1
|
Banki K, Perl A. Cell type-specific regulation of the pentose phosphate pathway during development and metabolic stress-driven autoimmune diseases: Relevance for inflammatory liver, renal, endocrine, cardiovascular and neurobehavioral comorbidities, carcinogenesis, and aging. Autoimmun Rev 2025; 24:103781. [PMID: 40010622 DOI: 10.1016/j.autrev.2025.103781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
The pathogenesis of autoimmunity is incompletely understood which limits the development of effective therapies. New compelling evidence indicates that the pentose phosphate pathway (PPP) profoundly regulate lineage development in the immune system that are influenced by genetic and environmental factors during metabolic stress underlying the development of autoimmunity. The PPP provides two unique metabolites, ribose 5-phosphate for nucleotide biosynthesis in support of cell proliferation and NADPH for protection against oxidative stress. The PPP operates two separate branches, oxidative (OxPPP) and non-oxidative (NOxPPP). While the OxPPP functions in all organisms, the NOxPPP reflects adaptation to niche-specific metabolic requirements. The OxPPP primarily depends on glucose 6-phosphate dehydrogenase (G6PD), whereas transaldolase (TAL) controls the rate and directionality of metabolic flux though the NOxPPP. G6PD is essential for normal development but its partial deficiency protects from malaria. Although men and mice lacking TAL develop normally, they exhibit liver cirrhosis progressing to hepatocellular carcinoma. Mechanistic target of rapamycin-dependent loss of paraoxonase 1 drives autoimmunity and cirrhosis in TAL deficiency, while hepatocarcinogenesis hinges on polyol pathway activation via aldose reductase (AR). Accumulated polyols, such as erythritol, xylitol, and sorbitol, which are commonly used as non-caloric sweeteners, may act as pro-inflammatory oncometabolites under metabolic stress, such as TAL deficiency. The TAL/AR axis is identified as a checkpoint of pathogenesis and target for treatment of metabolic stress-driven systemic autoimmunity with relevance for inflammatory liver, renal and cardiovascular disorders, diabetes, carcinogenesis, and aging.
Collapse
Affiliation(s)
- Katalin Banki
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, and Pathology, State University of New York Upstate Medical University, Norton College of Medicine, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Andras Perl
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, and Pathology, State University of New York Upstate Medical University, Norton College of Medicine, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
2
|
Ivanovová E, Piskláková B, Dobešová D, Janečková H, Foltenová H, Kvasnička A, Prídavok M, Bouchalová K, de Sousa J, Friedecký D. Wide metabolite coverage LC-MS/MS assay for the diagnosis of inherited metabolic disorders in urine. Talanta 2024; 271:125699. [PMID: 38262132 DOI: 10.1016/j.talanta.2024.125699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
OBJECTIVE The laboratory diagnosis of inherited metabolic disorders (IMD) has undergone significant development in recent decades, mainly due to the use of mass spectrometry, which allows rapid multicomponent analysis of a wide range of metabolites. Combined with advanced software tools, the diagnosis becomes more efficient as a benefit for both physicians and patients. METHODS A hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry assay for determination of urinary purines, pyrimidines, N-acylglycines, N-acetylated amino acids, sugars, sugar alcohols and other diagnostically important biomarkers was developed and validated. Evaluation of the results consisting of utilisation of robust scaling and advanced visualization tools is simple and even suitable for urgent requirements. RESULTS The developed method, covering 65 biomarkers, provides a comprehensive diagnostic platform for 51 IMD. For most analytes, linearity with R2 > 0.99, intra and inter-day accuracy between 80 and 120 % and precision lower than 20 % were achieved. Diagnostic workflow was evaluated on 47 patients and External Quality Assurance samples involving a total of 24 different IMD. Over seven years, more than 2300 urine samples from patients suspected for IMD have been routinely analysed. CONCLUSIONS This method offers the advantage of a broad coverage of intermediate metabolites of interest and therefore may be a potential alternative and simplification for clinical laboratories that use multiple methods for screening these markers.
