1
|
Ning G, Wang F, Zhang R, Du H, Weng T, Wang X, Zhou T, Zhang G, Zhang Z. Polyvalent aptamer DNA nanoassembly based near-infrared carbon dots and rolling circle amplification for synergistic therapy of breast cancer. Int J Biol Macromol 2025; 310:143343. [PMID: 40274149 DOI: 10.1016/j.ijbiomac.2025.143343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/23/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025]
Abstract
Integrating imaging and therapy is of great significance in the field of tumor treatment. Here, we report a polyvalent aptamer nanoplatform for breast cancer cell treatment based on rolling circle amplification (RCA). The platform consists of a long single-stranded DNA scaffold from RCA and short-stranded DNAs with various functions. One short strand is linked to near-infrared carbon dots (NIR-CDs), another carries a MUC1 aptamer targeting cancer cells, and the third loads small interfering RNA (siRNA) for gene therapy. Doxorubicin (Dox) attaches to the platform via CG base pairs, integrating fluorescence targeting, photothermal therapy (PTT), gene therapy, and chemotherapy. Aptamer enhances breast cancer cell uptake of the platform. NIR-CDs serve as fluorescence imaging agents and are used for PTT. When deoxyribonucleases degrade the nanoplatform, Dox is released and then exerts its chemotherapeutic effect. SiRNA can form the RNA-induced silencing complex to reduce drug tolerance and enhance the efficacy of loaded drugs. The experimental results show that the platform can accumulate in cancer cells, exert a killing effect on them, and meanwhile reduce side effects on normal cells. In summary, this study expands the application of DNA materials in biomedicine by constructing a diagnostic and therapeutic platform that integrates NIR-CDs and RCA.
Collapse
Affiliation(s)
- Gan Ning
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ruyan Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Huan Du
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Tianxin Weng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiufeng Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ting Zhou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Guodong Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhiqing Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
2
|
Alzahrani MS, Almutairy B, Althobaiti YS, Alsaab HO. Recent Advances in RNA Interference-Based Therapy for Hepatocellular Carcinoma: Emphasis on siRNA. Cell Biochem Biophys 2024; 82:1947-1964. [PMID: 38987439 DOI: 10.1007/s12013-024-01395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Even though RNA treatments were first proposed as a way to change aberrant signaling in cancer, research in this field is currently ongoing. The term "RNAi" refers to the use of several RNAi technologies, including ribozymes, riboswitches, Aptamers, small interfering RNA (siRNA), antisense oligonucleotides (ASOs), and CRISPR/Cas9 technology. The siRNA therapy has already achieved a remarkable feat by revolutionizing the treatment arena of cancers. Unlike small molecules and antibodies, which need administration every three months or even every two years, RNAi may be given every quarter to attain therapeutic results. In order to overcome complex challenges, delivering siRNAs to the targeted tissues and cells effectively and safely and improving the effectiveness of siRNAs in terms of their action, stability, specificity, and potential adverse consequences are required. In this context, the three primary techniques of siRNA therapies for hepatocellular carcinoma (HCC) are accomplished for inhibiting angiogenesis, decreasing cell proliferation, and promoting apoptosis, are discussed in this review. We also deliberate targeting issues, immunogenic reactions to siRNA therapy, and the difficulties with their intrinsic chemistry and transportation.
Collapse
Affiliation(s)
- Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia.
| |
Collapse
|
3
|
Mansour MA, Caputo VS, Aleem E. Highlights on selected growth factors and their receptors as promising anticancer drug targets. Int J Biochem Cell Biol 2021; 140:106087. [PMID: 34563698 DOI: 10.1016/j.biocel.2021.106087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Growth factor receptors (GFRs) and receptor tyrosine kinases (RTK) are groups of proteins mediating a plethora of physiological processes, including cell growth, proliferation, survival, differentiation and migration. Under certain circumstances, expression of GFRs and subsequently their downstream kinase signaling are deregulated by genetic, epigenetic, and somatic changes leading to uncontrolled cell division in many human diseases, most notably cancer. Cancer cells rely on growth factors to sustain the increasing need to cell division and metabolic reprogramming through cancer-associated activating mutations of their receptors (i.e., GFRs). In this review, we highlight the recent advances of selected GFRs and their ligands (growth factors) in cancer with emphasis on structural and functional differences. We also interrogate how overexpression and/or hyperactivation of GFRs contribute to cancer initiation, development, progression, and resistance to conventional chemo- and radiotherapies. Novel approaches are being developed as anticancer agents to target growth factor receptors and their signaling pathways in different cancers. Here, we illustrate how the current knowledge of GFRs biology, and their ligands lead to development of targeted therapies to inhibit and/or block the activity of growth factors, GFRs and downstream kinases to treat diseases such as cancer.
