1
|
Zhang W, Zeng M, Li Y, Yu L. Leveraging oncovirus-derived antigen against the viral malignancies in adoptive cell therapies. Biomark Res 2024; 12:71. [PMID: 39075601 PMCID: PMC11287861 DOI: 10.1186/s40364-024-00617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
Adoptive cell therapies (ACTs) have revolutionized cancer immunotherapy, prompting exploration into their application against oncoviruses. Oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), and Epstein-Barr virus (EBV) contribute significantly (12-25%) to human malignancies through direct or indirect oncogenic mechanisms. These viruses persistently or latently infect cells, disrupt cellular homeostasis and pathways, challenging current antiviral treatment paradigms. Moreover, viral infections pose additional risks in the setting of long-term cancer therapy and lead to morbidity and mortality. Virally encoded oncoproteins, which are tumor-restricted, immunologically foreign, and even uniformly expressed, represent promising targets for patient-tailored ACTs. This review elucidates the rationale for leveraging viral antigen-specific ACTs in combating viral-associated malignancies. On this basis, ongoing preclinical studies consolidate our understanding of harnessing ACTs against viral malignancies, underscoring their potential to eradicate viruses implicated in cancer progression. Furthermore, we scrutinize the current landscape of clinical trials focusing on virus-specific ACTs and discuss their implications for therapeutic advancement.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Miao Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd, No. 155 Hongtian Road, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, 518125, China
- Haoshi Cell Therapy Institute, Shenzhen University, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China.
- Haoshi Cell Therapy Institute, Shenzhen University, Shenzhen, China.
| |
Collapse
|
2
|
Ashique S, Hussain A, Fatima N, Altamimi MA. HPV pathogenesis, various types of vaccines, safety concern, prophylactic and therapeutic applications to control cervical cancer, and future perspective. Virusdisease 2023:1-19. [PMID: 37363362 PMCID: PMC10208188 DOI: 10.1007/s13337-023-00824-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/01/2023] [Indexed: 06/28/2023] Open
Abstract
Over 98% of cervical cancers (CC) are caused by regular infections with "high risk" genotype of the human papilloma virus (HPV). However, this is not always the causative factor. Therefore, production of HPV vaccinations represents a significant chance to minimize the risk of CC. Phase III studies for a number of preventative HPV vaccines based on L1-virus-like particle (VLPs) have just been completed and the preliminary results are very convincing. However, there are a lot of practical concerns that need to be resolved before the use of these vaccinations. These vaccines were challenged with obvious queries such as protection time, subject receiving vaccines, time of vaccination, and how to include them into ongoing screening programs. Although these vaccines were 90% effective at preventing HPV infection as these offered only modest advantages for the removal of pre-existing infections. New advancements in the creation of therapeutic vaccinations have been explored for further improvement and post-vaccination surveillance. Therapeutic vaccines attempted to boost cell-mediated immunities and these are detrimental to the infected cell as opposed to neutralizing antibodies (different from prophylactic vaccines).
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, School of Pharmacy, Bharat Institute of Technology (BIT), Meerut, Uttar Pradesh 250103 India
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Neda Fatima
- Department of Pharmacology, Sai College of Pharmacy, Mau, Uttar Pradesh 275102 India
| | - Mohammad A. Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
3
|
Das S, Babu A, Medha T, Ramanathan G, Mukherjee AG, Wanjari UR, Murali R, Kannampuzha S, Gopalakrishnan AV, Renu K, Sinha D, George Priya Doss C. Molecular mechanisms augmenting resistance to current therapies in clinics among cervical cancer patients. Med Oncol 2023; 40:149. [PMID: 37060468 PMCID: PMC10105157 DOI: 10.1007/s12032-023-01997-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/10/2023] [Indexed: 04/16/2023]
Abstract
Cervical cancer (CC) is the fourth leading cause of cancer death (~ 324,000 deaths annually) among women internationally, with 85% of these deaths reported in developing regions, particularly sub-Saharan Africa and Southeast Asia. Human papillomavirus (HPV) is considered the major driver of CC, and with the availability of the prophylactic vaccine, HPV-associated CC is expected to be eliminated soon. However, female patients with advanced-stage cervical cancer demonstrated a high recurrence rate (50-70%) within two years of completing radiochemotherapy. Currently, 90% of failures in chemotherapy are during the invasion and metastasis of cancers related to drug resistance. Although molecular target therapies have shown promising results in the lab, they have had little success in patients due to the tumor heterogeneity fueling resistance to these therapies and bypass the targeted signaling pathway. The last two decades have seen the emergence of immunotherapy, especially immune checkpoint blockade (ICB) therapies, as an effective treatment against metastatic tumors. Unfortunately, only a small subgroup of patients (< 20%) have benefited from this approach, reflecting disease heterogeneity and manifestation with primary or acquired resistance over time. Thus, understanding the mechanisms driving drug resistance in CC could significantly improve the quality of medical care for cancer patients and steer them to accurate, individualized treatment. The rise of artificial intelligence and machine learning has also been a pivotal factor in cancer drug discovery. With the advancement in such technology, cervical cancer screening and diagnosis are expected to become easier. This review will systematically discuss the different tumor-intrinsic and extrinsic mechanisms CC cells to adapt to resist current treatments and scheme novel strategies to overcome cancer drug resistance.
Collapse
Affiliation(s)
- Soumik Das
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Achsha Babu
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Tamma Medha
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Gnanasambandan Ramanathan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anirban Goutam Mukherjee
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Reshma Murali
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sandra Kannampuzha
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | | | - Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Debottam Sinha
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - C George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
4
|
EDA-E7 Activated DCs Induces Cytotoxic T Lymphocyte Immune Responses against HPV Expressing Cervical Cancer in Human Setting. Vaccines (Basel) 2023; 11:vaccines11020320. [PMID: 36851198 PMCID: PMC9965802 DOI: 10.3390/vaccines11020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Cervical cancer is a major cause of cancer death in women worldwide. Targeting human papillomavirus (HPV) viral oncoproteins E6 and E7 is a new strategy for cervical cancer immunotherapy and has been associated with resolution of HPV-induced lesions. How to efficiently induce T cell target killing of HPV infected cervical cancer is of great potential benefit for cervical cancer treatment. Fusion protein containing the extra domain A (EDA) from fibronectin, a natural ligand for Toll-like receptor 4 (TLR4), and HPVE7 (EDA-E7) has been shown to efficiently induce dendritic cells maturation and trigger specific antitumor CD8+ T cells response in mice. In this study, we constructed EDA-E7 fusion protein of human origin and tested its function in dendritic cell maturation as well as antitumor T cell response. We found that EDA-E7 could be efficiently captured by human PBMC derived dendritic cells (DCs) in vitro and induce DCs maturation. Importantly, this effect could work in synergy with the TLR ligand anti-CD40 agonist, polyinosinic-polycytidylic acid [poly (I:C)], R848, and CpG2216. EDA-E7 matured DCs could activate T cells and trigger an anti-tumor response in vitro. Single cell RNA sequencing and T cell targeted killing assay confirmed the activation of T cells by EDA-E7 matured DCs. Therefore, therapeutic vaccination with EDA-E7 fusion protein maybe effective for human cervical carcinoma treatment.
Collapse
|
5
|
Maiorano BA, Maiorano MFP, Ciardiello D, Maglione A, Orditura M, Lorusso D, Maiello E. Beyond Platinum, ICIs in Metastatic Cervical Cancer: A Systematic Review. Cancers (Basel) 2022; 14:cancers14235955. [PMID: 36497437 PMCID: PMC9737392 DOI: 10.3390/cancers14235955] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Cervical cancer (CC) constitutes the fourth most common tumor among the female population. Therapeutic approaches to advanced CC are limited, with dismal results in terms of survival, mainly after progression to platinum-based regimens. Immune checkpoint inhibitors (ICIs) are remodeling the therapeutic scenario of many solid tumors. The role of ICIs in CC should be addressed. Therefore, we systematically reviewed the latest clinical trials employing ICIs in advanced CC to assess which ICIs have been employed and how ICIs might meet the need for new therapeutic options in terms of efficacy and safety. METHODS The review was conducted following the PRISMA guidelines. The following efficacy outcomes were specifically collected: overall response rate (ORR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS); for safety: type, number, and grade of adverse events (AEs). RESULTS A total of 17 studies were analyzed. Anti-PD1 (pembrolizumab, nivolumab, cemiplimab, balstilimab, and tislelizumab), anti-PD-L1 (atezolizumab), and anti-CTLA-4 (ipilimumab, zalifrelimab) agents were employed both as single agents or combinations. Overall ORR ranged from 0% to 65.9%. ORR ranged from 5.9% to 69.6% in PD-L1-positive patients and from 0% to 50% in PD-L1-negative patients. DCR was 30.6-94.1%. mPFS ranged from 2 to 10.4 months. mOS ranged from 8 months to not reached. PD-L1 status did not impact survival. A total of 33.9% to 100% of patients experienced AEs. CONCLUSION Immunotherapy represents an appealing strategy for patients with advanced CC, as 2 out of 3 patients seem to respond to ICIs. PD-L1 status might be an indicator of response without impacting survival.
