1
|
Babaie Z, Kibar G, Yeşilkaya H, Amrani Y, Doğan S, Tuna BG, Özalp VC, Çetin B. Microfluidic rapid isolation and electrochemical detection of S. pneumonia via aptamer-decorated surfaces. Anal Chim Acta 2025; 1345:343726. [PMID: 40015771 DOI: 10.1016/j.aca.2025.343726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/01/2025] [Accepted: 01/23/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND S. pneumoniae is widely recognized as a leading cause of respiratory infections worldwide, often resulting in high mortality rates. However, the advent of microfluidic technologies has brought significant advancements, including the simplified, sensitive, cost-effective, and rapid approach to pneumococcal bacteremia detection. In this study, a microfluidic magnetic platform is presented for rapid isolation, and an electrode array is utilized for the electrochemical detection of S. pneumoniae. Aptamer-decorated surfaces were employed for both isolation and detection. For isolation, silica magnetic microparticles were synthesized and decorated with aptamer. RESULTS Isolation performance was assessed for phosphate-buffered saline (PBS) and blood samples for different concentrations of S. pneumoniae. Electrical impedance spectroscopy (EIS) with fabricated gold interdigitated electrodes (IDEs) decorated with aptamer was implemented for the detection of S. pneumoniae at different bacteria concentrations. The microfluidic platform performed bacteria isolation at comparable isolation efficiency with batch systems but at a much faster rate (isolation took about a minute, and the aptamer-decorated electrode array exhibited a limit of detection (LOD) at 962 CFU/mL and linear range between 104 and 107 CFU/mL. SIGNIFICANCE Our method represents a significant advancement compared to previous reports. Our microfluidic platform can efficiently isolate 60 μL of the bacteria sample within about one minute. The entire process takes about two minutes including the detection step. Furthermore, our method achieves a notable improvement in the detection limit for S. pneumoniae compared to conventional ELISA and magnetic microfluidics ELISA.
Collapse
Affiliation(s)
- Zahra Babaie
- Microfluidics & Lab-on-a-chip Research Group, Department of Mech. Eng., İ.D. Bilkent University, Ankara 06800, Turkiye; UNAM-National Nanotech. Research Center & Inst. Materials Science & Nanotech. İ.D. Bilkent University, Ankara 06800, Turkiye
| | - Güneş Kibar
- Microfluidics & Lab-on-a-chip Research Group, Department of Mech. Eng., İ.D. Bilkent University, Ankara 06800, Turkiye; UNAM-National Nanotech. Research Center & Inst. Materials Science & Nanotech. İ.D. Bilkent University, Ankara 06800, Turkiye; Micro Nano Particles (MNP) Research Group, Materials Sci. & Eng. Department of Adana Alparslan Turkes Science & Technology University, Adana 01250, Turkiye
| | - Hasan Yeşilkaya
- Department of Respiratory Sciences, Uni. Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Yassine Amrani
- Department of Respiratory Sciences, Uni. Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Soner Doğan
- Department of Medical Biology, School of Medicine, Yeditepe University, İstanbul 34755, Turkiye
| | - Bilge G Tuna
- Department of Medical Biophysics, School of Medicine, Yeditepe University, İstanbul 34755, Turkiye
| | - Veli C Özalp
- Department of Medical Biology, School of Medicine, Atılım University, Ankara 06830, Turkiye
| | - Barbaros Çetin
- Microfluidics & Lab-on-a-chip Research Group, Department of Mech. Eng., İ.D. Bilkent University, Ankara 06800, Turkiye; UNAM-National Nanotech. Research Center & Inst. Materials Science & Nanotech. İ.D. Bilkent University, Ankara 06800, Turkiye.