Collapse
Affiliation(s)
- Eliška Ivanovová
- Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic; Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc, Czech Republic
| | - Barbora Piskláková
- Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Dana Dobešová
- Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Hana Janečková
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc, Czech Republic
| | - Hana Foltenová
- Department of Pediatrics, University Hospital Olomouc, Olomouc, Czech Republic
| | - Aleš Kvasnička
- Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Matúš Prídavok
- Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic; Centre for Inherited Metabolic Disorders, National Institute of Childhood Diseases, Bratislava, Slovakia
| | - Kateřina Bouchalová
- Department of Pediatrics, University Hospital Olomouc, Olomouc, Czech Republic
| | - Julie de Sousa
- Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic; Department of Mathematical Analysis and Applications of Mathematics, Palacky University Olomouc, Czech Republic
| | - David Friedecký
- Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic; Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Takaleh A, Abunamous N, AlShamsi A, Alhassani N, Almazrouei R. Hypergonadotropic Hypogonadism Due to Transaldolase Deficiency: Two Cases and Literature Review. JCEM CASE REPORTS 2024; 2:luae028. [PMID: 38440129 PMCID: PMC10911397 DOI: 10.1210/jcemcr/luae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Indexed: 03/06/2024]
Abstract
Transaldolase deficiency is a rare autosomal recessive inborn error of carbohydrate metabolism caused by pathogenic/likely pathogenic biallelic mutations in the TALDO1 gene. This disorder is characterized by multisystem involvement with variable phenotypes, including intrauterine growth restriction; dysmorphic features; abnormal skin; hepatosplenomegaly; cytopenia; and cardiac, renal, and endocrine abnormalities. Herein, we present two Emirati patients with hypergonadotropic hypogonadism due to transaldolase deficiency and variable phenotypes of systemic involvement.
Collapse
Affiliation(s)
- Akram Takaleh
- Department of Internal Medicine, Tawam Hospital, Al Ain, United Arab Emirates
| | - Nasser Abunamous
- Department of Internal Medicine, Tawam Hospital, Al Ain, United Arab Emirates
| | - Aisha AlShamsi
- Division of Genetics and Metabolic, Department of Paediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Noura Alhassani
- Division of Endocrine and Diabetes, Department of Pediatrics, Tawam Hospital
- Department of Paediatrics, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Raya Almazrouei
- Division of Endocrinology, Department of Internal Medicine, Tawam Hospital, Al Ain, United Arab Emirates
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Mazi TA, Stanhope KL. Elevated Erythritol: A Marker of Metabolic Dysregulation or Contributor to the Pathogenesis of Cardiometabolic Disease? Nutrients 2023; 15:4011. [PMID: 37764794 PMCID: PMC10534702 DOI: 10.3390/nu15184011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Erythritol is a non-nutritive sugar replacement that can be endogenously produced by humans. Witkowski et al. reported that elevated circulating erythritol is associated with adverse cardiovascular events in three independent cohorts, demonstrated in vitro and ex vivo that erythritol promotes platelet activation, and showed faster clotting time in mice injected with erythritol. It was concluded that erythritol fosters enhanced thrombosis. This narrative review presents additional evidence that needs to be considered when evaluating these data and conclusions. We conducted a search of all studies related to erythritol exposure with focus on those that reported vascular health outcomes. Patients with chronically elevated erythritol levels due to inborn errors of metabolism do not exhibit higher platelet activation or thrombosis risk. Most long-term studies in which animals consumed high levels of erythritol do not support its role in platelet activation and thrombosis formation. Clinical data on the effects of chronic intake of erythritol are limited. Erythritol may be merely a marker of dysregulation in the Pentose Phosphate Pathway caused by impaired glycemia. However, this suggestion and the findings of Witkowski et al. need to be further examined. Clinical trials examining the long-term effects of erythritol consumption on cardiometabolic outcomes are required to test the causality between dietary erythritol and cardiometabolic risk. Until supportive data from these trials are available, it cannot be concluded that dietary erythritol promotes platelet activation, thrombosis, and cardiometabolic risk.