Collapse
Affiliation(s)
- Brigida Anna Maiorano
- Oncology Unit, Fondazione Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Mauro Francesco Pio Maiorano
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70121 Bari, Italy
- Correspondence:
| | - Davide Ciardiello
- Oncology Unit, Fondazione Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy
- Medical Oncology, Department of Precision Medicine, Luigi Vanvitelli University of Campania, 80131 Naples, Italy
| | - Annamaria Maglione
- Obstetrics and Gynecology Department, Fondazione Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy
| | - Michele Orditura
- Medical Oncology, Department of Precision Medicine, Luigi Vanvitelli University of Campania, 80131 Naples, Italy
| | - Domenica Lorusso
- Department of Women and Child Health, Division of Gynaecologic Oncology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
- Scientific Directorate, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Evaristo Maiello
- Oncology Unit, Fondazione Casa Sollievo della Sofferenza IRCCS, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
6
|
Turinetto M, Valsecchi AA, Tuninetti V, Scotto G, Borella F, Valabrega G. Immunotherapy for Cervical Cancer: Are We Ready for Prime Time? Int J Mol Sci 2022; 23:ijms23073559. [PMID: 35408919 PMCID: PMC8999051 DOI: 10.3390/ijms23073559] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
The prognosis of invasive cervical cancer (CC) remains poor, with a treatment approach that has remained the same for several decades. Lately, a better understanding of the interactions between the disease and the host immune system has allowed researchers to focus on the employment of immune therapy in various clinical settings. The most advanced strategy is immune checkpoint inhibitors (ICIs) with numerous phase II and III trials recently concluded with very encouraging results, assessing single agent therapy, combinations with chemotherapy and radiotherapy. Apart from ICIs, several other compounds have gained the spotlight. Tumor Infiltrating Lymphocytes (TILs) due to their highly selective tumoricidal effect and manageable adverse effect profile have received the FDA’s Breakthrough Therapy designation in 2019. The antibody drug conjugate (ADC) Tisotumab-Vedotin has shown activity in metastatic CC relapsed after at least one line of chemotherapy, with a phase III trial currently actively enrolling patients. Moreover, the deeper understanding of the ever-changing immune landscape of CC carcinogenesis has resulted in the development of active therapeutic vaccines. This review highlights the different immunotherapeutic strategies being explored reflects on what role immunotherapy might have in therapeutic algorithms of CC and addresses the role of predictive biomarkers.
Collapse
Affiliation(s)
- Margherita Turinetto
- Department of Oncology, University of Turin, Ordine Mauriziano Hospital, 10128 Turin, Italy; (A.A.V.); (V.T.); (G.S.); (G.V.)
- Correspondence:
| | - Anna A. Valsecchi
- Department of Oncology, University of Turin, Ordine Mauriziano Hospital, 10128 Turin, Italy; (A.A.V.); (V.T.); (G.S.); (G.V.)
| | - Valentina Tuninetti
- Department of Oncology, University of Turin, Ordine Mauriziano Hospital, 10128 Turin, Italy; (A.A.V.); (V.T.); (G.S.); (G.V.)
| | - Giulia Scotto
- Department of Oncology, University of Turin, Ordine Mauriziano Hospital, 10128 Turin, Italy; (A.A.V.); (V.T.); (G.S.); (G.V.)
| | - Fulvio Borella
- Gynecology and Obstetrics 1, Department of Surgical Sciences, City of Health and Science, University of Turin, 10100 Turin, Italy;
| | - Giorgio Valabrega
- Department of Oncology, University of Turin, Ordine Mauriziano Hospital, 10128 Turin, Italy; (A.A.V.); (V.T.); (G.S.); (G.V.)
| |
Collapse
|
7
|
Schmidt MW, Battista MJ, Schmidt M, Garcia M, Siepmann T, Hasenburg A, Anic K. Efficacy and Safety of Immunotherapy for Cervical Cancer—A Systematic Review of Clinical Trials. Cancers (Basel) 2022; 14:cancers14020441. [PMID: 35053603 PMCID: PMC8773848 DOI: 10.3390/cancers14020441] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Purpose: To systematically review the current body of evidence on the efficacy and safety of immunotherapy for cervical cancer (CC). Material and Methods: Medline, the Cochrane Central Register of Controlled Trials and Web of Science were searched for prospective trials assessing immunotherapy in CC patients in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Full-text articles in English and German reporting outcomes of survival, response rates or safety were eligible. Results: Of 4655 screened studies, 51 were included (immune checkpoint inhibitors (ICI) n=20; therapeutic vaccines n = 25; adoptive cell transfer therapy n=9). Of these, one qualified as a phase III randomized controlled trial and demonstrated increased overall survival following treatment with pembrolizumab, chemotherapy and bevacizumab. A minority of studies included a control group (n = 7) or more than 50 patients (n = 15). Overall, response rates were low to moderate. No response to ICIs was seen in PD-L1 negative patients. However, few remarkable results were achieved in heavily pretreated patients. There were no safety concerns in any of the included studies. Conclusion: Strong evidence on the efficacy of strategies to treat recurrent or metastatic cervical cancer is currently limited to pembrolizumab in combination with chemotherapy and bevacizumab, which substantiates an urgent need for large confirmatory trials on alternative immunotherapies. Overall, there is sound evidence on the safety of immunotherapy in CC.
Collapse
Affiliation(s)
- Mona W. Schmidt
- Department of Gynecology and Obstetrics, University Medical Centre Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.J.B.); (M.S.); (A.H.); (K.A.)
- Division of Health Care Sciences Center for Clinical Research and Management Education Dresden, Dresden International University, 01067 Dresden, Germany; (M.G.); (T.S.)
- Correspondence: ; Tel.: +49-6131-17-0
| | - Marco J. Battista
- Department of Gynecology and Obstetrics, University Medical Centre Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.J.B.); (M.S.); (A.H.); (K.A.)
| | - Marcus Schmidt
- Department of Gynecology and Obstetrics, University Medical Centre Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.J.B.); (M.S.); (A.H.); (K.A.)
| | - Monique Garcia
- Division of Health Care Sciences Center for Clinical Research and Management Education Dresden, Dresden International University, 01067 Dresden, Germany; (M.G.); (T.S.)
- Department of Medicine, Pontifícia Universidade Católica de Minas Gerais (PUC MG), Betim 32604-115, Brazil
| | - Timo Siepmann
- Division of Health Care Sciences Center for Clinical Research and Management Education Dresden, Dresden International University, 01067 Dresden, Germany; (M.G.); (T.S.)
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Annette Hasenburg
- Department of Gynecology and Obstetrics, University Medical Centre Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.J.B.); (M.S.); (A.H.); (K.A.)
| | - Katharina Anic
- Department of Gynecology and Obstetrics, University Medical Centre Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.J.B.); (M.S.); (A.H.); (K.A.)
| |
Collapse
|
8
|
Sunthamala N, Sankla N, Chuerduangphui J, Swangphon P, Boontun W, Ngaochaiyaphum S, Wongjampa W, Ekalaksananan T, Pientong C. Enhancement of specific T-lymphocyte responses by monocyte-derived dendritic cells pulsed with E2 protein of human papillomavirus 16 and human p16INK4A. PeerJ 2020; 8:e9213. [PMID: 32509466 PMCID: PMC7245333 DOI: 10.7717/peerj.9213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/27/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction Prophylactic vaccines are already available for prevention of human papillomavirus (HPV) infection. However, we still await development of therapeutic vaccines with high efficiency for stimulating specific T lymphocytes to clear HPV infection. Objective This study investigates the potential for subunits of human p16INK4a protein and E2 protein of HPV16 to stimulate dendritic cells and enhance the specific response of T lymphocytes against HPV-infected cells. Methodology Immunogenic epitopes of HPV16 E2 and p16INK4a proteins were predicted through the common HLA class I and II alleles present in the Thai population. Then, monocyte-derived dendritic cells (MDCs) were pulsed with HPV16 E2 and/or p16INK4a protein s and their maturity assessed. MDCs pulsed with either or both of these proteins at optimal concentrations were used for activation of autologous T lymphocytes and IFN-γ production was measured for specific response function. Results HPV16 E2 and p16INK4a proteins contain various immunogenic epitopes which can be presented by antigen-presenting cells via both HLA class I and II molecules. The stimulation of MDCs with either HPV16 E2 or p16INK4a proteins increased percentages and mean fluorescence intensity (MFI) of CD83+ MDCs in a dose-dependent manner. An optimum concentration of 250 ng/mL and 150 ng/mL of HPV16 E2 and p16INK4a proteins, respectively, stimulated MDCs via the MAPK pathway (confirmed by use of MAPK inhibitors). T lymphocytes could be activated by MDCs pulsed with these proteins, leading to high percentages of both CD4+ IFN-γ+ T lymphocytes and CD8+ IFN-γ+ T lymphocytes. The production of IFN-γ was higher in co-cultures containing MDCs pulsed with HPV16 E2 protein than those pulsed with p16INK4a. Interestingly, MDCs pulsed with a combination of HPV16 E2 and p16INK4a significantly increased IFN-γ production of T lymphocytes. The IFN-γ production was inhibited by both HLA class I and II blockade, particularly in co-cultures with MDCs pulsed with a combination of HPV16 E2 and p16INK4a. Conclusions This suggests that MDCs pulsed with both proteins enhances specific response of both CD4+ and CD8+ T lymphocytes. This study might provide a strategy for further in vivo study of stimulation of T lymphocytes for therapy of HPV-associated cancer.
Collapse
Affiliation(s)
- Nuchsupha Sunthamala
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand.,HPV&EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Neeranuch Sankla
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| | - Jureeporn Chuerduangphui
- HPV&EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Piyawut Swangphon
- HPV&EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand.,Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkla, Thailand
| | - Wanchareeporn Boontun
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| | | | - Weerayut Wongjampa
- HPV&EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Tipaya Ekalaksananan
- HPV&EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chamsai Pientong
- HPV&EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand.,Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
9
|
Panahi HA, Bolhassani A, Javadi G, Noormohammadi Z, Agi E. Development of multiepitope therapeutic vaccines against the most prevalent high-risk human papillomaviruses. Immunotherapy 2020; 12:459-479. [DOI: 10.2217/imt-2019-0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: Our goal was the development of DNA- or peptide-based multiepitope vaccines targeting HPV E7, E6 and E5 oncoproteins in tumor mouse model. Materials & methods: After designing the multiepitope E7, E6 and E5 constructs from four types of high risk HPVs (16, 18, 31 & 45) using bioinformatics tools, mice vaccination was performed by different homologous and heterologous modalities in a prophylactic setting. Then, anti-tumor effects of the best prophylactic strategies were studied in a therapeutic setting. Results: In both prophylactic and therapeutic experiments, groups receiving homologous E7+E6+E5 polypeptide, and heterologous E7+E6+E5 DNA prime/polypeptide boost were successful in complete rejection of tumors. Conclusion: The designed multiepitope constructs can be considered as promising candidates to develop effective therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Heidar Ali Panahi
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
- Department of Biology, School of Basic Sciences, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Gholamreza Javadi
- Department of Biology, School of Basic Sciences, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, School of Basic Sciences, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Elnaz Agi
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| |
Collapse
|
10
|
Molecular Docking Analysis of 120 Potential HPV Therapeutic Epitopes Using a New Analytical Method. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09985-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Bernichon E, Espenel S, Méry B, Trone JC, Rehalia-Blanchard A, He YM, Rancoule C, Magné N. [HPV: Carcinogenic implications and preventive measures]. Presse Med 2019; 48:756-766. [PMID: 31307878 DOI: 10.1016/j.lpm.2019.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 02/13/2019] [Accepted: 05/15/2019] [Indexed: 11/25/2022] Open
Abstract
Human oncogenic papillomaviruses (HPV) have an increasingly prominent role in the genesis of many cancers. The oncogenic mechanisms associated with HPV are now better known and make it possible to explain the etiopathogenesis of the association. HPV status is now sought for certain cancers and conditions both prognosis and management of patients. Preventive antiviral vaccination has become a real public health issue and aims to effectively reduce the prevalence of cervical, anal and oropharynx cancer, HPV-associated. However, vaccination against HPV still lags behind. The purpose of this review is to redefine the involvement of HPV in several cancers as well as current therapeutic challenges of HPV-related cancers, notably in term of prevention.