| |
Collapse
|
2
|
Wei W, Wang Z, Wang B, He X, Wang Y, Bai Y, Yang Q, Pang W, Duan X. Acoustofluidic manipulation for submicron to nanoparticles. Electrophoresis 2024; 45:2132-2153. [PMID: 38794970 DOI: 10.1002/elps.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/27/2024]
Abstract
Particles, ranging from submicron to nanometer scale, can be broadly categorized into biological and non-biological types. Submicron-to-nanoscale bioparticles include various bacteria, viruses, liposomes, and exosomes. Non-biological particles cover various inorganic, metallic, and carbon-based particles. The effective manipulation of these submicron to nanoparticles, including their separation, sorting, enrichment, assembly, trapping, and transport, is a fundamental requirement for different applications. Acoustofluidics, owing to their distinct advantages, have emerged as a potent tool for nanoparticle manipulation over the past decade. Although recent literature reviews have encapsulated the evolution of acoustofluidic technology, there is a paucity of reports specifically addressing the acoustical manipulation of submicron to nanoparticles. This article endeavors to provide a comprehensive study of this topic, delving into the principles, apparatus, and merits of acoustofluidic manipulation of submicron to nanoparticles, and discussing the state-of-the-art developments in this technology. The discourse commences with an introduction to the fundamental theory of acoustofluidic control and the forces involved in nanoparticle manipulation. Subsequently, the working mechanism of acoustofluidic manipulation of submicron to nanoparticles is dissected into two parts, dominated by the acoustic wave field and the acoustic streaming field. A critical analysis of the advantages and limitations of different acoustofluidic platforms in nanoparticles control is presented. The article concludes with a summary of the challenges acoustofluidics face in the realm of nanoparticle manipulation and analysis, and a forecast of future development prospects.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Zhaoxun Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Bingnan Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Xinyuan He
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Yaping Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Yang Bai
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Qingrui Yang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
3
|
Li Y, Zhao Y, Yang Y, Zhang W, Zhang Y, Sun S, Zhang L, Li M, Gao H, Huang C. Acoustofluidics-enhanced biosensing with simultaneously high sensitivity and speed. MICROSYSTEMS & NANOENGINEERING 2024; 10:92. [PMID: 38957168 PMCID: PMC11217392 DOI: 10.1038/s41378-024-00731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Simultaneously achieving high sensitivity and detection speed with traditional solid-state biosensors is usually limited since the target molecules must passively diffuse to the sensor surface before they can be detected. Microfluidic techniques have been applied to shorten the diffusion time by continuously moving molecules through the biosensing regions. However, the binding efficiencies of the biomolecules are still limited by the inherent laminar flow inside microscale channels. In this study, focused traveling surface acoustic waves were directed into an acoustic microfluidic chip, which could continuously enrich the target molecules into a constriction zone for immediate detection of the immune reactions, thus significantly improving the detection sensitivity and speed. To demonstrate the enhancement of biosensing, we first developed an acoustic microfluidic chip integrated with a focused interdigital transducer; this transducer had the ability to capture more than 91% of passed microbeads. Subsequently, polystyrene microbeads were pre-captured with human IgG molecules at different concentrations and loaded for detection on the chip. As representative results, ~0.63, 2.62, 11.78, and 19.75 seconds were needed to accumulate significant numbers of microbeads pre-captured with human IgG molecules at concentrations of 100, 10, 1, and 0.1 ng/mL (~0.7 pM), respectively; this process was faster than the other methods at the hour level and more sensitive than the other methods at the nanomolar level. Our results indicated that the proposed method could significantly improve both the sensitivity and speed, revealing the importance of selective enrichment strategies for rapid biosensing of rare molecules.
Collapse
Affiliation(s)
- Yuang Li
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
| | - Yang Zhao
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 P. R. China
| | - Yang Yang
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Wenchang Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 P. R. China
| | - Yun Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
| | - Sheng Sun
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
| | - Lingqian Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 P. R. China
| | - Mingxiao Li
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 P. R. China
| | - Hang Gao
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 P. R. China
| | - Chengjun Huang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408 P. R. China
| |
Collapse
|
4
|
Kavruk M, Babaie Z, Kibar G, Çetin B, Yeşilkaya H, Amrani Y, Dursun AD, Özalp VC. Aptamer decorated PDA@magnetic silica microparticles for bacteria purification. Mikrochim Acta 2024; 191:285. [PMID: 38652174 PMCID: PMC11039557 DOI: 10.1007/s00604-024-06322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
One significant constraint in the advancement of biosensors is the signal-to-noise ratio, which is adversely affected by the presence of interfering factors such as blood in the sample matrix. In the present investigation, a specific aptamer binding was chosen for its affinity, while exhibiting no binding affinity towards non-target bacterial cells. This selective binding property was leveraged to facilitate the production of magnetic microparticles decorated with aptamers. A novel assay was developed to effectively isolate S. pneumoniae from PBS or directly from blood samples using an aptamer with an affinity constant of 72.8 nM. The capture experiments demonstrated efficiencies up to 87% and 66% are achievable for isolating spiked S. pneumoniae in 1 mL PBS and blood samples, respectively.
Collapse
Affiliation(s)
- Murat Kavruk
- Department of Medical Biology, Faculty of Medicine, İstanbul Aydın University, İstanbul, 34295, Türkiye
| | - Zahra Babaie
- Microfluidics & Lab-on-a-chip Research Group, İ.D. Bilkent University, Ankara, 06800, Türkiye
- UNAM-National Nanotech, Research Center and Institute Materials Science & Nanotech, İ.D. Bilkent University, Ankara, 06800, Türkiye
| | - Güneş Kibar
- Microfluidics & Lab-on-a-chip Research Group, İ.D. Bilkent University, Ankara, 06800, Türkiye
- UNAM-National Nanotech, Research Center and Institute Materials Science & Nanotech, İ.D. Bilkent University, Ankara, 06800, Türkiye
- Micro Nano Particles (MNP) Research Group, Materials Science and Engineering Department, Adana Alparslan Turkes Science and Technology University, Adana, 01250, Türkiye
| | - Barbaros Çetin
- Department of Medical Biology, Faculty of Medicine, İstanbul Aydın University, İstanbul, 34295, Türkiye
- Microfluidics & Lab-on-a-chip Research Group, İ.D. Bilkent University, Ankara, 06800, Türkiye
| | - Hasan Yeşilkaya
- Department Respiratory Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Yassine Amrani
- Department Respiratory Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Ali Doğan Dursun
- Department of Physiology, School of Medicine, Atilim University, Ankara, 06830, Türkiye
| | - V Cengiz Özalp
- Department of Medical Biology, School of Medicine, Atilim University, Ankara, 06830, Türkiye.