Collapse
Affiliation(s)
- Mohammed A Mansour
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK; Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Valentina S Caputo
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK
| | - Eiman Aleem
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK.
| |
Collapse
|
4
|
Khalil A, Jameson MJ. Downregulation of IGF1R Expression Inhibits Growth and Enhances Cisplatin Sensitivity of Head and Neck Squamous Cell Carcinoma Cells In Vitro. Discov Oncol 2018; 10:11-23. [PMID: 30350263 DOI: 10.1007/s12672-018-0352-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/03/2018] [Indexed: 01/07/2023] Open
Abstract
A lentivirus-mediated doxycycline-inducible pTRIPZ shRNAmir plasmid targeting IGF1R transcript was transfected into two head and neck squamous cell carcinoma (HNSCC) cell lines to silence IGF1R expression and to assess the effect of its downregulation on cisplatin sensitivity in vitro. In Cal27-regIGF1R and SCC25-regIGF1R cell lines, IGF1R protein expression was reduced by more than 90% after 72 h of incubation with doxycycline. Both basal and IGF-stimulated pIGF1R, pAKT, and pERK were significantly reduced, without influence on total AKT and ERK expression. Downregulation of the IGF1R was associated with decreased proliferation and cell viability in both cell lines. Reduced IGF1R expression was also associated with increased sub-G0/G1-phase and G0/G1-phase populations and decreased S-phase and G2/M-phase populations. IGF1R downregulation enhanced sensitivity to cisplatin with decrease of cisplatin IC50 from 15 to 7.1 in Cal27-regIGF1R cells and from 11 to 6.3 in SCC25-regIGF1R cells. Cisplatin exhibited increased pro-apoptotic activity by annexin V staining and PARP cleavage in both cells lines when cultured in doxycycline. Thus, in two HNSCC cell lines in vitro, reduced IGF1R expression results in reduced growth rate and increased sensitivity to cisplatin. Thus, IGF1R downregulation and/or inhibition may serve as a useful adjunct to platinum-based cytotoxic chemotherapy.
Collapse
Affiliation(s)
- Ashraf Khalil
- Department of Otolaryngology - Head and Neck Surgery, Division of Head and Neck Oncologic and Microvascular Surgery, University of Virginia Health System, Charlottesville, VA, USA. .,Department of Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufiya University, Shebin El Kom, Egypt.