Collapse
Affiliation(s)
- Emilie Bernichon
- Institut de cancérologie Lucien-Neuwirth, département d'oncologie médicale, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Sophie Espenel
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France; Laboratoire de radiobiologie cellulaire et moléculaire de Lyon Sud, CNRS UMR 5822, 165, chemin du grand Revoyet, BP 12, 69921 Oullins cedex, France
| | - Benoite Méry
- Institut de cancérologie Lucien-Neuwirth, département d'oncologie médicale, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France; Laboratoire de radiobiologie cellulaire et moléculaire de Lyon Sud, CNRS UMR 5822, 165, chemin du grand Revoyet, BP 12, 69921 Oullins cedex, France
| | - Jane-Chloé Trone
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Amel Rehalia-Blanchard
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Yuan Ming He
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France
| | - Chloé Rancoule
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France; Laboratoire de radiobiologie cellulaire et moléculaire de Lyon Sud, CNRS UMR 5822, 165, chemin du grand Revoyet, BP 12, 69921 Oullins cedex, France
| | - Nicolas Magné
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 108 bis, avenue Albert-Raimond, BP 60008, 42271 Saint-Priest-en-Jarez cedex, France; Laboratoire de radiobiologie cellulaire et moléculaire de Lyon Sud, CNRS UMR 5822, 165, chemin du grand Revoyet, BP 12, 69921 Oullins cedex, France.
| |
Collapse
|
12
|
Panahi HA, Bolhassani A, Javadi G, Noormohammadi Z. A comprehensive in silico analysis for identification of therapeutic epitopes in HPV16, 18, 31 and 45 oncoproteins. PLoS One 2018; 13:e0205933. [PMID: 30356257 PMCID: PMC6200245 DOI: 10.1371/journal.pone.0205933] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/11/2018] [Indexed: 11/25/2022] Open
Abstract
Human papillomaviruses (HPVs) are a group of circular double-stranded DNA viruses, showing severe tropism to mucosal tissues. A subset of HPVs, especially HPV16 and 18, are the primary etiological cause for several epithelial cell malignancies, causing about 5.2% of all cancers worldwide. Due to the high prevalence and mortality, HPV-associated cancers have remained as a significant health problem in human society, making an urgent need to develop an effective therapeutic vaccine against them. Achieving this goal is primarily dependent on the identification of efficient tumor-associated epitopes, inducing a robust cell-mediated immune response. Previous information has shown that E5, E6, and E7 early proteins are responsible for the induction and maintenance of HPV-associated cancers. Therefore, the prediction of major histocompatibility complex (MHC) class I T cell epitopes of HPV16, 18, 31 and 45 oncoproteins was targeted in this study. For this purpose, a two-step plan was designed to identify the most probable CD8+ T cell epitopes. In the first step, MHC-I and II binding, MHC-I processing, MHC-I population coverage and MHC-I immunogenicity prediction analyses, and in the second step, MHC-I and II protein-peptide docking, epitope conservation, and cross-reactivity with host antigens' analyses were carried out successively by different tools. Finally, we introduced five probable CD8+ T cell epitopes for each oncoprotein of the HPV genotypes (60 epitopes in total), which obtained better scores by an integrated approach. These predicted epitopes are valuable candidates for in vitro or in vivo therapeutic vaccine studies against the HPV-associated cancers. Additionally, this two-step plan that each step includes several analyses to find appropriate epitopes provides a rational basis for DNA- or peptide-based vaccine development.
Collapse
Affiliation(s)
- Heidar Ali Panahi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Gholamreza Javadi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Orbegoso C, Murali K, Banerjee S. The current status of immunotherapy for cervical cancer. Rep Pract Oncol Radiother 2018; 23:580-588. [PMID: 30534022 DOI: 10.1016/j.rpor.2018.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/13/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy has been proven effective in several tumours, hence diverse immune checkpoint inhibitors are currently licensed for the treatment of melanoma, kidney cancer, lung cancer and most recently, tumours with microsatellite instability. There is much enthusiasm for investigating this approach in gynaecological cancers and the possibility that immunotherapy might become part of the therapeutic landscape for gynaecological malignancies. Cervical cancer is the fourth most frequent cancer in women worldwide and represents 7.9% of all female cancers with a higher burden of the disease and mortality in low- and middle-income countries. Cervical cancer is largely a preventable disease, since the introduction of screening tests, the recognition of the human papillomavirus (HPV) as an etiological agent, and the subsequent development of primary prophylaxis against high risk HPV subtypes. Treatment for relapsed/advanced disease has improved over the last 5 years, since the introduction of antiangiogenic therapy. However, despite advances, the median overall survival for advanced cervical cancer is 16.8 months and the 5-year overall survival for all stages is 68%. There is a need to improve outcomes and immunotherapy could offer this possibility. Clinical trials aim to understand the best timing for immunotherapy, either in the adjuvant setting or recurrent disease and whether immunotherapy, alone or in combination with other agents, improves outcomes.
Collapse
Key Words
- APC, antigen-presenting cell
- Adoptive T cell therapy
- CAR, chimeric antigen receptor
- CD4, -8, -80, cluster of differentiation 4, -8, -80
- CTL, cytotoxic-T lymphocyte
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- Cervical cancer
- DC, dendritic cell
- DFS, disease free survival
- DNA, deoxyribonucleic acid
- FIGO, International Federation of Gynecology and Obstetrics
- HLA, human leucocyte antigen
- HPV, human papilloma virus
- Human papillomavirus
- IL-2, interleukin 2
- ILT's, Ig-like transcripts
- Immune checkpoints inhibitors
- LLO, listerolysin O
- Lm, Listeria monocytogenes
- MAGE-A3, melanoma-associated antigen 3
- MCH, major histocompatibility complex
- ORR, objective response rate
- OS, overall survival
- PD-1, programmed cell death protein 1
- PD-L1, programmed death-ligand 1
- PFS, progression free survival
- RNA, ribonucleic acid
- SLP, synthetic long-peptide
- TCR, T-cell receptor
- TGFβ, transforming growth factor beta
- TILs, tumor-infiltrating lymphocytes
- TRAEs, treatment related adverse events
- Therapeutic vaccines
Collapse
Affiliation(s)
- Cecilia Orbegoso
- Gynae Oncology Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK
| | - Krithika Murali
- Gynae Oncology Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK
| | - Susana Banerjee
- Gynae Oncology Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK
| |
Collapse
|
14
|
Immunotherapy for cervical cancer: Can it do another lung cancer? Curr Probl Cancer 2018; 42:148-160. [PMID: 29500076 DOI: 10.1016/j.currproblcancer.2017.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/10/2017] [Indexed: 02/04/2023]
Abstract
Cervical cancer, although preventable, is still the second most common cancer among women worldwide. In developing countries like India, where screening for cervical cancer is virtually absent, most women seek treatment only at advanced stages of the disease. Although standard treatment is curative in more than 90% of women during the early stages, for stage IIIb and above this rate drops to 50% or less. Hence, novel therapeutic adjuvants are required to improve survival at advanced stages. Lung cancer has shown the way forward with the use of Immunotherapeutic interventions as standard line of treatment in advanced stages. In this review, we provide an overview of mechanisms of immune evasion, strategies that can be employed to boost the immune system in order to improve the overall survival of the patients and summarize briefly the clinical trials that have been completed or that are underway to bring therapeutic vaccines for cervical cancer to the clinics.
Collapse
|
15
|
Yahya MA, Sharon SM, Hantisteanu S, Hallak M, Bruchim I. The Role of the Insulin-Like Growth Factor 1 Pathway in Immune Tumor Microenvironment and Its Clinical Ramifications in Gynecologic Malignancies. Front Endocrinol (Lausanne) 2018; 9:297. [PMID: 29922232 PMCID: PMC5996273 DOI: 10.3389/fendo.2018.00297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Treatment of patients with gynecologic malignancies diagnosed at advanced stages remains a therapeutic challenge. Survival rates of these patients remain significantly low, despite surgery and chemotherapy. Advances in understanding the role of the immune system in the pathogenesis of cancer have led to the rapid evolution of immunotherapeutic approaches. Immunotherapeutic strategies, including targeting specific immune checkpoints, as well as dendritic cell (DC) immunotherapy are being investigated in several malignancies, including gynecological cancers. Another important approach in cancer therapy is to inhibit molecular pathways that are crucial for tumor growth and maintenance, such as the insulin-like growth factor-1 (IGF1) pathway. The IGF axis has been shown to play a significant role in carcinogenesis of several types of tissue, including ovarian cancer. Preclinical studies reported significant anti-proliferative activity of IGF1 receptor (IGF1R) inhibitors in gynecologic malignancies. However, recent clinical studies have shown variable response rates with advanced solid tumors. This study provides an overview on current immunotherapy strategies and on IGF-targeted therapy for gynecologic malignancies. We focus on the involvement of IGF1R signaling in DCs and present our preliminary results which imply that the IGF axis contributes to an immunosuppressive tumor microenvironment (TME). For the long term, we believe that restoring the TME function by IGF1R targeting in combination with immunotherapy can serve as a new clinical approach for gynecological cancers.