Collapse
Affiliation(s)
- Tagreed A. Mazi
- Department of Community Health Sciences-Clinical Nutrition, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Kimber L. Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| |
Collapse
|
5
|
Zaqout S, Mannaa A, Klein O, Krajewski A, Klose J, Luise-Becker L, Elsabagh A, Ferih K, Kraemer N, Ravindran E, Makridis K, Kaindl AM. Proteome changes in autosomal recessive primary microcephaly. Ann Hum Genet 2023; 87:50-62. [PMID: 36448252 DOI: 10.1111/ahg.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND/AIM Autosomal recessive primary microcephaly (MCPH) is a rare and genetically heterogeneous group of disorders characterized by intellectual disability and microcephaly at birth, classically without further organ involvement. MCPH3 is caused by biallelic variants in the cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the corresponding Cdk5rap2 mutant or Hertwig's anemia mouse model, congenital microcephaly as well as defects in the hematopoietic system, germ cells and eyes have been reported. The reduction in brain volume, particularly affecting gray matter, has been attributed mainly to disturbances in the proliferation and survival of early neuronal progenitors. In addition, defects in dendritic development and synaptogenesis exist that affect the excitation-inhibition balance. Here, we studied proteomic changes in cerebral cortices of Cdk5rap2 mutant mice. MATERIAL AND METHODS We used large-gel two-dimensional gel (2-DE) electrophoresis to separate cortical proteins. 2-DE gels were visualized by a trained observer on a light box. Spot changes were considered with respect to presence/absence, quantitative variation and altered mobility. RESULT We identified a reduction in more than 30 proteins that play a role in processes such as cell cytoskeleton dynamics, cell cycle progression, ciliary functions and apoptosis. These proteome changes in the MCPH3 model can be associated with various functional and morphological alterations of the developing brain. CONCLUSION Our results shed light on potential protein candidates for the disease-associated phenotype reported in MCPH3.
Collapse
Affiliation(s)
- Sami Zaqout
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Atef Mannaa
- Higher Institute of Engineering and Technology, New Borg AlArab City, Alexandria, Egypt.,Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire & Spectrométrie de Masse (PRISM), Université de Lille, Lille, France
| | - Oliver Klein
- BIH Center for Regenerative Therapies BCRT, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Charité-Universitätsmedizin Berlin (BIH), Berlin, Germany
| | - Angelika Krajewski
- BIH Center for Regenerative Therapies BCRT, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Charité-Universitätsmedizin Berlin (BIH), Berlin, Germany
| | - Joachim Klose
- Charité-Universitätsmedizin, Institute of Human Genetics, Berlin, Germany
| | - Lena Luise-Becker
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ahmed Elsabagh
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Khaled Ferih
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Nadine Kraemer
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ethiraj Ravindran
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Konstantin Makridis
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Angela M Kaindl
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
6
|
Menon J, Vij M, Sachan D, Rammohan A, Shanmugam N, Kaliamoorthy I, Rela M. Pediatric metabolic liver diseases: Evolving role of liver transplantation. World J Transplant 2021; 11:161-179. [PMID: 34164292 PMCID: PMC8218348 DOI: 10.5500/wjt.v11.i6.161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/13/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic liver diseases (MLD) are the second most common indication for liver transplantation (LT) in children. This is based on the fact that the majority of enzymes involved in various metabolic pathways are present within the liver and LT can cure or at least control the disease manifestation. LT is also performed in metabolic disorders for end-stage liver disease, its sequelae including hepatocellular cancer. It is also performed for preventing metabolic crisis', arresting progression of neurological dysfunction with a potential to reverse symptoms in some cases and for preventing damage to end organs like kidneys as in the case of primary hyperoxalosis and methyl malonic acidemia. Pathological findings in explant liver with patients with metabolic disease include unremarkable liver to steatosis, cholestasis, inflammation, variable amount of fibrosis, and cirrhosis. The outcome of LT in metabolic disorders is excellent except for patients with mitochondrial disorders where significant extrahepatic involvement leads to poor outcomes and hence considered a contraindication for LT. A major advantage of LT is that in the post-operative period most patients can discontinue the special formula which they were having prior to the transplant and this increases their well-being and improves growth parameters. Auxiliary partial orthotopic LT has been described for patients with noncirrhotic MLD where a segmental graft is implanted in an orthotopic position after partial resection of the native liver. The retained native liver can be the potential target for future gene therapy when it becomes a clinical reality.
