-Teles
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Albane Jouault
- Sorbonne Université, Centre de Recherche Saint-Antoine, Inserm, Institut Pasteur, Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Paris, France
| | - Lhousseine Touqui
- Sorbonne Université, Centre de Recherche Saint-Antoine, Inserm, Institut Pasteur, Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Paris, France
| | - Alessandra Mattos Saliba
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
- *Correspondence: Alessandra Mattos Saliba,
| |
Collapse
|
3
|
Hardy KS, Tuckey AN, Renema P, Patel M, Al-Mehdi AB, Spadafora D, Schlumpf CA, Barrington RA, Alexeyev MF, Stevens T, Pittet JF, Wagener BM, Simmons JD, Alvarez DF, Audia JP. ExoU Induces Lung Endothelial Cell Damage and Activates Pro-Inflammatory Caspase-1 during Pseudomonas aeruginosa Infection. Toxins (Basel) 2022; 14:toxins14020152. [PMID: 35202178 PMCID: PMC8878379 DOI: 10.3390/toxins14020152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 12/24/2022] Open
Abstract
The Gram-negative, opportunistic pathogen Pseudomonas aeruginosa utilizes a type III secretion system to inject exoenzyme effectors into a target host cell. Of the four best-studied exoenzymes, ExoU causes rapid cell damage and death. ExoU is a phospholipase A2 (PLA2) that hydrolyses host cell membranes, and P. aeruginosa strains expressing ExoU are associated with poor outcomes in critically ill patients with pneumonia. While the effects of ExoU on lung epithelial and immune cells are well studied, a role for ExoU in disrupting lung endothelial cell function has only recently emerged. Lung endothelial cells maintain a barrier to fluid and protein flux into tissue and airspaces and regulate inflammation. Herein, we describe a pulmonary microvascular endothelial cell (PMVEC) culture infection model to examine the effects of ExoU. Using characterized P. aeruginosa strains and primary clinical isolates, we show that strains expressing ExoU disrupt PMVEC barrier function by causing substantial PMVEC damage and lysis, in a PLA2-dependent manner. In addition, we show that strains expressing ExoU activate the pro-inflammatory caspase-1, in a PLA2-dependent manner. Considering the important roles for mitochondria and oxidative stress in regulating inflammatory responses, we next examined the effects of ExoU on reactive oxygen species production. Infection of PMVECs with P. aeruginosa strains expressing ExoU triggered a robust oxidative stress compared to strains expressing other exoenzyme effectors. We also provide evidence that, intriguingly, ExoU PLA2 activity was detectable in mitochondria and mitochondria-associated membrane fractions isolated from P. aeruginosa-infected PMVECs. Interestingly, ExoU-mediated activation of caspase-1 was partially inhibited by reactive oxygen species scavengers. Together, these data suggest ExoU exerts pleiotropic effects on PMVEC function during P. aeruginosa infection that may inhibit endothelial barrier and inflammatory functions.
Collapse
Affiliation(s)
- Kierra S. Hardy
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (K.S.H.); (A.N.T.); (C.A.S.); (R.A.B.)
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda N. Tuckey
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (K.S.H.); (A.N.T.); (C.A.S.); (R.A.B.)
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
| | - Phoibe Renema
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Department of Biomedical Sciences, College of Allied Health, University of South Alabama Mobile, Mobile, AL 36688, USA
| | - Mita Patel
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Abu-Bakr Al-Mehdi
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Domenico Spadafora
- Flow Cytometry Core Lab, College of Medicine, University of South Alabama, Mobile, AL 36688, USA;
| | - Cody A. Schlumpf
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (K.S.H.); (A.N.T.); (C.A.S.); (R.A.B.)
| | - Robert A. Barrington
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (K.S.H.); (A.N.T.); (C.A.S.); (R.A.B.)
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Flow Cytometry Core Lab, College of Medicine, University of South Alabama, Mobile, AL 36688, USA;
| | - Mikhail F. Alexeyev
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Troy Stevens
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, Birmingham School of Medicine, University of Alabama, Birmingham, AL 35294, USA; (J.-F.P.); (B.M.W.)
| | - Brant M. Wagener
- Department of Anesthesiology and Perioperative Medicine, Birmingham School of Medicine, University of Alabama, Birmingham, AL 35294, USA; (J.-F.P.); (B.M.W.)
| | - Jon D. Simmons
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Department of Surgery, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Diego F. Alvarez
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Jonathon P. Audia
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (K.S.H.); (A.N.T.); (C.A.S.); (R.A.B.)