| | - Mark J Jameson
- Department of Otolaryngology - Head and Neck Surgery, Division of Head and Neck Oncologic and Microvascular Surgery, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
5
|
Niu J, Wang Y, Wang J, Bin L, Hu X. Delivery of sFIT-1 engineered MSCs in combination with a continuous low-dose doxorubicin treatment prevents growth of liver cancer. Aging (Albany NY) 2017; 8:3520-3534. [PMID: 28039440 PMCID: PMC5270684 DOI: 10.18632/aging.101146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022]
Abstract
One important process in liver cancer growth and progression is angiogenesis. Vascular endothelial growth factor (VEGF) has the significant role in liver cancer angiogenesis. sFlt1 (soluble Fms-like tyrosine kinase-1) is the promising inhibitor of VEGF and can be used as the new method of inhibiting angiogenesis. MSCs (Mesenchymal stem cells) can infiltrate into tumor tissue and function as the efficient transgene delivery mediator. Here, we engineered murine MSCs to express sFlt1 and examined the anti-tumor effect of MSC- sFlt1 in combination with continues low-dose doxorubicin treatment. We found that this combination therapy significantly inhibited liver cancer cells proliferation. Above all, HepG2 xenografts treated with this combination therapy went into remission. It is of note that this inhibition effect was not p53 binding and by increasing caspase8. This study suggests that this combination treatment has novel therapeutic potential for liver cancer because of significantly inhibiting cancer cells growth and anti-angiogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Jian Niu
- General Surgery of the Hospital Affiliated Hospital of Xuzhou Medical University, Digestive Disease Research Laboratory of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yue Wang
- General Surgery of the Hospital Affiliated Hospital of Xuzhou Medical University, Digestive Disease Research Laboratory of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Ji Wang
- General Surgery of the Hospital Affiliated Hospital of Xuzhou Medical University, Digestive Disease Research Laboratory of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Liu Bin
- General Surgery of the Hospital Affiliated Hospital of Xuzhou Medical University, Digestive Disease Research Laboratory of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Xin Hu
- The University of Texas Graduate School of Biomedical Sciences at Houston, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Ahmed M, Kumar G, Navarro G, Wang Y, Gourevitch S, Moussa MH, Rozenblum N, Levchenko T, Galun E, Torchilin VP, Goldberg SN. Systemic siRNA Nanoparticle-Based Drugs Combined with Radiofrequency Ablation for Cancer Therapy. PLoS One 2015; 10:e0128910. [PMID: 26154425 PMCID: PMC4495977 DOI: 10.1371/journal.pone.0128910] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/01/2015] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Radiofrequency thermal ablation (RFA) of hepatic and renal tumors can be accompanied by non-desired tumorigenesis in residual, untreated tumor. Here, we studied the use of micelle-encapsulated siRNA to suppress IL-6-mediated local and systemic secondary effects of RFA. METHODS We compared standardized hepatic or renal RFA (laparotomy, 1 cm active tip at 70 ± 2 °C for 5 min) and sham procedures without and with administration of 150 nm micelle-like nanoparticle (MNP) anti-IL6 siRNA (DOPE-PEI conjugates, single IP dose 15 min post-RFA, C57Bl mouse:3.5 ug/100ml, Fisher 344 rat: 20 ug/200 ul), RFA/scrambled siRNA, and RFA/empty MNPs. Outcome measures included: local periablational cellular infiltration (α-SMA+ stellate cells), regional hepatocyte proliferation, serum/tissue IL-6 and VEGF levels at 6-72 hr, and distant tumor growth, tumor proliferation (Ki-67) and microvascular density (MVD, CD34) in subcutaneous R3230 and MATBIII breast adenocarcinoma models at 7 days. RESULTS For liver RFA, adjuvant MNP anti-IL6 siRNA reduced RFA-induced increases in tissue IL-6 levels, α-SMA+ stellate cell infiltration, and regional hepatocyte proliferation to baseline (p < 0.04, all comparisons). Moreover, adjuvant MNP anti-IL6- siRNA suppressed increased distant tumor growth and Ki-67 observed in R3230 and MATBIII tumors post hepatic RFA (p<0.01). Anti-IL6 siRNA also reduced RFA-induced elevation in VEGF and tumor MVD (p < 0.01). Likewise, renal RFA-induced increases in serum IL-6 levels and distant R3230 tumor growth was suppressed with anti-IL6 siRNA (p < 0.01). CONCLUSIONS Adjuvant nanoparticle-encapsulated siRNA against IL-6 can be used to modulate local and regional effects of hepatic RFA to block potential unwanted pro-oncogenic effects of hepatic or renal RFA on distant tumor.