Collapse
Affiliation(s)
- Jagadeesh Menon
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Mukul Vij
- Department of Pathology, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Deepti Sachan
- Department of Transfusion Medicine, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Ashwin Rammohan
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Naresh Shanmugam
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Ilankumaran Kaliamoorthy
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Mohamed Rela
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| |
Collapse
|
7
|
Schlicker L, Szebenyi DME, Ortiz SR, Heinz A, Hiller K, Field MS. Unexpected roles for ADH1 and SORD in catalyzing the final step of erythritol biosynthesis. J Biol Chem 2019; 294:16095-16108. [PMID: 31511322 PMCID: PMC6827307 DOI: 10.1074/jbc.ra119.009049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/03/2019] [Indexed: 11/06/2022] Open
Abstract
The low-calorie sweetener erythritol is endogenously produced from glucose through the pentose phosphate pathway in humans. Erythritol is of medical interest because elevated plasma levels of this polyol are predictive for visceral adiposity gain and development of type 2 diabetes. However, the mechanisms behind these associations remain unknown because the erythritol biosynthesis pathway, particularly the enzyme catalyzing the final step of erythritol synthesis (reduction of erythrose to erythritol), is not characterized. In this study, we purified two enzymes from rabbit liver capable of catalyzing the conversion of erythrose to erythritol: alcohol dehydrogenase 1 (ADH1) and sorbitol dehydrogenase (SORD). Both recombinant human ADH1 and SORD reduce erythrose to erythritol, using NADPH as a co-factor, and cell culture studies indicate that this activity is primarily NADPH-dependent. We found that ADH1 variants vary markedly in both their affinity for erythrose and their catalytic capacity (turnover number). Interestingly, the recombinant protein produced from the ADH1B2 variant, common in Asian populations, is not active when NADPH is used as a co-factor in vitro We also confirmed SORD contributes to intracellular erythritol production in human A549 lung cancer cells, where ADH1 is minimally expressed. In summary, human ADH1 and SORD catalyze the conversion of erythrose to erythritol, pointing to novel roles for two dehydrogenase proteins in human glucose metabolism that may contribute to individual responses to diet. Proteomics data are available via ProteomeXchange with identifier PXD015178.
Collapse
Affiliation(s)
- Lisa Schlicker
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | | | - Semira R Ortiz
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853
| | - Alexander Heinz
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Helmholtz Zentrum für Infektionsforschung, 38124 Braunschweig, Germany
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853
| |
Collapse
|
8
|
Lipiński P, Stradomska T, Tylki-Szymańska A. [Transaldolase deficiency - clinical outcome, pathogenesis, diagnostic process]. DEVELOPMENTAL PERIOD MEDICINE 2018; 22. [PMID: 30056406 PMCID: PMC8522900 DOI: 10.34763/devperiodmed.20182202.187196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transaldolase deficiency is a rare inborn autosomal recessive error of the pentose phosphate pathway that, to date, has been diagnosed in 33 patients, including 4 from Poland. The aim of this manuscript was to present the clinical presentation, pathogenesis and diagnostic process of transaldolase deficiency. The authors also present a diagnostic algorithm of transaldolase deficiency.