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Correspondence:
| |
Collapse
|
4
|
Cappelli EA, do Espírito Santo Cucinelli A, Simpson-Louredo L, Canellas MEF, Antunes CA, Burkovski A, da Silva JFR, Mattos-Guaraldi AL, Saliba AM, dos Santos LS. Insights of OxyR role in mechanisms of host-pathogen interaction of Corynebacterium diphtheriae. Braz J Microbiol 2022; 53:583-594. [PMID: 35169995 PMCID: PMC9151940 DOI: 10.1007/s42770-022-00710-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Corynebacterium diphtheriae, the leading causing agent of diphtheria, has been increasingly related to invasive diseases, including sepsis, endocarditis, pneumonia, and osteomyelitis. Oxidative stress defense is required not only for successful growth and survival under environmental conditions but also in the regulation of virulence mechanisms of human pathogenic species, by promoting mucosal colonization, survival, dissemination, and defense against the innate immune system. OxyR, functioning as a negative and/or positive transcriptional regulator, has been included among the major bacterial coordinators of antioxidant response. OxyR was first reported as a repressor of catalase expression in C. diphtheriae. However, the involvement of OxyR in C. diphtheriae pathogenesis remains unclear. Accordingly, this work aimed to investigate the role of OxyR in mechanisms of host-pathogen interaction of C. diphtheriae through the disruption of the OxyR of the diphtheria toxin (DT)-producing C. diphtheriae CDC-E8392 strain. The effects of OxyR gene disruption were analyzed through interaction assays with human epithelial cell lines (HEp-2 and pneumocytes A549) and by the induction of experimental infections in Caenorhabditis elegans nematodes and Swiss Webster mice. The OxyR disruption exerted influence on NO production and mechanism accountable for the expression of the aggregative-adherence pattern (AA) expressed by CDC-E8392 strain on human epithelial HEp-2 cells. Moreover, invasive potential and intracytoplasmic survival within HEp-2 cells, as well as the arthritogenic potential in mice, were found affected by the OxyR disruption. In conclusion, data suggest that OxyR is implicated in mechanisms of host-pathogen interaction of C. diphtheriae.
Collapse
Affiliation(s)
- Elisabete Alves Cappelli
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Andrezza do Espírito Santo Cucinelli
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Liliane Simpson-Louredo
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Maria Eurydice Freire Canellas
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Camila Azevedo Antunes
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil ,grid.5330.50000 0001 2107 3311Microbiology Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Burkovski
- grid.5330.50000 0001 2107 3311Microbiology Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jemima Fuentes Ribeiro da Silva
- grid.412211.50000 0004 4687 5267Department of Histology and Embryology, Roberto Alcantara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ana Luíza Mattos-Guaraldi
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Alessandra Mattos Saliba
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Louisy Sanches dos Santos
- grid.412211.50000 0004 4687 5267Department of Microbiology, Immunology and Parasitology, Faculty of Medical Science, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Pang Z, Xu Y, Zhu Q. Early Growth Response 1 Suppresses Macrophage Phagocytosis by Inhibiting NRF2 Activation Through Upregulation of Autophagy During Pseudomonas aeruginosa Infection. Front Cell Infect Microbiol 2022; 11:773665. [PMID: 35096638 PMCID: PMC8790152 DOI: 10.3389/fcimb.2021.773665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes life-threatening infections in cystic fibrosis patients and immunocompromised individuals. A tightly regulated immune response possessed by healthy individuals can effectively control P. aeruginosa infections, whereas the patients with dysregulated immune response are susceptible to this bacterial pathogen. Early growth response 1 (Egr-1) is a zinc-finger transcription factor involved in regulation of various cellular functions, including immune responses. We previously identified that Egr-1 was deleterious to host in a mouse model of acute P. aeruginosa pneumonia by promoting systemic inflammation and impairing bacterial clearance in lung, which associated with reduced phagocytosis and bactericidal ability of leucocytes, including macrophages and neutrophils. However, the molecular mechanisms underlying the Egr-1-suppressed phagocytosis of P. aeruginosa are incompletely understood. Herein, we investigated whether the Egr-1-regulated autophagy play a role in macrophage phagocytosis during P. aeruginosa infection by overexpression or knockdown of Egr-1. We found that overexpression of Egr-1 inhibited the phagocytic activity of macrophages, and the autophagy activator rapamycin and inhibitor chloroquine could reverse the effects of Egr-1 knockdown and Egr-1 overexpression on phagocytosis of P. aeruginosa, respectively. Furthermore, the Egr-1-overexpressing macrophages displayed upregulated expression of autophagy-related proteins LC3A, LC3B and Atg5, and decreased levels of p62 in macrophages. Further studies revealed that the macrophages with Egr-1 knockdown displayed enhanced activation of transcription factor NRF2 and expression of scavenger receptors MACRO and MSR1. Altogether, these findings suggest that Egr-1 suppresses the phagocytosis of P. aeruginosa by macrophages through upregulation of autophagy and inhibition of NRF2 signaling.
