1
|
Abstract
The human body has a perfect thermoregulatory system to meet the needs of normal life activities. The central regulation of body temperature is mainly explained by the theory of "setting point (setpoint, SP)". Fever is a positive but nonspecific response of the body to infections and other pyrogens, which causes immune cells to release cytokines, leading to a brain protein-mediated rise in body temperature. Cytokines can be roughly divided into 2 categories: proinflammatory cytokines and anti-inflammatory cytokines. IL-1, TNF-α, and IL-6 are proinflammatory cytokines, whereas IL-4 and IL-10 are anti-inflammatory cytokines. IL-2 is a cytokine that can both activate and inhibit immunity. IL-8 is a neutrophil chemotactic factor, and IFN is a cytokine that plays a key role in the proper induction and maintenance of innate and acquired immunity. This article reviews the pathophysiological characteristics of fever and the cytokines related to fever (IL-2, 4, 6, 8, 10, IFN, TNF, etc.).
Collapse
Affiliation(s)
- Jinfeng Lai
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huichun Wu
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ailan Qin
- Department of Infectious Diseases, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Choobin H, Bamdad T, Shekarabi M. The pattern of antiviral protein expression induced by interferon λ1 in peripheral blood mononuclear cells of patients with chronic hepatitis C virus infection. Arch Virol 2020; 165:583-592. [PMID: 31927635 DOI: 10.1007/s00705-019-04438-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/12/2019] [Indexed: 12/28/2022]
Abstract
Interferon lambda was discovered in recent years to be an antiviral agent, and research on different aspects of this antiviral factor in viral infection and investigations of its effectiveness are also progressing. The immunological effects of interferon lambda on different cell populations is not precisely known, which may be due to its use of a heterodimeric receptor consisting of IL-10R2 and IFN-λR1, which are not broadly expressed in all types of cells. In the present study, signaling by interferon lambda and its effect on the expression of hepatitis C virus (HCV) proteins were measured, and the expression pattern of some antiviral proteins and IL-10 levels were investigated in peripheral blood mononuclear cells (PBMCs). PBMCs were isolated from 50 patients with chronic genotype 1a HCV infection and 10 healthy individuals as controls. The PBMCs were treated with various doses of interferon lambda at different times of cultivation. Real-time PCR was used for relative quantification of Mxa, PKR, OAS, ISG15 and HCV core mRNAs. Expression of the NS5A protein was measured by flow cytometry, and IL-10 production was assessed by ELISA. A significant increase in the expression of mRNA encoding antiviral proteins and a decrease in the expression of mRNAs encoding the HCV core protein were observed when cells were treated with interferon lambda in an intermittent manner. The expression of HCV NS5A protein and interleukin 10 levels were also lower than in the control group. It was shown that the maximum antiviral effect of interferon lambda in PBMCs is dependent on the dose and treatment time.
Collapse
Affiliation(s)
- Hamzeh Choobin
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Taravat Bamdad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Shekarabi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Luo Q, Liu Y, Liu S, Yin Y, Xu B, Cao J. Interleukin 28 is a potential therapeutic target for sepsis. Clin Immunol 2019; 205:29-34. [PMID: 31121287 DOI: 10.1016/j.clim.2019.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023]
Abstract
Identification of new therapeutic targets for the treatment of sepsis is imperative. We report here that cytokine IL-28 (IFN-λ) levels were elevated in clinical and experimental sepsis. Neutralization of IL-28 protected mice from lethal sepsis induced by cecal ligation and puncture (CLP), which was associated with improved bacterial clearance and enhanced neutrophil infiltration. Conversely, administration of recombinant IL-28 aggravated mortality, facilitated bacterial dissimilation and limited neutrophil recruitment, in the model of sepsis induced by CLP. This study defines IL-28 as a detrimental mediator during sepsis and identifies a potential therapeutic target for the immune therapy in sepsis.