Collapse
Affiliation(s)
- Muna Alemi Yahya
- Gynecologic Oncology Division, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center (Affiliated with the Technion Israel Institute of Technology), Hadera, Israel
| | - Shilhav Meisel Sharon
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center (Affiliated with the Technion Israel Institute of Technology), Hadera, Israel
| | - Shay Hantisteanu
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center (Affiliated with the Technion Israel Institute of Technology), Hadera, Israel
| | - Mordechai Hallak
- Gynecologic Oncology Division, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center (Affiliated with the Technion Israel Institute of Technology), Hadera, Israel
| | - Ilan Bruchim
- Gynecologic Oncology Division, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hadera, Israel
- Gynecology Laboratory, Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center (Affiliated with the Technion Israel Institute of Technology), Hadera, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Ilan Bruchim,
| |
Collapse
|
16
|
|
17
|
Abstract
An important role of the immune system is in the surveillance for abnormal or transformed cells, which is known as cancer immunosurveillance. Through this process, the first changes to normal tissue homeostasis caused by infectious or other inflammatory insults can be detected by the immune system through the recognition of antigenic molecules (including tumour antigens) expressed by abnormal cells. However, as they develop, tumour cells can acquire antigenic and other changes that allow them to escape elimination by the immune system. To bias this process towards elimination, immunosurveillance can be improved by the administration of vaccines based on tumour antigens. Therapeutic cancer vaccines have been extensively tested in patients with advanced cancer but have had little clinical success, which has been attributed to the immunosuppressive tumour microenvironment. Thus, the administration of preventive vaccines at pre-malignant stages of the disease holds promise, as they function before tumour-associated immune suppression is established. Accordingly, immunological and clinical studies are yielding impressive results.
Collapse
|
18
|
Rosales C, Rosales R. Prophylactic and Therapeutic Vaccines against Human Papillomavirus Infections. Vaccines (Basel) 2017. [DOI: 10.5772/intechopen.69548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
19
|
Kim HJ, Kim HJ. Current status and future prospects for human papillomavirus vaccines. Arch Pharm Res 2017; 40:1050-1063. [PMID: 28875439 DOI: 10.1007/s12272-017-0952-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/24/2017] [Indexed: 01/08/2023]
Abstract
Cervical cancer is the fourth most frequent cancer among women worldwide. Human papillomaviruses (HPVs) cause almost all cervical cancers in low-income countries. Three prophylactic HPV virus-like particle-based vaccines have been licensed to date, and they have all shown high efficacy and reliable safety profiles. However, isolated safety issues have resulted in a reluctance to use these vaccinations. In addition, the high prices of the vaccinations have caused the inequitable distribution of the vaccine: the prices are unaffordable for low-income countries. Meanwhile, great effort has been put into the development of therapeutic HPV vaccines, including protein/peptide-, live vector-, DNA- and cell-based vaccines. These new vaccines have considerable therapeutic potential but limited practical use. The development of immune checkpoint inhibitors and personalized immunotherapy remain challenges for future study. In this article, the current status of the licensed vaccines, therapeutic HPV vaccines and biosimilars, and new platforms for HPV vaccines, are reviewed, and safety issues related to the licensed vaccines are discussed. In addition, the prospects for HPV vaccines are considered.
Collapse
Affiliation(s)
- Hyoung Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Hong-Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea.
| |
Collapse
|
20
|
Miles B, Safran HP, Monk BJ. Therapeutic options for treatment of human papillomavirus-associated cancers - novel immunologic vaccines: ADXS11-001. GYNECOLOGIC ONCOLOGY RESEARCH AND PRACTICE 2017; 4:10. [PMID: 28725449 PMCID: PMC5512733 DOI: 10.1186/s40661-017-0047-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/03/2017] [Indexed: 01/22/2023]
Abstract
Survival of patients with advanced, recurrent, or metastatic human papillomavirus (HPV)-associated cancer is suboptimal despite the availability of various treatment modalities. The recently developed bacterial vector Listeria monocytogenes (Lm) activates innate and adaptive immune responses and is expected to offer immunologic advantages. Axalimogene filolisbac (AXAL or ADXS11-001) is a novel immunotherapeutic based on the live, irreversibly attenuated Lm fused to the nonhemolytic fragment of listeriolysin O (Lm-LLO) and secretes the Lm-LLO-HPV E7 fusion protein targeting HPV-positive tumors. Herein are reported the development and recent results of various clinical trials in patients with HPV-associated cervical, head and neck, and anal cancers.
Collapse
Affiliation(s)
- Brett Miles
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | - Bradley J. Monk
- Division of Gynecologic Oncology, Arizona Oncology (US Oncology Network), University of Arizona College of Medicine, Creighton University School of Medicine at St. Joseph’s Hospital, 2222 E. Highland Ave, Suite 400, Phoenix, AZ 85016 USA
| |
Collapse
|
21
|
Filley AC, Dey M. Dendritic cell based vaccination strategy: an evolving paradigm. J Neurooncol 2017; 133:223-235. [PMID: 28434112 DOI: 10.1007/s11060-017-2446-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/18/2017] [Indexed: 12/17/2022]
Abstract
Malignant gliomas (MG), tumors of glial origin, are the most commonly diagnosed primary intracranial malignancies in adults. Currently available treatments have provided only modest improvements in overall survival and remain limited by inevitable local recurrence, necessitating exploration of novel therapies. Among approaches being investigated, one of the leading contenders is immunotherapy, which aims to modulate immune pathways to stimulate the selective destruction of malignant cells. Dendritic cells (DCs) are potent initiators of adaptive immune responses and therefore crucial players in the development and success of immunotherapy. Clinical trials of various DC-based vaccinations have demonstrated the induction of anti-tumor immune responses and prolonged survival in the setting of many cancers. In this review, we summarize current literature regarding DCs and their role in the tumor microenvironment, their application and current clinical use in immunotherapy, current challenges limiting their efficacy in anti-cancer therapy, and future avenues for developing successful anti-tumor DC-based vaccines.
Collapse
Affiliation(s)
- Anna C Filley
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mahua Dey
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Purdue University Indianapolis (IUPUI), 320 W 15th Street, Neuroscience Building NB400A, Indianapolis, IN, 46202, USA.
| |
Collapse
|
22
|
Draper LM, Kwong MLM, Gros A, Stevanović S, Tran E, Kerkar S, Raffeld M, Rosenberg SA, Hinrichs CS. Targeting of HPV-16+ Epithelial Cancer Cells by TCR Gene Engineered T Cells Directed against E6. Clin Cancer Res 2016; 21:4431-9. [PMID: 26429982 DOI: 10.1158/1078-0432.ccr-14-3341] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The E6 and E7 oncoproteins of HPV-associated epithelial cancers are in principle ideal immunotherapeutic targets, but evidence that T cells specific for these antigens can recognize and kill HPV(+) tumor cells is limited. We sought to determine whether TCR gene engineered T cells directed against an HPV oncoprotein can successfully target HPV(+) tumor cells. EXPERIMENTAL DESIGN T-cell responses against the HPV-16 oncoproteins were investigated in a patient with an ongoing 22-month disease-free interval after her second resection of distant metastatic anal cancer. T cells genetically engineered to express an oncoprotein-specific TCR from this patient's tumor-infiltrating T cells were tested for specific reactivity against HPV(+) epithelial tumor cells. RESULTS We identified, from an excised metastatic anal cancer tumor, T cells that recognized an HLA-A*02:01-restricted epitope of HPV-16 E6. The frequency of the dominant T-cell clonotype from these cells was approximately 400-fold greater in the patient's tumor than in her peripheral blood. T cells genetically engineered to express the TCR from this clonotype displayed high avidity for an HLA-A*02:01-restricted epitope of HPV-16, and they showed specific recognition and killing of HPV-16(+) cervical, and head and neck cancer cell lines. CONCLUSIONS These findings demonstrate that HPV-16(+) tumors can be targeted by E6-specific TCR gene engineered T cells, and they provide the foundation for a novel cellular therapy directed against HPV-16(+) malignancies, including cervical, oropharyngeal, anal, vulvar, vaginal, and penile cancers.
Collapse
Affiliation(s)
- Lindsey M Draper
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Mei Li M Kwong
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Alena Gros
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sanja Stevanović
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Eric Tran
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sid Kerkar
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Mark Raffeld
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Steven A Rosenberg
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Christian S Hinrichs
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
23
|
Vici P, Pizzuti L, Mariani L, Zampa G, Santini D, Di Lauro L, Gamucci T, Natoli C, Marchetti P, Barba M, Maugeri-Saccà M, Sergi D, Tomao F, Vizza E, Di Filippo S, Paolini F, Curzio G, Corrado G, Michelotti A, Sanguineti G, Giordano A, De Maria R, Venuti A. Targeting immune response with therapeutic vaccines in premalignant lesions and cervical cancer: hope or reality from clinical studies. Expert Rev Vaccines 2016; 15:1327-36. [PMID: 27063030 PMCID: PMC5152541 DOI: 10.1080/14760584.2016.1176533] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Human papillomavirus (HPV) is widely known as a cause of cervical cancer (CC) and cervical intraepithelial neoplasia (CIN). HPVs related to cancer express two main oncogenes, i.e. E6 and E7, considered as tumorigenic genes; their integration into the host genome results in the abnormal regulation of cell cycle control. Due to their peculiarities, these oncogenes represent an excellent target for cancer immunotherapy. In this work the authors highlight the potential use of therapeutic vaccines as safe and effective pharmacological tools in cervical disease, focusing on vaccines that have reached the clinical trial phase. Many therapeutic HPV vaccines have been tested in clinical trials with promising results. Adoptive T-cell therapy showed clinical activity in a phase II trial involving advanced CC patients. A phase II randomized trial showed clinical activity of a nucleic acid-based vaccine in HPV16 or HPV18 positive CIN. Several trials involving peptide-protein-based vaccines and live-vector based vaccines demonstrated that these approaches are effective in CIN as well as in advanced CC patients. HPV therapeutic vaccines must be regarded as a therapeutic option in cervical disease. The synergic combination of HPV therapeutic vaccines with radiotherapy, chemotherapy, immunomodulators or immune checkpoint inhibitors opens a new and interesting scenario in this disease.