Collapse
Affiliation(s)
- Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Bagayoko S, Leon-Icaza SA, Pinilla M, Hessel A, Santoni K, Péricat D, Bordignon PJ, Moreau F, Eren E, Boyancé A, Naser E, Lefèvre L, Berrone C, Iakobachvili N, Metais A, Rombouts Y, Lugo-Villarino G, Coste A, Attrée I, Frank DW, Clevers H, Peters PJ, Cougoule C, Planès R, Meunier E. Host phospholipid peroxidation fuels ExoU-dependent cell necrosis and supports Pseudomonas aeruginosa-driven pathology. PLoS Pathog 2021; 17:e1009927. [PMID: 34516571 PMCID: PMC8460005 DOI: 10.1371/journal.ppat.1009927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/23/2021] [Accepted: 08/29/2021] [Indexed: 11/20/2022] Open
Abstract
Regulated cell necrosis supports immune and anti-infectious strategies of the body; however, dysregulation of these processes drives pathological organ damage. Pseudomonas aeruginosa expresses a phospholipase, ExoU that triggers pathological host cell necrosis through a poorly characterized pathway. Here, we investigated the molecular and cellular mechanisms of ExoU-mediated necrosis. We show that cellular peroxidised phospholipids enhance ExoU phospholipase activity, which drives necrosis of immune and non-immune cells. Conversely, both the endogenous lipid peroxidation regulator GPX4 and the pharmacological inhibition of lipid peroxidation delay ExoU-dependent cell necrosis and improve bacterial elimination in vitro and in vivo. Our findings also pertain to the ExoU-related phospholipase from the bacterial pathogen Burkholderia thailandensis, suggesting that exploitation of peroxidised phospholipids might be a conserved virulence mechanism among various microbial phospholipases. Overall, our results identify an original lipid peroxidation-based virulence mechanism as a strong contributor of microbial phospholipase-driven pathology.
Collapse
Affiliation(s)
- Salimata Bagayoko
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Stephen Adonai Leon-Icaza
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Miriam Pinilla
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Audrey Hessel
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Karin Santoni
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - David Péricat
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Pierre-Jean Bordignon
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Flavie Moreau
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
- Level 3 Biosafety Animal Core facility, Anexplo platform, Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Elif Eren
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Aurélien Boyancé
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Emmanuelle Naser
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
- Cytometry & Imaging Core facility, Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Lise Lefèvre
- RESTORE institute, University of Toulouse, CNRS, Toulouse, France
| | - Céline Berrone
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
- Level 3 Biosafety Animal Core facility, Anexplo platform, Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Nino Iakobachvili
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Arnaud Metais
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Yoann Rombouts
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Agnès Coste
- RESTORE institute, University of Toulouse, CNRS, Toulouse, France
| | - Ina Attrée
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
| | - Dara W. Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, Netherlands
| | - Peter J. Peters
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Céline Cougoule
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Rémi Planès
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Etienne Meunier
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| |
Collapse
|
7
|
Bobrov AG, Getnet D, Swierczewski B, Jacobs A, Medina-Rojas M, Tyner S, Watters C, Antonic V. Evaluation of Pseudomonas aeruginosa pathogenesis and therapeutics in military-relevant animal infection models. APMIS 2021; 130:436-457. [PMID: 34132418 DOI: 10.1111/apm.13119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/21/2021] [Indexed: 01/02/2023]
Abstract
Modern combat-related injuries are often associated with acute polytrauma. As a consequence of severe combat-related injuries, a dysregulated immune response results in serious infectious complications. The gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen that often causes life-threatening bloodstream, lung, bone, urinary tract, and wound infections following combat-related injuries. The rise in the number of multidrug-resistant P. aeruginosa strains has elevated its importance to civilian clinicians and military medicine. Development of novel therapeutics and treatment options for P. aeruginosa infections is urgently needed. During the process of drug discovery and therapeutic testing, in vivo testing in animal models is a critical step in the bench-to-bedside approach, and required for Food and Drug Administration approval. Here, we review current and past literature with a focus on combat injury-relevant animal models often used to understand infection development, the interplay between P. aeruginosa and the host, and evaluation of novel treatments. Specifically, this review focuses on the following animal infection models: wound, burn, bone, lung, urinary tract, foreign body, and sepsis.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Derese Getnet