| |
Collapse
|
5
|
Piri A, Hyun KA, Jung HI, Nam KS, Hwang J. Enhanced enrichment of collected airborne coronavirus and influenza virus samples via a ConA-coated microfluidic chip for PCR detection. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133249. [PMID: 38154189 DOI: 10.1016/j.jhazmat.2023.133249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/12/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
The severe acute respiratory syndrome (SARS-CoV-2) outbreak triggered global concern and emphasized the importance of virus monitoring. During a seasonal influenza A outbreak, relatively low concentrations of 103-104 viral genome copies are available per 1 m3 of air, which makes detection and monitoring very challenging because the limit of detection of most polymerase chain reaction (PCR) devices is approximately 103 viral genome copies/mL. In response to the urgent need for the rapid detection of airborne coronaviruses and influenza viruses, an electrostatic aerosol-to-hydrosol (ATH) sampler was combined with a concanavalin A (ConA)-coated high-throughput microfluidic chip. The samples were then used for PCR detection. The results revealed that the enrichment capacity of the ATH sampler was 30,000-fold for both HCoV-229E and H1N1 influenza virus, whereas the enrichment capacities provided by the ConA-coated microfluidic chip were 8-fold and 16-fold for HCoV-229E and H1N1 virus, respectively. Thus, the total enrichment capacities of our combined ATH sampler and ConA-coated microfluidic chip were 2.4 × 105-fold and 4.8 × 105-fold for HCoV-229E and H1N1 virus, respectively. This methodology significantly improves PCR detection by providing a higher concentration of viable samples.
Collapse
Affiliation(s)
- Amin Piri
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyung-A Hyun
- Korea Electronics Technology Institute (KETI), Seongnam-si, Gyeonggi-do 13509, Republic of Korea
| | - Hyo-Il Jung
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Kang Sik Nam
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungho Hwang
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
6
|
Prinz Setter O, Jiang X, Segal E. Rising to the surface: capturing and detecting bacteria by rationally-designed surfaces. Curr Opin Biotechnol 2023; 83:102969. [PMID: 37494819 DOI: 10.1016/j.copbio.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Analytical microbiology has made substantial progress since its conception, starting from potato slices, through selective agar media, to engineered surfaces modified with capture probes. While the latter represents the dominant approach in designing sensors for bacteria detection, the importance of sensor surface properties is frequently ignored. Herein, we highlight their significant role in the complex process of bacterial transition from planktonic to sessile, representing the first and critical step in bacteria detection. We present the main surface features and discuss their effect on the bio-solid interface and the resulting sensing capabilities for both flat and particulate systems. The concepts of rationally-designed surfaces for enhanced bacterial detection are presented with recent examples of sensors (capture probe-free) relying solely on surface cues.
Collapse
Affiliation(s)
- Ofer Prinz Setter
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel
| | - Xin Jiang
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel; The Russel Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| |
Collapse
|
7
|
Song Y, Park N, Jo DA, Kim J, Yong D, Song J, Park YM, Lee SJ, Kim YT, Im SG, Choi BG, Kang T, Lee KG. Polyaniline-based 3D network structure promotes entrapment and detection of drug-resistant bacteria. NANO CONVERGENCE 2023; 10:25. [PMID: 37243716 PMCID: PMC10224663 DOI: 10.1186/s40580-023-00370-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/07/2023] [Indexed: 05/29/2023]
Abstract
Sensitive and accurate capture, enrichment, and identification of drug-resistant bacteria on human skin are important for early-stage diagnosis and treatment of patients. Herein, we constructed a three-dimensional hierarchically structured polyaniline nanoweb (3D HPN) to capture, enrich, and detect drug-resistant bacteria on-site by rubbing infected skins. These unique hierarchical nanostructures enhance bacteria capture efficiency and help severely deform the surface of the bacteria entrapped on them. Therefore, 3D HPN significantly contributes to the effective and reliable recovery of drug-resistant bacteria from the infected skin and the prevention of potential secondary infection. The recovered bacteria were successfully identified by subsequent real-time polymerase chain reaction (PCR) analysis after the lysis process. The molecular analysis results based on a real-time PCR exhibit excellent sensitivity to detecting target bacteria of concentrations ranging from 102 to 107 CFU/mL without any fluorescent signal interruption. To confirm the field applicability of 3D HPN, it was tested with a drug-resistant model consisting of micropig skin similar to human skin and Klebsiella pneumoniae carbapenemase-producing carbapenem-resistant Enterobacteriaceae (KPC-CRE). The results show that the detection sensitivity of this assay is 102 CFU/mL. Therefore, 3D HPN can be extended to on-site pathogen detection systems, along with rapid molecular diagnostics through a simple method, to recover KPC-CRE from the skin.