Collapse
Affiliation(s)
- P Vici
- a Division of Medical Oncology 2 , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - L Pizzuti
- a Division of Medical Oncology 2 , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - L Mariani
- b HPV-UNIT Laboratory of Virology , 'Regina Elena' National Cancer Institute , Rome , Italy.,c Department of Gynecologic Oncology , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - G Zampa
- d Oncology Unit , Nuovo Regina Margherita Hospital , Rome , Italy
| | - D Santini
- e Department of Medical Oncology , University Campus Bio-Medico , Rome , Italy
| | - L Di Lauro
- a Division of Medical Oncology 2 , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - T Gamucci
- f Medical Oncology Unit, ASL Frosinone , Frosinone , Italy
| | - C Natoli
- g Department of Medical, Oral and Biotechnological Sciences, Experimental and Clinical Sciences , University 'G. d'Annunzio' , Chieti , Italy
| | - P Marchetti
- h Oncology Unit, Sant'Andrea Hospital , 'Sapienza' University of Rome , Rome , Italy
| | - M Barba
- a Division of Medical Oncology 2 , 'Regina Elena' National Cancer Institute , Rome , Italy.,i Scientific Direction , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - M Maugeri-Saccà
- a Division of Medical Oncology 2 , 'Regina Elena' National Cancer Institute , Rome , Italy.,i Scientific Direction , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - D Sergi
- a Division of Medical Oncology 2 , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - F Tomao
- j Department of Gynecologic and Obstetric Sciences , La Sapienza University of Rome , Rome , Italy
| | - E Vizza
- b HPV-UNIT Laboratory of Virology , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - S Di Filippo
- k Emergency Department , Santa Maria Goretti Hospital , Latina , Italy
| | - F Paolini
- b HPV-UNIT Laboratory of Virology , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - G Curzio
- b HPV-UNIT Laboratory of Virology , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - G Corrado
- c Department of Gynecologic Oncology , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - A Michelotti
- l Oncology Unit I , Azienda Ospedaliera Universitaria Pisana , Pisa , Italy
| | - G Sanguineti
- m Radiotherapy , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - A Giordano
- n Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology , Temple University , Philadelphia , PA , USA.,o Department of Human Pathology and Oncology , University of Siena , Siena , Italy
| | - R De Maria
- i Scientific Direction , 'Regina Elena' National Cancer Institute , Rome , Italy
| | - A Venuti
- b HPV-UNIT Laboratory of Virology , 'Regina Elena' National Cancer Institute , Rome , Italy
| |
Collapse
|
24
|
Skeate JG, Woodham AW, Einstein MH, Da Silva DM, Kast WM. Current therapeutic vaccination and immunotherapy strategies for HPV-related diseases. Hum Vaccin Immunother 2016; 12:1418-29. [PMID: 26835746 DOI: 10.1080/21645515.2015.1136039] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Carcinomas of the anogenital tract, in particular cervical cancer, remains one of the most common cancers in women, and represent the most frequent gynecological malignancies and the fourth leading cause of cancer death in women worldwide. Human papillomavirus (HPV)-induced lesions are immunologically distinct in that they express viral antigens, which are necessary to maintain the cancerous phenotype. The causal relationship between HPV infection and anogenital cancer has prompted substantial interest in the development of therapeutic vaccines against high-risk HPV types targeting the viral oncoproteins E6 and E7. This review will focus on the most recent clinical trials for immunotherapies for mucosal HPV-induced lesions as well as emerging therapeutic strategies that have been tested in pre-clinical models for HPV-induced diseases. Progress in peptide- and protein-based vaccines, DNA-based vaccines, viral/bacterial vector-based vaccines, immune checkpoint inhibition, immune response modifiers, and adoptive cell therapy for HPV will be discussed.
Collapse
Affiliation(s)
- Joseph G Skeate
- a Department of Molecular Microbiology & Immunology , University of Southern California , Los Angeles , CA , USA
| | - Andrew W Woodham
- a Department of Molecular Microbiology & Immunology , University of Southern California , Los Angeles , CA , USA
| | - Mark H Einstein
- b Department of Obstetrics & Gynecology and Women's Health , Rutgers New Jersey Medical School , Newark , NJ , USA
| | - Diane M Da Silva
- c Department of Obstetrics & Gynecology , University of Southern California , Los Angeles , CA , USA.,d Norris Comprehensive Cancer Center, University of Southern California , Los Angeles , CA , USA
| | - W Martin Kast
- a Department of Molecular Microbiology & Immunology , University of Southern California , Los Angeles , CA , USA.,c Department of Obstetrics & Gynecology , University of Southern California , Los Angeles , CA , USA.,d Norris Comprehensive Cancer Center, University of Southern California , Los Angeles , CA , USA
| |
Collapse
|
25
|
Stevanović S, Draper LM, Langhan MM, Campbell TE, Kwong ML, Wunderlich JR, Dudley ME, Yang JC, Sherry RM, Kammula US, Restifo NP, Rosenberg SA, Hinrichs CS. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J Clin Oncol 2015; 33:1543-50. [PMID: 25823737 DOI: 10.1200/jco.2014.58.9093] [Citation(s) in RCA: 474] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PURPOSE Metastatic cervical cancer is a prototypical chemotherapy-refractory epithelial malignancy for which better treatments are needed. Adoptive T-cell therapy (ACT) is emerging as a promising cancer treatment, but its study in epithelial malignancies has been limited. This study was conducted to determine if ACT could mediate regression of metastatic cervical cancer. PATIENTS AND METHODS Patients enrolled onto this protocol were diagnosed with metastatic cervical cancer and had previously received platinum-based chemotherapy or chemoradiotherapy. Patients were treated with a single infusion of tumor-infiltrating T cells selected when possible for human papillomavirus (HPV) E6 and E7 reactivity (HPV-TILs). Cell infusion was preceded by lymphocyte-depleting chemotherapy and was followed by administration of aldesleukin. RESULTS Three of nine patients experienced objective tumor responses (two complete responses and one partial response). The two complete responses were ongoing 22 and 15 months after treatment, respectively. One partial response was 3 months in duration. The HPV reactivity of T cells in the infusion product (as measured by interferon gamma production, enzyme-linked immunospot, and CD137 upregulation assays) correlated positively with clinical response (P = .0238 for all three assays). In addition, the frequency of HPV-reactive T cells in peripheral blood 1 month after treatment was positively associated with clinical response (P = .0238). CONCLUSION Durable, complete regression of metastatic cervical cancer can occur after a single infusion of HPV-TILs. Exploratory studies suggest a correlation between HPV reactivity of the infusion product and clinical response. Continued investigation of this therapy is warranted.
Collapse
Affiliation(s)
| | | | | | | | - Mei Li Kwong
- All authors: National Cancer Institute, Bethesda, MD
| | | | - Mark E Dudley
- All authors: National Cancer Institute, Bethesda, MD
| | - James C Yang
- All authors: National Cancer Institute, Bethesda, MD
| | | | | | | | | | | |
Collapse
|
26
|
Panatto D, Amicizia D, Bragazzi NL, Rizzitelli E, Tramalloni D, Valle I, Gasparini R. Human Papillomavirus Vaccine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015:231-322. [DOI: 10.1016/bs.apcsb.2015.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Immunotherapy: An Evolving Paradigm in the Treatment of Advanced Cervical Cancer. Clin Ther 2015; 37:20-38. [DOI: 10.1016/j.clinthera.2014.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 11/23/2022]
|
28
|
Rahma OE, Herrin VE, Ibrahim RA, Toubaji A, Bernstein S, Dakheel O, Steinberg SM, Abu Eid R, Mkrtichyan M, Berzofsky JA, Khleif SN. Pre-immature dendritic cells (PIDC) pulsed with HPV16 E6 or E7 peptide are capable of eliciting specific immune response in patients with advanced cervical cancer. J Transl Med 2014; 12:353. [PMID: 25510844 PMCID: PMC4269078 DOI: 10.1186/s12967-014-0353-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/02/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The protein products of the early genes E6 and E7 in high-risk HPV types 16 and 18 have been implicated in the oncogenic capability of these viruses. Therefore, these peptides represent attractive vaccine therapy targets. METHODS Thirty-two patients with advanced cervical cancer (HPV16 or 18 positive) were treated with HPV16 E6 (18-26) (Arm A) or HPV16 E7 (12-20) peptide (Arm B) pulsed on PBMCs in order to illicit immune response against the relevant peptide on both arms. These PBMCs were cultured for a short time (48 hours only) and in the presence of GM- CSF, accordingly, they were identified as "Pre-Immature Dentritic Cells". RESULTS 51Cr release assay and ELISPOT demonstrated evidence of specific immune response against the relevant peptide in 10/16 (63%) evaluable patients in arm A and 7/12 (58%) in arm B. HPV16 E6 was found to be homologous to HPV18 E6 in both vivo and vitro. The median overall survival (OS) and progression free survival (PFS) for the full cohort was 10.0 and 3.5 months, respectively. There were no RECIST responses in any patient. The majority of toxicities were grade I and II. CONCLUSIONS We demonstrated the feasibility and ability of Pre-Immature Dentritic Cells pulsed with HPV16 E6 (18-26) or HPV16 E7 (12-20) to induce a specific immune response against the relevant peptide despite the advanced disease of the cervical cancer patients treated on this trial. We believe that this observation deserves further investigations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Samir N Khleif
- Cancer Vaccine Branch, CCR, NCI, 10 Center Drive, Bethesda 20892, MD, USA.