Collapse
Affiliation(s)
- Patryk Lipiński
- Klinika Gastroenterologii, Hepatologii, Zaburzeń Odżywiania i Pediatrii, Instytut ,,Pomnik-Centrum Zdrowia Dziecka’’, Warszawa, Polska,Patryk Lipiński Klinika Gastroenterologii, Hepatologii, Zaburzeń Odżywiania i Pediatrii, Instytut ,,Pomnik-Centrum Zdrowia Dziecka’’ Al. Dzieci Polskich 20, 04-730 Warszawa tel. (22) 815-18-74
| | - Teresa Stradomska
- Pracownia Badań Radioimmunologicznych i Biochemii, Instytut ,,Pomnik-Centrum Zdrowia Dziecka’’, Warszawa, Polska
| | - Anna Tylki-Szymańska
- Klinika Pediatrii, Żywienia i Chorób Metabolicznych, Instytut ,,Pomnik-Centrum Zdrowia Dziecka’’, Warszawa, Polska
| |
Collapse
|
9
|
Abstract
INTRODUCTION Transaldolase deficiency (TALDO; OMIM 606003) is a rare inborn autosomal recessive error of the pentose phosphate pathway that, to date, has been diagnosed in 33 patients. Tżhere are few reports regarding the long-term follow-up of these patients.The aim of our study is to present the disease progression in the form of a systematic long-term follow-up of four Polish patients with TALDO. METHODS AND RESULTS We report four patients who manifested early onset TALDO. They were monitored with systematic clinical and laboratory examinations for 4-13 years. The dominant feature was an early liver injury, with subsequent renal tubulopathy. All patients presented with osteopenia and poor physical development. Our data shows that polyol concentrations seem to decrease with age. CONCLUSIONS In our patients, a progressive coagulopathy was the most sensitive parameter of liver dysfunction. Nodular fibrosis of the liver developed over the natural course of TALDO. This is the first report of long-term systematic clinical and biochemical monitoring of the disease progress in patients with TALDO.
Collapse
|
10
|
Forthun RB, Aasebø E, Rasinger JD, Bedringaas SL, Berven F, Selheim F, Bruserud Ø, Gjertsen BT. Phosphoprotein DIGE profiles reflect blast differentiation, cytogenetic risk stratification, FLT3/NPM1 mutations and therapy response in acute myeloid leukaemia. J Proteomics 2017; 173:32-41. [PMID: 29175091 DOI: 10.1016/j.jprot.2017.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/30/2017] [Accepted: 11/18/2017] [Indexed: 12/12/2022]
Abstract
Acute myeloid leukaemia (AML) is an aggressive blood cancer characterized by a distinct block in differentiation of myeloid progenitors, recurrent chromosomal translocations and gene mutations of which >50% involve signal transduction through dysregulated kinases and phosphatases. In search for novel protein biomarkers for disease stratification we investigated the phosphoproteome in leukaemic cells from 62 AML patients at time of diagnosis using immobilized metal-affinity chromatography, protein separation by two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry before validation by selected reaction monitoring (SRM). Unsupervised clustering found 27 phosphoproteins significantly discriminating patients according to leukaemic cell differentiation (French-American-British (FAB) classification), cytogenetic and mutational (FLT3, NPM1) status or response to chemotherapy. Monocytic differentiation (FAB M4-M5) correlated with enrichment of proteins involved in apoptosis (MOES, ANXA5 and EFHD2). TALDO, a protein associated with thrombocytopenia if down-regulated, was elevated in patients with wild type NPM1 compared to patients with NPM1 mutation. This study demonstrates the potential of quantitative proteomics in AML classification and risk stratification. BIOLOGICAL SIGNIFICANCE Patients diagnosed with AML are currently categorized according to cellular morphology, cytogenetic alterations and mutations, although the majority of these cellular and genetic alterations have no or unsolved impact on therapy selection or prognosis. We therefore explored the phosphoproteome for abundance changes associated with traditional classifiers to unravel patterns that could stratify patients at the protein level. MOES, ANXA5 and EFHD2 were confirmed by SRM to be correlated to monocytic differentiation, whilst TALDO was elevated in NPM1 wild type patients.