Collapse
Affiliation(s)
- Younseong Song
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Nahyun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Da Ae Jo
- Center for Nano Bio Development, National Nanofab Center (NNFC), Daejeon, 34141, Republic of Korea
| | - Jueun Kim
- Center for Nano Bio Development, National Nanofab Center (NNFC), Daejeon, 34141, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jayeon Song
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Yoo Min Park
- Center for Nano Bio Development, National Nanofab Center (NNFC), Daejeon, 34141, Republic of Korea
| | - Seok Jae Lee
- Center for Nano Bio Development, National Nanofab Center (NNFC), Daejeon, 34141, Republic of Korea
| | - Yong Tae Kim
- Department of Chemical Engineering & Biotechnology, Tech University of Korea, Siheung-Si, 15073, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bong Gill Choi
- Department of Chemical Engineering, Kangwon National University, Samcheok, 25913, Republic of Korea.
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon-Si, 16419, Republic of Korea.
| | - Kyoung G Lee
- Center for Nano Bio Development, National Nanofab Center (NNFC), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
8
|
Kang Y, Liang Y, Sun H, Dan J, Zhang Q, Su Z, Wang J, Zhang W. Selective Enrichment of Gram-positive Bacteria from Apple Juice by Magnetic Fe3O4 Nanoparticles Modified with Phytic Acid. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Use of nano titanium hydroxide and nano zirconium hydroxide fixed filter paper for rapid detection of Staphylococcus aureus in dairy products by PCR without pre-enrichment. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Ding Y, Huang C, Zhang Y, Wang J, Wang X. Magnetic microbead enzyme-linked immunoassay based on phage encoded protein RBP 41-mediated for rapid and sensitive detection of Salmonella in food matrices. Food Res Int 2023; 163:112212. [PMID: 36596140 DOI: 10.1016/j.foodres.2022.112212] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
Rapid and sensitive quantitative detection methods are required to monitor and detect Salmonella throughout the food supply chain and early prevention of foodborne disease outbreaks. In this study, a magnetic microbead enzyme-linked immunoassay (MELISA) based on phage receptor binding protein was developed for rapid enrichment and detection of Salmonella in complex food matrices. RBP 41 from phage T102 acted as a species-specific recognition element for Salmonella by exploiting its strong binding capacity to Salmonella surface receptors. RBP 41-MBs were prepared by coupling recombinant RBP 41 with MBs and used to separate and enrich Salmonella cells from spiked food samples. The captured complexes were further integrated with ELISA procedures by HRP-labeled anti-Salmonella antibody for rapid and accurate detection of Salmonella. The whole method took <1.5 h and the detection limit was 10 CFU/mL. Therefore, MELISA was successfully developed for the detection of Salmonella in various spiked food samples (skim milk, lettuce, and chicken breast). The ELISA reaction process of this method was carried out on magnetic beads. It simplified the process of the traditional ELISA method and reduces the reaction time. This study expanded the use of phage-associated proteins and demonstrated the promising prospects for practical applications in the detection of foodborne pathogens.
Collapse
Affiliation(s)
- Yifeng Ding
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chenxi Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yiming Zhang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jia Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Hussain Z, Ullah S, Yan J, Wang Z, Ullah I, Ahmad Z, Zhang Y, Cao Y, Wang L, Mansoorianfar M, Pei R. Electrospun tannin-rich nanofibrous solid-state membrane for wastewater environmental monitoring and remediation. CHEMOSPHERE 2022; 307:135810. [PMID: 35932921 DOI: 10.1016/j.chemosphere.2022.135810] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal, organic dyes, and bacterial contamination in water endanger human/animals' health, and therefore, the detection, adsorption, and capturing of contaminants are essential for environmental safety. Ligand-rich membranes are promising for sensors, adsorption, and bacterial decontamination. Herein, tannin (TA)-reinforced 3-aminopropyltriethoxysilane (APTES) crosslinked polycaprolactone (PCL) based nanofibrous membrane (PCL-TA-APTES) was fabricated via electrospinning. PCL-TA-APTES nanofibers possess superior thermal, mechanical, structural, chemical, and aqueous stability properties than the un-crosslinked membrane. It changed its color from yellowish to black in response to Fe2+/3+ ions due to supramolecular iron-tannin network (FeTA) interaction. Such selective sensing has been noticed after adsorption-desorption cycles. Fe3+ concentration, solution pH, contact time, and ligand concentration influence FeTA coordination. Under optimized conditions followed by image processing, the introduced membrane showed a colorimetric linear relationship against Fe3+ ions (16.58 μM-650 μM) with a limit of detection of 5.47 μM. The PCL-FeTA-APTES membrane could restrain phenolic group oxidation and result in a partial water-insoluble network. The adsorption filtration results showed that the PCL-FeTA-APTES membrane can be reused and had a higher methylene blue adsorption (32.04 mg/g) than the PCL-TA-APTES membrane (14.96 mg/g). The high capture efficiency of nanocomposite against Fe3+-based S. aureus suspension than Fe3+-free suspension demonstrated that Fe3+-bounded bacterium adhered to the nanocomposite through Fe3+/TA-dependent biointerface interactions. Overall, high surface area, rich phenolic ligand, porous microstructure, and super-wetting properties expedite FeTA coordination in the nanocomposite, crucial for Fe2+/3+ ions sensing, methylene blue adsorption-filtration, and capturing of Fe3+-bounded bacterium. These multifunctional properties could promise nanocomposite membrane practicability in wastewater and environmental protection.