| |
Collapse
|
29
|
Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2014; 1:1111-1134. [PMID: 23170259 PMCID: PMC3494625 DOI: 10.4161/onci.21494] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) occupy a central position in the immune system, orchestrating a wide repertoire of responses that span from the development of self-tolerance to the elicitation of potent cellular and humoral immunity. Accordingly, DCs are involved in the etiology of conditions as diverse as infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. During the last decade, several methods have been developed to load DCs with tumor-associated antigens, ex vivo or in vivo, in the attempt to use them as therapeutic anticancer vaccines that would elicit clinically relevant immune responses. While this has not always been the case, several clinical studies have demonstrated that DC-based anticancer vaccines are capable of activating tumor-specific immune responses that increase overall survival, at least in a subset of patients. In 2010, this branch of clinical research has culminated with the approval by FDA of a DC-based therapeutic vaccine (sipuleucel-T, Provenge®) for use in patients with asymptomatic or minimally symptomatic metastatic hormone-refractory prostate cancer. Intense research efforts are currently dedicated to the identification of the immunological features of patients that best respond to DC-based anticancer vaccines. This knowledge may indeed lead to personalized combination strategies that would extend the benefit of DC-based immunotherapy to a larger patient population. In addition, widespread enthusiasm has been generated by the results of the first clinical trials based on in vivo DC targeting, an approach that holds great promises for the future of DC-based immunotherapy. In this Trial Watch, we will summarize the results of recently completed clinical trials and discuss the progress of ongoing studies that have evaluated/are evaluating DC-based interventions for cancer therapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Institut Gustave Roussy; Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pham PV, Nguyen NT, Nguyen HM, Khuat LT, Le PM, Pham VQ, Nguyen ST, Phan NK. A simple in vitro method for evaluating dendritic cell-based vaccinations. Onco Targets Ther 2014; 7:1455-64. [PMID: 25170272 PMCID: PMC4145728 DOI: 10.2147/ott.s67057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Dendritic cell (DC) therapy is a promising therapy for cancer-targeting treatments. Recently, DCs have been used for treatment of some cancers. We aimed to develop an in vitro assay to evaluate DC therapy in cancer treatment using a breast cancer model. Methods DCs were induced from murine bone marrow mononuclear cells in Roswell Park Memorial Institute (RPMI) 1640 medium supplemented with GM-CSF (20 ng/mL) and IL-4 (20 ng/mL). Immature DCs were primed with breast cancer stem cell (BCSC)-derived antigens. BCSCs were sorted from 4T1 cell lines based on aldehyde dehydrogenase expression. A mixture of DCs and cytotoxic T lymphocytes (CTLs) were used to evaluate the inhibitory effect of antigen-primed DCs on BCSCs. BCSC proliferation and doubling time were recorded based on impedance-based cell analysis using the xCELLigence system. The specification of inhibitory effects of DCs and CTLs was also evaluated using the same system. Results The results showed that impedance-based analysis of BCSCs reflected cytotoxicity and inhibitory effects of DCs and CTLs at 72 hours. Differences in ratios of DC:CTL changed the cytotoxicity of DCs and CTLs. Conclusion This study successfully used impedance-based cell analysis as a new in vitro assay to evaluate DC efficacy in cancer immunotherapy. We hope this technique will contribute to the development and improvement of immunotherapies in the near future.
Collapse
Affiliation(s)
- Phuc Van Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nhung Thi Nguyen
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hoang Minh Nguyen
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Lam Tan Khuat
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Phong Minh Le
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Viet Quoc Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Sinh Truong Nguyen
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Ngoc Kim Phan
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
31
|
Therapeutic Vaccine Strategies against Human Papillomavirus. Vaccines (Basel) 2014; 2:422-62. [PMID: 26344626 PMCID: PMC4494257 DOI: 10.3390/vaccines2020422] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022] Open
Abstract
High-risk types of human papillomavirus (HPV) cause over 500,000 cervical, anogenital and oropharyngeal cancer cases per year. The transforming potential of HPVs is mediated by viral oncoproteins. These are essential for the induction and maintenance of the malignant phenotype. Thus, HPV-mediated malignancies pose the unique opportunity in cancer vaccination to target immunologically foreign epitopes. Therapeutic HPV vaccination is therefore an ideal scenario for proof-of-concept studies of cancer immunotherapy. This is reflected by the fact that a multitude of approaches has been utilized in therapeutic HPV vaccination design: protein and peptide vaccination, DNA vaccination, nanoparticle- and cell-based vaccines, and live viral and bacterial vectors. This review provides a comprehensive overview of completed and ongoing clinical trials in therapeutic HPV vaccination (summarized in tables), and also highlights selected promising preclinical studies. Special emphasis is given to adjuvant science and the potential impact of novel developments in vaccinology research, such as combination therapies to overcome tumor immune suppression, the use of novel materials and mouse models, as well as systems vaccinology and immunogenetics approaches.
Collapse
|
32
|
Vici P, Mariani L, Pizzuti L, Sergi D, Di Lauro L, Vizza E, Tomao F, Tomao S, Cavallotti C, Paolini F, Venuti A. Immunologic treatments for precancerous lesions and uterine cervical cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:29. [PMID: 24667138 PMCID: PMC3986944 DOI: 10.1186/1756-9966-33-29] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/18/2014] [Indexed: 01/24/2023]
Abstract
Development of HPV-associated cancers not only depends on efficient negative regulation of cell cycle control that supports the accumulation of genetic damage, but also relies on immune evasion that enable the virus to go undetected for long periods of time. In this way, HPV-related tumors usually present MHC class I down-regulation, impaired antigen-processing ability, avoidance of T-cell mediated killing, increased immunosuppression due to Treg infiltration and secrete immunosuppressive cytokines. Thus, these are the main obstacles that immunotherapy has to face in the treatment of HPV-related pathologies where a number of different strategies have been developed to overcome them including new adjuvants. Although antigen-specific immunotherapy induced by therapeutic HPV vaccines was proved extremely efficacious in pre-clinical models, its progression through clinical trials suffered poor responses in the initial trials. Later attempts seem to have been more promising, particularly against the well-defined precursors of cervical, anal or vulvar cancer, where the local immunosuppressive milieu is less active. This review focuses on the advances made in these fields, highlighting several new technologies (such as mRNA vaccine, plant-derived vaccine). The most promising immunotherapies used in clinical trials are also summarized, along with integrated strategies, particularly promising in controlling tumor metastasis and in eliminating cancer cells altogether. After the early promising clinical results, the development of therapeutic HPV vaccines need to be implemented and applied to the users in order to eradicate HPV-associated malignancies, eradicating existing perception (after the effectiveness of commercial preventive vaccines) that we have already solved the problem.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Aldo Venuti
- HPV Unit, Regina Elena National Cancer Institute, V Elio Chianesi 53, Rome 00144, Italy.
| |
Collapse
|
33
|
|
34
|
Sin JI. Promises and challenges of human papillomavirus vaccines for cervical cancer. Expert Rev Anticancer Ther 2014; 9:1-5. [DOI: 10.1586/14737140.9.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
35
|
Bellone S, Pecorelli S, Cannon MJ, Santin AD. Advances in dendritic cell-based therapeutic vaccines for cervical cancer. Expert Rev Anticancer Ther 2014; 7:1473-86. [DOI: 10.1586/14737140.7.10.1473] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Abstract
Human papillomavirus (HPV) infection is a major cause of cervical cancer, the second most common cancer in women worldwide. Currently, a HPV L1-based virus-like particle has been approved as a prophylactic vaccine against HPV infection, which will probably lead to a reduction in cervical cancer incidence within a few decades. Therapeutic vaccines, however, are expected to have an impact on cervical cancer or its precursor lesions, by taking advantage of the fact that the regulatory proteins (E6 and E7) of HPV are expressed constantly in HPV-associated cervical cancer cells. Vaccine types targeting these regulatory proteins include the recombinant protein and DNA vaccines, peptide vaccines, dendritic-cell vaccines, and viral and bacterial vector deliveries of vaccines, and these may provide an opportunity to control cervical cancer. Further approaches incorporating these vaccine types with either conventional therapy modalities or the modulation of CD4(+) regulatory T cells appear to be more promising in achieving increased therapeutic efficacy. In this review, we summarize current and future therapeutic vaccine strategies against HPV-associated malignancies at the animal and clinical levels.
Collapse
Affiliation(s)
- Jeong-Im Sin
- Catholic University of Daegu, Department of Microbiology, School of Medicine, 3056-6, Daemyung-4-Dong, Namgu, Daegu, 705-718, Korea.
| |
Collapse
|
37
|
Conesa-Zamora P. Immune responses against virus and tumor in cervical carcinogenesis: Treatment strategies for avoiding the HPV-induced immune escape. Gynecol Oncol 2013; 131:480-8. [DOI: 10.1016/j.ygyno.2013.08.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 12/23/2022]
|
38
|
Morrow MP, Yan J, Sardesai NY. Human papillomavirus therapeutic vaccines: targeting viral antigens as immunotherapy for precancerous disease and cancer. Expert Rev Vaccines 2013; 12:271-83. [PMID: 23496667 DOI: 10.1586/erv.13.23] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infections with oncogenic HPV types have the potential to lead to the induction of several types of cancer, notably cervical, vulvar, anal, and head and neck cancer. While prophylactic vaccines are currently available and show high efficacy against the establishment of HPV infection, low rates of initiation and lower rates of completion of the vaccination regimen, as well as the lack of an opportunity to be vaccinated prior to infection, has lead to the development of a patient population for whom no immune-based therapy for infection is available. In the current review the authors examine clinical approaches to HPV-targeted immune therapies, the bulk of which target the regulatory proteins E6 and E7 that are constitutively expressed in HPV-associated cancer cells. Early studies demonstrate a correlation between induction of T-cell responses and clearance of HPV-associated precancerous lesions. The clinical data corroborates these findings and highlight the importance of Th1 skewing. Improvements in our understanding of tumor immunology and development of more potent Th1-directed vaccine platforms make it feasible to foresee a HPV therapeutic vaccine in the coming years.