Collapse
Affiliation(s)
- Muneeb Ahmed
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, 1 Deaconess Rd.–WCC-308B, Boston, Massachusetts, 02215, United States of America
- * E-mail:
| | - Gaurav Kumar
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, 1 Deaconess Rd.–WCC-308B, Boston, Massachusetts, 02215, United States of America
| | - Gemma Navarro
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 140 The Fenway, Boston, Massachusetts, 02115, United States of America
| | - Yuanguo Wang
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, 1 Deaconess Rd.–WCC-308B, Boston, Massachusetts, 02215, United States of America
| | - Svetlana Gourevitch
- The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Kiryat Hadassah POB 12000, Jerusalem, 91120, Israel
| | - Marwan H. Moussa
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, 1 Deaconess Rd.–WCC-308B, Boston, Massachusetts, 02215, United States of America
| | - Nir Rozenblum
- The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Kiryat Hadassah POB 12000, Jerusalem, 91120, Israel
| | - Tatyana Levchenko
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 140 The Fenway, Boston, Massachusetts, 02115, United States of America
| | - Eithan Galun
- The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Kiryat Hadassah POB 12000, Jerusalem, 91120, Israel
| | - Vladimir P. Torchilin
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 140 The Fenway, Boston, Massachusetts, 02115, United States of America
| | - S. Nahum Goldberg
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center/Harvard Medical School, 1 Deaconess Rd.–WCC-308B, Boston, Massachusetts, 02215, United States of America
- Division of Image-guided Therapy and Interventional Oncology, Department of Radiology, Hadassah Hebrew University Medical Center, Kiryat Hadassah POB 12000, Jerusalem, 91120, Israel
| |
Collapse
|
7
|
Chen YY, Zhu JY, Chan KM. Effects of cadmium on cell proliferation, apoptosis, and proto-oncogene expression in zebrafish liver cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:196-206. [PMID: 25456234 DOI: 10.1016/j.aquatox.2014.10.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
Cadmium (Cd) is one of the major transitional metal that has toxic effects in aquatic organisms and their associated ecosystem; however, its hepatic toxicity and carcinogenicity are not very well characterized. We used a zebrafish liver (ZFL) cell line as a model to investigate the mechanism of Cd-induced toxicity on hepatocytes. Our results showed that Cd can be effectively accumulated in ZFL cells in our exposure experiments. Cell cytotoxicity assays and flow cytometer measurements revealed that Cd(2+) stimulated ZFL cell proliferation with decreasing apoptotic cell numbers indicating potentially tumorigenic effects of Cd in ZFL cells. Gene expression profiles also indicated that Cd downregulated oncogenes p53 and rad51 and upregulated immediate response oncogenes, growth arrest and DNA damage-inducible (gadd45) genes, and growth factors. We also found dramatic changes in the gene expression of c-jun and igf1rb at different exposure time points, supporting the notion that potentially tumorigenic of Cd-is involved in the activation of immediate early genes or genes related to apoptosis in cancer promotion.
Collapse
Affiliation(s)
- Ying Ying Chen
- School of Life Sciences, Chinese University, Sha Tin, N.T., Hong Kong SAR, China
| | - Jin Yong Zhu
- School of Life Sciences, Chinese University, Sha Tin, N.T., Hong Kong SAR, China
| | - King Ming Chan
- School of Life Sciences, Chinese University, Sha Tin, N.T., Hong Kong SAR, China.
| |
Collapse
|
8
|
Zahonero C, Sánchez-Gómez P. EGFR-dependent mechanisms in glioblastoma: towards a better therapeutic strategy. Cell Mol Life Sci 2014; 71:3465-88. [PMID: 24671641 PMCID: PMC11113227 DOI: 10.1007/s00018-014-1608-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/06/2014] [Accepted: 03/11/2014] [Indexed: 12/11/2022]
Abstract
Glioblastoma is a particularly resilient cancer, and while therapies may be able to reach the brain by crossing the blood-brain barrier, they then have to deal with a highly invasive tumor that is very resistant to DNA damage. It seems clear that in order to kill aggressive glioma cells more efficiently and with fewer side effects on normal tissue, there must be a shift from classical cytotoxic chemotherapy to more targeted therapies. Since the epidermal growth factor receptor (EGFR) is altered in almost 50% of glioblastomas, it currently represents one of the most promising therapeutic targets. In fact, it has been associated with several distinct steps in tumorigenesis, from tumor initiation to tumor growth and survival, and also with the regulation of cell migration and angiogenesis. However, inhibitors of the EGFR kinase have produced poor results with this type of cancer in clinical trials, with no clear explanation for the tumor resistance observed. Here we will review what we know about the expression and function of EGFR in cancer and in particular in gliomas. We will also evaluate which are the possible molecular and cellular escape mechanisms. As a result, we hope that this review will help improve the design of future EGFR-targeted therapies for glioblastomas.