Collapse
Affiliation(s)
- Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, PR China; Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, PR China; Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Jincong Yan
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, PR China; Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Zhili Wang
- Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Ismat Ullah
- Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Zia Ahmad
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Ye Zhang
- Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Yi Cao
- Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Li Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, PR China; Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Mojtaba Mansoorianfar
- Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, 230026, PR China; Suzhou Key Laboratory of Functional Molecular Imaging Technology, CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, PR China.
| |
Collapse
|
12
|
Dsouza A, Constantinidou C, Arvanitis TN, Haddleton DM, Charmet J, Hand RA. Multifunctional Composite Hydrogels for Bacterial Capture, Growth/Elimination, and Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47323-47344. [PMID: 36222596 PMCID: PMC9614723 DOI: 10.1021/acsami.2c08582] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Hydrogels are cross-linked networks of hydrophilic polymer chains with a three-dimensional structure. Owing to their unique features, the application of hydrogels for bacterial/antibacterial studies and bacterial infection management has grown in importance in recent years. This trend is likely to continue due to the rise in bacterial infections and antimicrobial resistance. By exploiting their physicochemical characteristics and inherent nature, hydrogels have been developed to achieve bacterial capture and detection, bacterial growth or elimination, antibiotic delivery, or bacterial sensing. Traditionally, the development of hydrogels for bacterial/antibacterial studies has focused on achieving a single function such as antibiotic delivery, antibacterial activity, bacterial growth, or bacterial detection. However, recent studies demonstrate the fabrication of multifunctional hydrogels, where a single hydrogel is capable of performing more than one bacterial/antibacterial function, or composite hydrogels consisting of a number of single functionalized hydrogels, which exhibit bacterial/antibacterial function synergistically. In this review, we first highlight the hydrogel features critical for bacterial studies and infection management. Then, we specifically address unique hydrogel properties, their surface/network functionalization, and their mode of action for bacterial capture, adhesion/growth, antibacterial activity, and bacterial sensing, respectively. Finally, we provide insights into different strategies for developing multifunctional hydrogels and how such systems can help tackle, manage, and understand bacterial infections and antimicrobial resistance. We also note that the strategies highlighted in this review can be adapted to other cell types and are therefore likely to find applications beyond the field of microbiology.
Collapse
Affiliation(s)
- Andrea Dsouza
- Warwick
Manufacturing Group, The University of Warwick, Coventry, United Kingdom CV4 7AL
| | | | - Theodoros N. Arvanitis
- Institute
of Digital Healthcare, Warwick Manufacturing Group, The University of Warwick, Coventry, United Kingdom CV4 7AL
| | - David M. Haddleton
- Department
of Chemistry, The University of Warwick, Coventry, United Kingdom CV4 7AL
| | - Jérôme Charmet
- Warwick
Manufacturing Group, The University of Warwick, Coventry, United Kingdom CV4 7AL
- Warwick
Medical School, The University of Warwick, Coventry, United Kingdom CV4 7AL
- School
of Engineering—HE-Arc Ingénierie, HES-SO University of Applied Sciences Western Switzerland, 2000 Neuchâtel, Switzerland
| | - Rachel A. Hand
- Department
of Chemistry, The University of Warwick, Coventry, United Kingdom CV4 7AL
| |
Collapse
|
13
|
Costa SP, Nogueira CL, Cunha AP, Lisac A, Carvalho CM. Potential of bacteriophage proteins as recognition molecules for pathogen detection. Crit Rev Biotechnol 2022:1-18. [PMID: 35848817 DOI: 10.1080/07388551.2022.2071671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacterial pathogens are leading causes of infections with high mortality worldwide having a great impact on healthcare systems and the food industry. Gold standard methods for bacterial detection mainly rely on culture-based technologies and biochemical tests which are laborious and time-consuming. Regardless of several developments in existing methods, the goal of achieving high sensitivity and specificity, as well as a low detection limit, remains unaccomplished. In past years, various biorecognition elements, such as antibodies, enzymes, aptamers, or nucleic acids, have been widely used, being crucial for the pathogens detection in different complex matrices. However, these molecules are usually associated with high detection limits, demand laborious and costly production, and usually present cross-reactivity. (Bacterio)phage-encoded proteins, especially the receptor binding proteins (RBPs) and cell-wall binding domains (CBDs) of endolysins, are responsible for the phage binding to the bacterial surface receptors in different stages of the phage lytic cycle. Due to their remarkable properties, such as high specificity, sensitivity, stability, and ability to be easily engineered, they are appointed as excellent candidates to replace conventional recognition molecules, thereby contributing to the improvement of the detection methods. Moreover, they offer several possibilities of application in a variety of detection systems, such as magnetic, optical, and electrochemical. Herein we provide a review of phage-derived bacterial binding proteins, namely the RBPs and CBDs, with the prospect to be employed as recognition elements for bacteria. Moreover, we summarize and discuss the various existing methods based on these proteins for the detection of nosocomial and foodborne pathogens.