Collapse
Affiliation(s)
- Matthew P Morrow
- Inovio Pharmaceuticals, Inc., 1787 Sentry Parkway West, Blue Bell, PA 19422, USA
| | | | | |
Collapse
|
39
|
Deligeoroglou E, Giannouli A, Athanasopoulos N, Karountzos V, Vatopoulou A, Dimopoulos K, Creatsas G. HPV infection: immunological aspects and their utility in future therapy. Infect Dis Obstet Gynecol 2013; 2013:540850. [PMID: 24023507 PMCID: PMC3762170 DOI: 10.1155/2013/540850] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 07/18/2013] [Indexed: 01/03/2023] Open
Abstract
High prevalence and mortality rates of cervical cancer create an imperative need to clarify the uniqueness of HPV (Human Papillomavirus) infection, which serves as the key causative factor in cervical malignancies. Understanding the immunological details and the microenvironment of the infection can be a useful tool for the development of novel therapeutic interventions. Chronic infection and progression to carcinogenesis are sustained by immortalization potential of HPV, evasion techniques, and alterations in the microenvironment of the lesion. Inside the lesion, Toll-like receptors expression becomes irregular; Langerhans cells fail to present the antigens efficiently, tumor-associated macrophages aggregate resulting in an unsuccessful immune response by the host. HPV products also downregulate the expression of microenvironment components which are necessary for natural-killer cells response and antigen presentation to cytotoxic cells. Additionally HPV promotes T-helper cell 2 (Th2) and T-regulatory cell phenotypes and reduces Th1 phenotype, leading to suppression of cellular immunity and lesion progression to cancer. Humoral response after natural infection is inefficient, and neutralizing antibodies are not adequate in many women. Utilizing this knowledge, new endeavors, such as therapeutic vaccination, aim to stimulate cellular immune response against the virus and alter the milieu of the lesion.
Collapse
Affiliation(s)
- Efthimios Deligeoroglou
- Division of Pediatric-Adolescent Gynecology and Reconstructive Surgery, 2nd Department of Obstetrics and Gynecology, Athens University, Medical School, Aretaieion Hospital, Vassilisis, Sofias Avenue 76, 11528 Athens, Greece
| | - Aikaterini Giannouli
- Division of Pediatric-Adolescent Gynecology and Reconstructive Surgery, 2nd Department of Obstetrics and Gynecology, Athens University, Medical School, Aretaieion Hospital, Vassilisis, Sofias Avenue 76, 11528 Athens, Greece
| | - Nikolaos Athanasopoulos
- Division of Pediatric-Adolescent Gynecology and Reconstructive Surgery, 2nd Department of Obstetrics and Gynecology, Athens University, Medical School, Aretaieion Hospital, Vassilisis, Sofias Avenue 76, 11528 Athens, Greece
| | - Vasileios Karountzos
- Division of Pediatric-Adolescent Gynecology and Reconstructive Surgery, 2nd Department of Obstetrics and Gynecology, Athens University, Medical School, Aretaieion Hospital, Vassilisis, Sofias Avenue 76, 11528 Athens, Greece
| | - Anastasia Vatopoulou
- Division of Pediatric and Adolescent Gynecology, 1st Department of Ob/Gyn Papageorgiou Hospital, University of Thessaloniki, Medical School, Perifereiaki Odos Thessalonikis-N, Efkarpias, 564 29 Thessaloniki, Greece
| | - Konstantinos Dimopoulos
- Division of Pediatric-Adolescent Gynecology and Reconstructive Surgery, 2nd Department of Obstetrics and Gynecology, Athens University, Medical School, Aretaieion Hospital, Vassilisis, Sofias Avenue 76, 11528 Athens, Greece
| | - George Creatsas
- Division of Pediatric-Adolescent Gynecology and Reconstructive Surgery, 2nd Department of Obstetrics and Gynecology, Athens University, Medical School, Aretaieion Hospital, Vassilisis, Sofias Avenue 76, 11528 Athens, Greece
| |
Collapse
|
40
|
Zhu Y, Zheng Y, Mei L, Liu M, Li S, Xiao H, Zhu H, Wu S, Chen H, Huang L. Enhanced immunotherapeutic effect of modified HPV16 E7-pulsed dendritic cell vaccine by an adeno-shRNA-SOCS1 virus. Int J Oncol 2013; 43:1151-9. [PMID: 23877655 DOI: 10.3892/ijo.2013.2027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 05/23/2013] [Indexed: 11/06/2022] Open
Abstract
Cervical cancer is the second most common cause of cancer-related deaths among women worldwide. However, no efficient therapy exists against cervical cancer and current treatments have several disadvantages. One possible novel approach is to develop immune-based strategies using tumor antigen-loaded dendritic cells (DCs) for the induction of cellular antitumor immunity. In this study, we created a modified HPV16 E7, HPV16mE7, to reduce its transformation activity and to enhance its antigenicity. The siRNA delivery technique was used to silence the suppressor of cytokine signaling 1 (SOCS1) gene in DCs. BM-derived DCs infected by ad-shRNA-SOCS1 were pulsed with the HPV16mE7 protein and then were transfused into mouse models bearing TC-1 tumor cells expressing HPV16 E6/E7. IFN-γ, cytokine (TNF-α, IL-12, IL-6) expression, anti-E7 antibody and cytotoxic T lymphocyte (CTL) levels were measured. The survival rate, survival days and the tumor volume of the mouse models from the different treatment groups were monitored. The data showed that the mE7-pulsed DC vaccine enhanced by adenovirus-mediated SOCS1 silencing exhibited better immunotherapeutic effect on the allografted tumor mouse models. The method by silencing SOCS1 in HPV16mE7 protein-pulsed DCs may provide a new strategy for the development of safe and effective immunotherapy for cervical cancer.
Collapse
Affiliation(s)
- Yongqiang Zhu
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Han KT, Sin JI. DNA vaccines targeting human papillomavirus-associated diseases: progresses in animal and clinical studies. Clin Exp Vaccine Res 2013; 2:106-14. [PMID: 23858401 PMCID: PMC3710918 DOI: 10.7774/cevr.2013.2.2.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 05/30/2013] [Accepted: 06/15/2013] [Indexed: 01/18/2023] Open
Abstract
Human papillomavirus (HPV) infection is a major cause of cervical cancer and its precancerous diseases. Cervical cancer is the second deadliest cancer killer among women worldwide. Moreover, HPV is also known to be a causative agent of oral, pharyngeal, anal and genital cancer. Recent application of HPV structural protein (L1)-targeted prophylactic vaccines (Gardasil® and Cervarix®) is expected to reduce the incidence of HPV infection and cervical cancer, and possibly other HPV-associated cancers. However, the benefit of the prophylactic vaccines for treating HPV-infected patients is unlikely, underscoring the importance of developing therapeutic vaccines against HPV infection. In this regard, numerous types of therapeutic vaccine approaches targeting the HPV regulatory proteins, E6 and E7, have been tested for their efficacy in animals and clinically. In this communication, we review HPV vaccine types, in particular DNA vaccines, their designs and delivery by electroporation and their immunologic and antitumor efficacy in animals and humans, along with the basics of HPV and its pathogenesis.
Collapse
Affiliation(s)
- Kyusun Torque Han
- Department of Microbiology, School of Medicine, Kangwon National University, Chuncheon, Korea
| | | |
Collapse
|
42
|
Bergot AS, Kassianos A, Frazer IH, Mittal D. New Approaches to Immunotherapy for HPV Associated Cancers. Cancers (Basel) 2011; 3:3461-95. [PMID: 24212964 PMCID: PMC3759206 DOI: 10.3390/cancers3033461] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 02/08/2023] Open
Abstract
Cervical cancer is the second most common cancer of women worldwide and is the first cancer shown to be entirely induced by a virus, the human papillomavirus (HPV, major oncogenic genotypes HPV-16 and -18). Two recently developed prophylactic cervical cancer vaccines, using virus-like particles (VLP) technology, have the potential to prevent a large proportion of cervical cancer associated with HPV infection and to ensure long-term protection. However, prophylactic HPV vaccines do not have therapeutic effects against pre-existing HPV infections and do not prevent their progression to HPV-associated malignancy. In animal models, therapeutic vaccines for persisting HPV infection can eliminate transplantable tumors expressing HPV antigens, but are of limited efficacy in inducing rejection of skin grafts expressing the same antigens. In humans, clinical trials have reported successful immunotherapy of HPV lesions, providing hope and further interest. This review discusses possible new approaches to immunotherapy for HPV associated cancer, based on recent advances in our knowledge of the immunobiology of HPV infection, of epithelial immunology and of immunoregulation, with a brief overview on previous and current HPV vaccine clinical trials.
Collapse
Affiliation(s)
- Anne-Sophie Bergot
- Author to whom correspondence should be addressed; E-Mails: (A.-S.B); (D.M.); Tel.: +61 (07) 3176 2769; Fax: +61 7 3176 5946
| | | | | | - Deepak Mittal
- Author to whom correspondence should be addressed; E-Mails: (A.-S.B); (D.M.); Tel.: +61 (07) 3176 2769; Fax: +61 7 3176 5946
| |
Collapse
|
43
|
Frazer IH, Leggatt GR, Mattarollo SR. Prevention and treatment of papillomavirus-related cancers through immunization. Annu Rev Immunol 2011; 29:111-38. [PMID: 21166538 DOI: 10.1146/annurev-immunol-031210-101308] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cervical and other anogenital cancers are initiated by infection with one of a small group of human papillomaviruses (HPV). Virus-like particle-based vaccines have recently been developed to prevent infection with two cancer-associated HPV genotypes (HPV16, HPV18) and have been ∼95% effective at preventing HPV-associated disease caused by these genotypes in virus-naive subjects. Although immunization induces virus-neutralizing antibody sufficient to prevent infection, persistence of antibody as measured by current assays does not appear necessary to maintain protection over time. Investigators have not identified a reliable surrogate immunological marker of protection against disease following immunization. The prophylactic vaccines are not therapeutic for existing infection. Trials of HPV-specific immunotherapy have shown some efficacy for existing disease, although animal modeling suggests that a combination of immunization and local enhancement of innate immunity may be necessary for optimal therapeutic outcome. HPV prophylactic vaccines are the first vaccines designed to prevent a human cancer and are the practical outcome of a global collaborative effort between basic and applied scientists, clinicians, and industry.