Collapse
Affiliation(s)
- Qin Luo
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Key Laboratory of Diagnostic Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yi Liu
- Department of Intensive Care Unit, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Liu
- Key Laboratory of Diagnostic Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Yuan WM, Zhang R, Zhang Q, Ma FL, Wang C, Wang YZ, Zeng Y, Zheng LS. The generation and biological activity of a long-lasting recombinant human interferon-λ1. Protein Eng Des Sel 2019; 31:355-360. [PMID: 30496575 DOI: 10.1093/protein/gzy029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/15/2018] [Indexed: 11/15/2022] Open
Abstract
The previously generated recombinant human (rh) interferon (IFN)-λ1 protein has a short half-life, and this feature makes it challenging to conduct studies on potential clinical applications for rhIFN-λ1. In an attempt to overcome this difficulty, we constructed a 'long-life' version of rhIFN-λ1. This modified rhIFN-λ1, named rhIFN-λ1-CTPON, has a human chorionic gonadotropin β subunit carboxyl-terminal peptide (CTP) and an N-glycosylation sequence linked to its C-terminus. We confirmed the sequence of rhIFN-λ1-CTPON by mass spectrometry and then measured its biological activities. The results show that rhIFN-λ1-CTPON had antiviral activity and anti-proliferation activity in vitro that were similar to those of rhIFN-λ1 and that it similarly promoted natural killer cell cytotoxicity. Notably, the in vivo half-life of rhIFN-λ1-CTPON was determined to be 3-fold higher than that of rhIFN-λ1. We also assessed the anti-hepatitis B virus activity of rhIFN-λ1-CTPON; it was able to inhibit the production of the antigens HBs-Ag and HBe-Ag and induce antiviral gene expression. In conclusion, rhIFN-λ1-CTPON has a longer half-life than rhIFN-λ1 and has similar biological activities, so rhIFN-λ1-CTPON is an appropriate substitute for rhIFN-λ1 in the further study of potential clinical applications for rhIFN- λ1.
Collapse
Affiliation(s)
- Wu-Mei Yuan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, Xinjiang, China.,Key Laboratory for Medical Virology, National Health Commission, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Rui Zhang
- Medical Teaching Experiment Center, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Qian Zhang
- Key Laboratory for Medical Virology, National Health Commission, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Fen-Lian Ma
- Key Laboratory for Medical Virology, National Health Commission, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Chao Wang
- Key Laboratory for Medical Virology, National Health Commission, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Ying-Zi Wang
- Medical Teaching Experiment Center, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yan Zeng
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Li-Shu Zheng
- Key Laboratory for Medical Virology, National Health Commission, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| |
Collapse
|
5
|
Cakmak Genc G, Dursun A, Karakas Celik S, Calik M, Kokturk F, Piskin IE. IL28B, IL29 and micro-RNA 548 in subacute sclerosing panencephalitis as a rare disease. Gene 2018; 678:73-78. [PMID: 30077763 DOI: 10.1016/j.gene.2018.07.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
Abstract
Subacute sclerosing panencephalitis (SSPE) is a progressive neurodegenerative disease which affects children and young adults, caused by a persistent infection of defective measles virus. IFN-λs (IL-28A, IL-28B and IL-29) are a group of cytokines mediating antiviral responses. It has been shown that IL-29 levels are significantly higher in infected cells with defective measles virus. IL-29 expression is thought to be regulated at post-transcriptional level and miRNA-548 family targets the 3'UTR of the IFNL1 gene. Impaired immune system has an important role as well as viral factors in SSPE. The aim of our study investigates whether IL-28B, IL-29 levels and gene polymorphisms contribute to the damaged immune response leading to the development of SSPE. Also possible association of miR-548 family with IL-29 and SSPE is explored. Frequencies of rs12979860, rs8099917, rs30461, serum levels of IL-28B, IL-29 and expression levels of miR-548b, miR-548c, miR-548i are determined at 64 SSPE patients and 68 healthy controls. Serum IL-29 levels are statistically significant higher in SSPE patients. Allele frequencies of rs8099917 are statistically significant higher in SSPE patients and resulted G allele is found to increase 2.183-fold risk of SSPE. The expression levels of miR-548b-5p, miR-548c-5p and miR-548i are found to be statistically significant higher in SSPE patients. Dramatically increased level of IL-29 seen in patient group indicates that the elevated miR-548 expression is compensatory result of the over-activated immune system response. Further studies referred to IL28, IL29 and related miRNA's will be enlightened the pathogenesis of SSPE.
Collapse
Affiliation(s)
- Gunes Cakmak Genc
- Faculty of Medicine, Department of Medical Genetics, Bulent Ecevit University, Zonguldak, Turkey.
| | - Ahmet Dursun
- Faculty of Medicine, Department of Medical Genetics, Bulent Ecevit University, Zonguldak, Turkey
| | - Sevim Karakas Celik
- Faculty of Sciences and Arts, Department of Molecular Biology and Genetics, Bulent Ecevit University, Zonguldak, Turkey
| | - Mustafa Calik
- Faculty of Medicine, Department of Pediatric Neurology, Harran University, Sanlıurfa, Turkey
| | - Furuzan Kokturk
- Faculty of Medicine, Department of Biostatistics, Bulent Ecevit University, Zonguldak, Turkey
| | - Ibrahim Etem Piskin
- Faculty of Medicine, Department of Pediatrics, Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|