Collapse
Affiliation(s)
- Susana P Costa
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,International Iberian Nanotechnology Laboratory, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC MN), IN-Institute of Nanoscience and Nanotechnolnology, Lisbon, Portugal
| | - Catarina L Nogueira
- International Iberian Nanotechnology Laboratory, Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC MN), IN-Institute of Nanoscience and Nanotechnolnology, Lisbon, Portugal
| | - Alexandra P Cunha
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Ana Lisac
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Carla M Carvalho
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
14
|
Abdelfadil MR, Taha MH, El-Hadidi M, Hamza MA, Youssef HH, Khalil M, Henawy AR, Nemr RA, Elsawey H, Tchuisseu Tchakounte GV, Abbas M, Youssef GH, Witzel K, Shawky ME, Fayez M, Kolb S, Hegazi NA, Ruppel S. Clay chips and beads capture in situ barley root microbiota and facilitate in vitro long-term preservation of microbial strains. FEMS Microbiol Ecol 2022; 98:fiac064. [PMID: 35641146 PMCID: PMC9249396 DOI: 10.1093/femsec/fiac064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
Capturing the diverse microbiota from healthy and/or stress resilient plants for further preservation and transfer to unproductive and pathogen overloaded soils, might be a tool to restore disturbed plant-microbe interactions. Here, we introduce Aswan Pink Clay as a low-cost technology for capturing and storing the living root microbiota. Clay chips were incorporated into the growth milieu of barley plants and developed under gnotobiotic conditions, to capture and host the rhizospheric microbiota. Afterward, it was tested by both a culture-independent (16S rRNA gene metabarcoding) and -dependent approach. Both methods revealed no significant differences between roots and adjacent clay chips in regard total abundance and structure of the present microbiota. Clay shaped as beads adequately supported the long-term preservation of viable pure isolates of typical rhizospheric microbes, i.e. Bacillus circulans, Klebsiella oxytoca, Sinorhizobium meliloti, and Saccharomyces sp., up to 11 months stored at -20°C, 4°C, and ambient temperature. The used clay chips and beads have the capacity to capture the root microbiota and to long-term preserve pure isolates. Hence, the developed approach is qualified to build on it a comprehensive strategy to transfer and store complex and living environmental microbiota of rhizosphere toward biotechnological application in sustainable plant production and environmental rehabilitation.
Collapse
Affiliation(s)
- Mohamed R Abdelfadil
- Thaer-Institute, Faculty of Life Sciences, Humboldt University of Berlin, 10115 Berlin, Germany
- Department of Microbiology, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
- Department of Plant Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
- RA Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
| | - Manar H Taha
- Bioinformatics Group, Center of Informatics Sciences (CIS), Nile University, 12677 Giza, Egypt
| | - Mohamed El-Hadidi
- Bioinformatics Group, Center of Informatics Sciences (CIS), Nile University, 12677 Giza, Egypt
| | - Mervat A Hamza
- Department of Microbiology, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Hanan H Youssef
- Department of Microbiology, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Mohab Khalil
- Department of Microbiology, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Ahmed R Henawy
- Department of Microbiology, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Rahma A Nemr
- Department of Microbiology, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Hend Elsawey
- Faculty of Organic Agriculture, Heliopolis University, 11785 Cairo, Egypt
| | | | - Mohamed Abbas
- Department of Microbiology, Faculty of Agriculture and Natural Resources, Aswan University, 81528 Aswan, Egypt
| | - Gehan H Youssef
- Department of Soil Chemistry and Physics, Soil, Water and Environment Research Institute, Agricultural Research Centre (ARC), 12112 Giza, Egypt
| | - Katja Witzel
- Department of Plant Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Mohamed Essam Shawky
- Department of Soil Science, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Mohamed Fayez
- Department of Microbiology, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Steffen Kolb
- Thaer-Institute, Faculty of Life Sciences, Humboldt University of Berlin, 10115 Berlin, Germany
- RA Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
| | - Nabil A Hegazi
- Department of Microbiology, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Silke Ruppel
- Department of Plant Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| |
Collapse
|
15
|
Wang B, Park B. Microfluidic Sampling and Biosensing Systems for Foodborne Escherichia coli and Salmonella. Foodborne Pathog Dis 2022; 19:359-375. [PMID: 35713922 DOI: 10.1089/fpd.2021.0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developments of portable biosensors for field-deployable detections have been increasingly important to control foodborne pathogens in regulatory environment and in early stage of outbreaks. Conventional cultivation and gene amplification methods require sophisticated instruments and highly skilled professionals; while portable biosensing devices provide more freedom for rapid detections not only in research laboratories but also in the field; however, their sensitivity and specificity are limited. Microfluidic methods have the advantage of miniaturizing instrumental size while integrating multiple functions and high-throughput capability into one streamlined system at low cost. Minimal sample consumption is another advantage to detect samples in different sizes and concentrations, which is important for the close monitoring of pathogens at consumer end. They improve measurement or manipulation of bacteria by increasing the ratio of functional interface of the device to the targeted biospecies and in turn reducing background interference. This article introduces the major active and passive microfluidic devices that have been used for bacteria sampling and biosensing. The emphasis is on particle-based sorting/enrichment methods with or without external physical fields applied to the microfluidic devices and on various biosensing applications reported for bacteria sampling. Three major fabrication methods for microfluidics are briefly discussed with their advantages and limitations. The applications of these active and passive microfluidic sampling methods in the past 5 years have been summarized, with the focus on Escherichia coli and Salmonella. The current challenges to microfluidic bacteria sampling are caused by the small size and nonspherical shape of various bacterial cells, which can induce unpredictable deviations in sampling and biosensing processes. Future studies are needed to develop rapid prototyping methods for device manufacturing, which can facilitate rapid response to various foodborne pathogen outbreaks.