Collapse
Affiliation(s)
- Rakel Brendsdal Forthun
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Elise Aasebø
- Department of Biomedicine, Proteomic Unit, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway; Department of Clinical Science, Leukemia Research Group, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | | | - Siv Lise Bedringaas
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Frode Berven
- Department of Biomedicine, Proteomic Unit, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Frode Selheim
- Department of Biomedicine, Proteomic Unit, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, Leukemia Research Group, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway; Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway; Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
11
|
Transaldolase Deficiency: A New Case Expands the Phenotypic Spectrum. JIMD Rep 2015; 26:31-6. [PMID: 26238251 DOI: 10.1007/8904_2015_474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 06/06/2015] [Accepted: 06/10/2015] [Indexed: 12/28/2022] Open
Abstract
Transaldolase (TALDO) deficiency has various clinical manifestations including liver dysfunction, hepatosplenomegaly, anemia, thrombocytopenia, and dysmorphic features. We report a case presenting prenatally with hyperechogenic bowel and intrauterine growth restriction. The infant was born small for gestational age, with cutis laxa and hypertrichosis. Postnatally, meconium plug was identified, complicated with intestinal obstruction necessitating laparotomy, partial resection of the intestine, and ileostomy. Liver biopsy revealed cholangiolar proliferation and portal fibrosis. He also suffered from persistent congenital thrombocytopenia requiring platelet transfusions and severe hypothyroidism with normal anatomical and structural gland responding only to the combination of T3 and T4 treatment. Neurologically, severe hypotonia and anisocoria were noted at the age of 2 months. Brain MRI was normal. Shortly after the abdominal surgery, a rapid liver failure ensued, which eventually led to his death. Specific metabolic tests ruled out glycosylation disorders, yet urine analysis using 1H NMR showed accumulation of sedoheptulose which was previously described in patients with transaldolase deficiency. Sequencing of the gene-encoding transaldolase (TALDO1) revealed a homozygous stop mutation c.669C>G; p.Tyr223*. In conclusion, we present an infant with a novel homozygous mutation in TALDO1, causing TALDO deficiency, and extend the clinical characteristics of this rare syndrome.
Collapse
|
12
|
Al-Shamsi AM, Ben-Salem S, Hertecant J, Al-Jasmi F. Transaldolase deficiency caused by the homozygous p.R192C mutation of the TALDO1 gene in four Emirati patients with considerable phenotypic variability. Eur J Pediatr 2015; 174:661-8. [PMID: 25388407 DOI: 10.1007/s00431-014-2449-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 11/24/2022]
Abstract
UNLABELLED Transaldolase deficiency is a heterogeneous disorder of carbohydrate metabolism characterized clinically by dysmorphic features, cutis laxa, hepatosplenomegaly, hepatic fibrosis, pancytopenia, renal and cardiac abnormalities, and urinary excretion of polyols. This report describes four Emirati patients with transaldolase deficiency caused by the homozygous p.R192C missense mutation in TALDO1 displaying wide phenotypic variability. The patients had variable clinical presentations including hepatosplenomegaly, pancytopenia, liver failure, proteinuria, hydrops fetalis, cardiomyopathy, and skin manifestations (e.g., dryness, cutis laxa, ichthyosis, telangiectasias, and hemangiomas). Biochemical analyses including urinary concentration of polyols were consistent with transaldolase deficiency. The mutation p.R192C was previously identified in an Arab patient, suggesting a founder effect in Arab populations. CONCLUSION The above findings support the premise that biallelic mutations in TALDO1 are responsible for transaldolase deficiency and confirm the broad phenotypic variability of this condition, even with the same genotype.
Collapse
Affiliation(s)
- Aisha M Al-Shamsi
- Department of Paediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al-Ain, 17666, United Arab Emirates,
| | | | | | | |
Collapse
|