Collapse
Affiliation(s)
- Ian H Frazer
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Australia.
| | | | | |
Collapse
|
44
|
Lee IH, Park JB, Cheong M, Choi YS, Park D, Sin JI. Antitumor therapeutic and antimetastatic activity of electroporation-delivered human papillomavirus 16 E7 DNA vaccines: a possible mechanism for enhanced tumor control. DNA Cell Biol 2011; 30:975-85. [PMID: 21649506 DOI: 10.1089/dna.2011.1266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA vaccines are known to be lacking in immunogenicity in humans. Presently, electroporation (EP) is thought to overcome this limitation. Here, we investigate whether human papillomavirus 16 E7 DNA vaccines delivered by EP might elicit potent antitumor activity in animal cervical cancer models, with a focus on the underlying mechanism(s). Intramuscular (IM)-EP delivery of E7 DNA vaccines induced more potent antitumor therapeutic and antimetastatic activity compared with IM delivery. Moreover, the tumor-controlled animals by IM-EP possessed long-term memory responses to parental tumor cells. This improved antitumor effect was concomitant with augmented Ag-specific CTL activities. IM-EP also induced IgG and Th-cell responses higher than IM delivery. Finally, IM-EP resulted in more antigen production in and more attraction of immune cells into the site of DNA injection, suggesting that these biological and immunological changes made by IM-EP might be responsible for enhanced CTL activities and antitumor resistance. Thus, this study shows that IM-EP can induce more potent antitumor activity by augmenting CTL responses possibly through more antigen production in and more attraction of immune cells into the muscle sites. This study also suggests that IM-EP of E7 DNA vaccines might be a potential approach toward treating patients with cervical cancer.
Collapse
Affiliation(s)
- In Hee Lee
- Department of Internal Medicine, Catholic University of Daegu, Daegu, Korea
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Infection with human papilloma virus (HPV) has been identified as the cause of recurrent papillomatosis and of a subgroup of squamous cell carcinomas of the head and neck. A change in prevalence of these lesions, especially for oropharyngeal carcinoma, can be expected as a consequence of the introduction of prophylactic HPV vaccines for young women, targeting the most frequent high- and low-risk HPV subtypes. Vaccination for the major low-risk HPV types has proven to be highly effective against genital warts and activity against papillomatosis can be expected. The possibilities of prophylactic HPV vaccination as well as new developments and the rationale for therapeutic vaccines are discussed on the basis of the current literature.
Collapse
|
46
|
Nurkkala M, Wassén L, Nordström I, Gustavsson I, Slavica L, Josefsson A, Eriksson K. Conjugation of HPV16 E7 to cholera toxin enhances the HPV-specific T-cell recall responses to pulsed dendritic cells in vitro in women with cervical dysplasia. Vaccine 2010; 28:5828-36. [PMID: 20600477 DOI: 10.1016/j.vaccine.2010.06.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 05/31/2010] [Accepted: 06/22/2010] [Indexed: 11/30/2022]
Abstract
We have evaluated whether cholera toxin (CT) as a carrier/adjuvant can enhance human T-cell responses to a viral oncoprotein in vitro using dendritic cells (DCs) as antigen-presenting cells. Monocyte-derived DCs obtained from women with cervical dysplasia were pulsed with the HPV16 oncoprotein E7, either alone or conjugated to CT, and tested for their ability to induce antigen-specific activation of autologous T cells in vitro. CT-conjugation of E7 significantly improved the capacity of pulsed DCs to activate antigen-specific CD4+ T-cell proliferation and IFN-gamma secretion. The CT-E7-pulsed DCs also produced significantly more of the Th1-inducing cytokine IL-12 compared to DCs pulsed with E7 or CT alone. Furthermore, DCs pulsed with CT-conjugated HPV16 E7 caused a response in T cells from women with advanced disease (CIN III) as well as in T cells from women that were currently not infected with HPV16. These data show the potential of using CT-conjugated viral oncoproteins for DC-induced T-cell activation in humans.
Collapse
Affiliation(s)
- Merja Nurkkala
- Department of Rheumatology & Inflammation Research, University of Gothenburg, Göteborg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
47
|
Ye F, Yu Y, Hu Y, Lu W, Xie X. Alterations of dendritic cell subsets in the peripheral circulation of patients with cervical carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:78. [PMID: 20565840 PMCID: PMC2904720 DOI: 10.1186/1756-9966-29-78] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 06/18/2010] [Indexed: 12/30/2022]
Abstract
Patients with cervical carcinoma (CC) are frequently immunocompromised. Dendritic cells (DCs) are potent antigen-presenting cells. Using multicolor flow cytometry, the percentages of CD11c+ (DC1) and CD123+ (DC2) subsets, were determined in the peripheral blood of 37 patients with cervical carcinoma (CC), 54 patients with CIN, and 62 healthy individuals. A substantial reduction of circulating dendritic cells and accordingly immunodepression may be associated with increased IL-6 and TGF-β in serum. These findings could give expression to the immunosuppression of circulating dendritic cells in patients with CC and CIN, thus, may indicate novel aspects of cervical carcinoma immune evasion.
Collapse
Affiliation(s)
- Feng Ye
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Rd#2, Hangzhou, 310006, China
| | | | | | | | | |
Collapse
|
48
|
Combining T-cell vaccination and application of agonistic anti-GITR mAb (DTA-1) induces complete eradication of HPV oncogene expressing tumors in mice. J Immunother 2010; 33:136-45. [PMID: 20145549 DOI: 10.1097/cji.0b013e3181badc46] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We generated an adenovirus-based T-cell vaccine (Ad-p14) that reliably elicits T-cell responses to human papillomavirus (HPV) oncogenes of the 2 most common high-risk HPV serotypes. The artificial gene used to create the vaccine comprising 415 aa (1248 bp) was cloned by fusing 14 polymerase chain reaction fragments of HPV16 and HPV18 E6 and E7 oncogenes devoid of sequences with transforming potential. Although ensuring maximal biologic safety, the construct includes approximately 70% of the relevant T-cell epitopes. In a tumor model for cervical cancer (C3), therapeutic vaccination led to complete eradication in 100% of the mice. In a second model (TC1), it induced initial tumor mass reduction, but 90% of the animals showed delayed tumor progression. To further improve the therapeutic effect, vaccination was combined with systemic application of imiquimod, anti-CD4, alpha-interferon, or anti-GITR. Although adding alpha-interferon improved the therapeutic potential of Ad-p14 by 40%, the combination with anti-GITR resulted in complete and permanent eradication of all TC1 tumors. Ad-p14 has clinical potential for treating HPV-induced lesions, and the added effect of immune response modifiers stresses the importance of combined protocols for immunotherapy of malignant tumors.
Collapse
|
49
|
Su JH, Wu A, Scotney E, Ma B, Monie A, Hung CF, Wu TC. Immunotherapy for cervical cancer: Research status and clinical potential. BioDrugs 2010; 24:109-29. [PMID: 20199126 DOI: 10.2165/11532810-000000000-00000] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The high-risk types of human papillomavirus (HPV) have been found to be associated with most cervical cancers and play an essential role in the pathogenesis of the disease. Despite recent advances in preventive HPV vaccine development, such preventive vaccines are unlikely to reduce the prevalence of HPV infections within the next few years, due to their cost and limited availability in developing countries. Furthermore, preventive HPV vaccines may not be capable of treating established HPV infections and HPV-associated lesions, which account for high morbidity and mortality worldwide. Thus, it is important to develop therapeutic HPV vaccines for the control of existing HPV infection and associated malignancies. Therapeutic vaccines are quite different from preventive vaccines in that they require the generation of cell-mediated immunity, particularly T cell-mediated immunity, instead of the generation of neutralizing antibodies. The HPV-encoded early proteins, the E6 and E7 oncoproteins, form ideal targets for therapeutic HPV vaccines, since they are consistently expressed in HPV-associated cervical cancer and its precursor lesions and thus play crucial roles in the generation and maintenance of HPV-associated disease. Our review covers the various therapeutic HPV vaccines for cervical cancer, including live vector-based, peptide or protein-based, nucleic acid-based, and cell-based vaccines targeting the HPV E6 and/or E7 antigens. Furthermore, we review the studies using therapeutic HPV vaccines in combination with other therapeutic modalities and review the latest clinical trials on therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Jun-Han Su
- National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Much progress has been made in the prevention and therapy of premalignant and malignant dysplasia caused by human papillomavirus by encouraging screening programs and recently by introducing preventive vaccines. To further reduce the worldwide burden of HPV-associated cancer supplementation of the established therapies with immunotherapeutic methods would have the potential for significant impact. Dysplastic epithelial lesions and cancer of the anogenital and the oropharyngeal region show strong association with HPV. Therefore cervical carcinoma and HPV-associated squamous cell carcinoma of the head and neck differ from most other malignancies in that they harbour HPV-derived antigens. Expression of the viral oncogenes is mandatory to maintain the cancerous phenotype. These antigens are unique to the tumour and attractive targets for "proof of concept" studies in the development of therapeutic vaccines showing the general applicability of tumour vaccination and prove the correlation of immune response and clinical response. To date numerous clinical trials have been performed with candidate vaccines predominantly testing the efficacy for cervical cancer and its precursors. Although a naturally induced anti-HPV T cell response in patients was shown, clinical success of therapeutic vaccines was sparse. This may be attributed to immunosuppression, immunoselection, and immunoediting by the tumour cells. Factors of the individual that led to the failure of autonomous clearance of the initial infection may also contribute. Overriding this failure, reversing immunosuppression and application of vaccines in early stages of the disease is the key task for the future. The aim of this article is to summarize recent developments of therapeutic vaccines and discuss obstacles that hinder their success.
Collapse
|