Collapse
Affiliation(s)
- Bin Wang
- U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Bosoon Park
- U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| |
Collapse
|
16
|
Sande MG, Rodrigues JL, Ferreira D, Silva CJ, Rodrigues LR. Novel Biorecognition Elements against Pathogens in the Design of State-of-the-Art Diagnostics. BIOSENSORS 2021; 11:bios11110418. [PMID: 34821636 PMCID: PMC8615483 DOI: 10.3390/bios11110418] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 05/21/2023]
Abstract
Infectious agents, especially bacteria and viruses, account for a vast number of hospitalisations and mortality worldwide. Providing effective and timely diagnostics for the multiplicity of infectious diseases is challenging. Conventional diagnostic solutions, although technologically advanced, are highly complex and often inaccessible in resource-limited settings. An alternative strategy involves convenient rapid diagnostics which can be easily administered at the point-of-care (POC) and at low cost without sacrificing reliability. Biosensors and other rapid POC diagnostic tools which require biorecognition elements to precisely identify the causative pathogen are being developed. The effectiveness of these devices is highly dependent on their biorecognition capabilities. Naturally occurring biorecognition elements include antibodies, bacteriophages and enzymes. Recently, modified molecules such as DNAzymes, peptide nucleic acids and molecules which suffer a selective screening like aptamers and peptides are gaining interest for their biorecognition capabilities and other advantages over purely natural ones, such as robustness and lower production costs. Antimicrobials with a broad-spectrum activity against pathogens, such as antibiotics, are also used in dual diagnostic and therapeutic strategies. Other successful pathogen identification strategies use chemical ligands, molecularly imprinted polymers and Clustered Regularly Interspaced Short Palindromic Repeats-associated nuclease. Herein, the latest developments regarding biorecognition elements and strategies to use them in the design of new biosensors for pathogens detection are reviewed.
Collapse
Affiliation(s)
- Maria G. Sande
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
| | - Joana L. Rodrigues
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
| | - Débora Ferreira
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
| | - Carla J. Silva
- CENTI—Center for Nanotechnology and Smart Materials, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal;
- CITEVE—Technological Center for the Textile and Clothing Industries of Portugal, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Ligia R. Rodrigues
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
- Correspondence: ; Tel.: +351-253601978
| |
Collapse
|
17
|
Vetchinin SS, Shevyakov AG, Khomyakov AE, Mironova RI, Mokrievich AN, Biketov SF. Development of an immunoassay test system based on monoclonal antybodies and immunomagnetic particles for the detection of F. tularensis cells. Klin Lab Diagn 2021; 66:353-357. [PMID: 34105911 DOI: 10.51620/0869-2084-2021-66-6-353-357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tularemia is an especially dangerous infection caused by the gram-negative bacterium Francisella tularensis. It belongs to natural focal infections, and therefore is under continuous control by quarantine services. When carrying out their activities they use a whole range of diagnostic tools. The objective of this research is to develop an enzyme immunoassay based on highly specific monoclonal antibodies and immunomagnetic particles for monitoring the tularemia pathogen. To produce hybridomas mice were immunized with cells of the vaccine strain F. tularensis subsp. holarctica 15 NIIEG. After cell fusion hybridomas were selected by a solid-phase enzyme immunoassay (ELISA) using lipopolysaccharide (LPS) of the tularemia microbe. As a result, two hybridomas, 1C2 and 3F5, were produced. MABs of the hybridomas were obtained by using BALB / c mice. The MABs were purified by sepharose A affinity chromatography and used for conjugation with magnetic particles, and for biotinylation followed by matching a pair for ELISA. The pair of IMPs and MABs 3F5 as well as biotinylated FB11-x MABs was the best in detecting tularemia cells. The use of this MAB pair in ELISA allowed the identification of 105 microbial cells/ml in a 4 ml sample and 5×103 microbial cells/ml in a 45ml sample. Interaction with F. tularensis subsp. novicida Utah112 cells was absent.