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Brett Swierczewski
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Anna Jacobs
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Maria Medina-Rojas
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Stuart Tyner
- US Army Medical Research and Development Command Military Infectious Diseases Research Program, Frederick, Maryland, USA
| | - Chase Watters
- Naval Medical Research Unit-3, Ghana Detachment, Accra, Ghana
| | - Vlado Antonic
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
8
|
Rutin-loaded liquid crystalline nanoparticles attenuate oxidative stress in bronchial epithelial cells: a PCR validation. Future Med Chem 2021; 13:543-549. [PMID: 33538615 DOI: 10.4155/fmc-2020-0297] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: In the present study, the inhibitory potential of rutin-loaded liquid crystalline nanoparticles (LCNs) on oxidative stress was determined in human bronchial epithelial cells (BEAS-2B) by analysing the expression levels of different antioxidant (NADPH quinine oxidoreductase-1 (NQO1); γ-glutamyl cysteine synthetase catalytic subunit (GCLC)) and pro-oxidant (NADPH oxidase (Nox)-4; Nox2B) genes. Results: Our findings revealed that the rutin-loaded LCNs inhibited the genes, namely Nox2B and Nox4, which caused oxidative stress. In addition, these nanoparticles demonstrated an upregulation in the expression of the antioxidant genes Gclc and Nqo-1 in a dose-dependent manner. Conclusion: The study indicates the promising potential of rutin-loaded LCNs as an effective treatment strategy in patients with high oxidant loads in various respiratory diseases.
Collapse
|
9
|
Niu M, Keller NP. Co-opting oxylipin signals in microbial disease. Cell Microbiol 2020; 21:e13025. [PMID: 30866138 DOI: 10.1111/cmi.13025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022]
Abstract
Oxylipins, or oxygenated lipids, are universal signalling molecules across all kingdoms of life. These molecules, either produced by microbial pathogens or their mammalian host, regulate inflammation during microbial infection. In this review, we summarise current literature on the biosynthesis pathways of microbial oxylipins and their biological activity towards mammalian cells. Collectively, these studies have illustrated how microbial pathogens can modulate immune rsponse and disease outcome via oxylipin-mediated mechanisms.
Collapse
Affiliation(s)
- Mengyao Niu
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
10
|
Rossner P, Libalova H, Cervena T, Vrbova K, Elzeinova F, Milcova A, Rossnerova A, Novakova Z, Ciganek M, Pokorna M, Ambroz A, Topinka J. The processes associated with lipid peroxidation in human embryonic lung fibroblasts, treated with polycyclic aromatic hydrocarbons and organic extract from particulate matter. Mutagenesis 2020; 34:153-164. [PMID: 30852615 DOI: 10.1093/mutage/gez004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/13/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) may cause lipid peroxidation via reactive oxygen species generation. 15-F2t-isoprostane (IsoP), an oxidative stress marker, is formed from arachidonic acid (AA) by a free-radical induced oxidation. AA may also be converted to prostaglandins (PG) by prostaglandin-endoperoxide synthase (PTGS) induced by NF-κB. We treated human embryonic lung fibroblasts (HEL12469) with benzo[a]pyrene (B[a]P), 3-nitrobenzanthrone (3-NBA) and extractable organic matter (EOM) from ambient air particulate matter <2.5 µm for 4 and 24 h. B[a]P and 3-NBA induced expression of PAH metabolising, but not antioxidant enzymes. The concentrations of IsoP decreased, whereas the levels of AA tended to increase. Although the activity of NF-κB was not detected, the tested compounds affected the expression of prostaglandin-endoperoxide synthase 2 (PTGS2). The levels of prostaglandin E2 (PGE2) decreased following exposure to B[a]P, whereas 3-NBA exposure tended to increase PGE2 concentration. A distinct response was observed after EOM exposure: expression of PAH-metabolising enzymes was induced, IsoP levels increased after 24-h treatment but AA concentration was not affected. The activity of NF-κB increased after both exposure periods, and a significant induction of PTGS2 expression was found following 4-h treatment. Similarly to PAHs, the EOM exposure was associated with a decrease of PGE2 levels. In summary, exposure to PAHs with low pro-oxidant potential results in a decrease of IsoP levels implying 'antioxidant' properties. For such compounds, IsoP may not be a suitable marker of lipid peroxidation.
Collapse
Affiliation(s)
- Pavel Rossner
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Helena Libalova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Cervena
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Kristyna Vrbova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Fatima Elzeinova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Milcova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Novakova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslav Ciganek
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Michaela Pokorna
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Antonin Ambroz
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Abstract
Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases.
Collapse
|