Collapse
Affiliation(s)
- S S Vetchinin
- State Research Center of Applied Microbiology and Biotechnology
| | | | - A E Khomyakov
- State Research Center of Applied Microbiology and Biotechnology
| | - R I Mironova
- State Research Center of Applied Microbiology and Biotechnology
| | - A N Mokrievich
- State Research Center of Applied Microbiology and Biotechnology
| | - S F Biketov
- State Research Center of Applied Microbiology and Biotechnology
| |
Collapse
|
18
|
Cunha AP, Henriques R, Cardoso S, Freitas PP, Carvalho CM. Rapid and multiplex detection of nosocomial pathogens on a phage-based magnetoresistive lab-on-chip platform. Biotechnol Bioeng 2021; 118:3164-3174. [PMID: 34037981 DOI: 10.1002/bit.27841] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 11/11/2022]
Abstract
Nosocomial or hospital-acquired infections (HAIs) have a major impact on mortality worldwide. Enterococcus and Staphylococcus are among the leading causes of HAIs and thus are important pathogens to control mainly due to their increased antibiotic resistance. The gold-standard diagnostic methods for HAIs are time-consuming, which hinders timely and adequate treatment. Therefore, the development of fast and accurate diagnostic tools is an urgent demand. In this study, we combined the sensitivity of magnetoresistive (MR) sensors, the portability of a lab-on-chip platform, and the specificity of phage receptor binding proteins (RBPs) as probes for the rapid and multiplex detection of Enterococcus and Staphylococcus. For this, bacterial cells were firstly labelled with magnetic nanoparticles (MNPs) functionalized with RBPs and then measured on the MR sensors. The results indicate that the RBP-MNPS provided a specific individual and simultaneous capture of more than 70% of Enterococcus and Staphylococcus cells. Moreover, high signals from the MR sensors were obtained for these samples, providing the detection of both pathogens at low concentrations (10 CFU/ml) in less than 2 h. Overall, the lab-on-chip MR platform herein presented holds great potential to be used as a point-of-care for the rapid, sensitive and specific multiplex diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Alexandra P Cunha
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal.,Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Raquel Henriques
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - Susana Cardoso
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - Paulo P Freitas
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal.,Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - Carla M Carvalho
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| |
Collapse
|
19
|
Santos SB, Cunha AP, Macedo M, Nogueira CL, Brandão A, Costa SP, Melo LDR, Azeredo J, Carvalho CM. Bacteriophage‐receptor binding proteins for multiplex detection of
Staphylococcus
and
Enterococcus
in blood. Biotechnol Bioeng 2020; 117:3286-3298. [DOI: 10.1002/bit.27489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/23/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Sílvio B. Santos
- Centre of Biological Engineering University of Minho Braga Portugal
| | | | - Mariana Macedo
- Centre of Biological Engineering University of Minho Braga Portugal
| | - Catarina L. Nogueira
- International Iberian Nanotechnology Laboratory Braga Portugal
- Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC MN) and IN – Institute of Nanoscience and Nanotechnolnology Lisbon Portugal
| | - Ana Brandão
- Centre of Biological Engineering University of Minho Braga Portugal
| | - Susana P. Costa
- Centre of Biological Engineering University of Minho Braga Portugal
- International Iberian Nanotechnology Laboratory Braga Portugal
- Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC MN) and IN – Institute of Nanoscience and Nanotechnolnology Lisbon Portugal
| | - Luís D. R. Melo
- Centre of Biological Engineering University of Minho Braga Portugal
| | - Joana Azeredo
- Centre of Biological Engineering University of Minho Braga Portugal
| | - Carla M. Carvalho
- Centre of Biological Engineering University of Minho Braga Portugal
- International Iberian Nanotechnology Laboratory Braga Portugal
| |
Collapse
|
20
|
|
21
|
Pardoux É, Boturyn D, Roupioz Y. Antimicrobial Peptides as Probes in Biosensors Detecting Whole Bacteria: A Review. Molecules 2020; 25:E1998. [PMID: 32344585 PMCID: PMC7221689 DOI: 10.3390/molecules25081998] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
Bacterial resistance is becoming a global issue due to its rapid growth. Potential new drugs as antimicrobial peptides (AMPs) are considered for several decades as promising candidates to circumvent this threat. Nonetheless, AMPs have also been used more recently in other settings such as molecular probes grafted on biosensors able to detect whole bacteria. Rapid, reliable and cost-efficient diagnostic tools for bacterial infection could prevent the spread of the pathogen from the earliest stages. Biosensors based on AMPs would enable easy monitoring of potentially infected samples, thanks to their powerful versatility and integrability in pre-existent settings. AMPs, which show a broad spectrum of interactions with bacterial membranes, can be tailored in order to design ubiquitous biosensors easily adaptable to clinical settings. This review aims to focus on the state of the art of AMPs used as the recognition elements of whole bacteria in label-free biosensors with a particular focus on the characteristics obtained in terms of threshold, volume of sample analysable and medium, in order to assess their workability in real-world applications.
Collapse
Affiliation(s)
- Éric Pardoux
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France;
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France;
| | - Didier Boturyn
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France;
| | - Yoann Roupioz
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France;
| |
Collapse
|