Collapse
Affiliation(s)
- Cristina Zahonero
- Neuro-Oncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid, Spain
| | | |
Collapse
|
9
|
Hernández-Breijo B, Monserrat J, Román ID, González-Rodríguez Á, Fernández-Moreno MD, Lobo MVT, Valverde ÁM, Gisbert JP, Guijarro LG. Azathioprine desensitizes liver cancer cells to insulin-like growth factor 1 and causes apoptosis when it is combined with bafilomycin A1. Toxicol Appl Pharmacol 2013; 272:568-78. [PMID: 23958494 DOI: 10.1016/j.taap.2013.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 11/18/2022]
Abstract
Hepatoblastoma is a primary liver cancer that affects children, due to the sensitivity of this tumor to insulin-like growth factor 1 (IGF-1). In this paper we show that azathioprine (AZA) is capable of inhibiting IGF1-mediated signaling cascade in HepG2 cells. The efficiency of AZA on inhibition of proliferation differs in the evaluated cell lines as follows: HepG2 (an experimental model of hepatoblastoma)>Hep3B (derived from a hepatocellular carcinoma)>HuH6 (derived from a hepatoblastoma)>>HuH7 (derived from a hepatocellular carcinoma)=Chang Liver cells (a non-malignant cellular model). The effect of AZA in HepG2 cells has been proven to derive from activation of Ras/ERK/TSC2, leading to activation of mTOR/p70S6K in a sustained manner. p70S6K phosphorylates IRS-1 in serine 307 which leads to the uncoupling between IRS-1 and p85 (the regulatory subunit of PI3K) and therefore causing the lack of response of HepG2 to IGF-1. As a consequence, proliferation induced by IGF-1 is inhibited by AZA and autophagy increases leading to senescence of HepG2 cells. Our results suggest that AZA induces the autophagic process in HepG2 activating senescence, and driving to deceleration of cell cycle but not to apoptosis. However, when simultaneous to AZA treatment the autophagy was inhibited by bafilomycin A1 and the degradation of regulatory proteins of cell cycle (e.g. Rb, E2F, and cyclin D1) provoked apoptosis. In conclusion, AZA induces resistance in hepatoblastoma cells to IGF-1, which leads to autophagy activation, and causes apoptosis when it is combined with bafilomycin A1. We are presenting here a novel mechanism of action of azathioprine, which could be useful in treatment of IGF-1 dependent tumors, especially in its combination with other drugs.
Collapse
Affiliation(s)
- Borja Hernández-Breijo
- Departamento de Biología de Sistemas, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang YW, Niu J, Lu X, Yang YX, Zhao HW, He X, Yin GW, Wu JD, Yan DL, Sun JF, Wen JF, Feng JF, Xue HZ, Lau WY. Multi-target lentivirus specific to hepatocellular carcinoma: in vitro and in vivo studies. J Hepatol 2013; 58:502-8. [PMID: 23149065 DOI: 10.1016/j.jhep.2012.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 10/24/2012] [Accepted: 11/03/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS We aimed at investigating the effects of the targeted transduction of the Wtp53-pPRIME-miR30-shRNA gene into liver cancer cells, under the mediation of anti-alpha fetoprotein scFv-directed lentivirus, and the inhibitory effect of this system on liver cancer cells. METHODS The result of infection was observed by fluorescence microscopy. Polymerase chain reaction and Western blotting were used to demonstrate the successful transduction and transcription of the Wtp53-pPRIME-miR30-shRNA-IGF1R gene. Cell growth was observed via the Cell-Counting Kit-8 Method, and cell apoptosis was detected by terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling. To observe further the effects of AFP-Wtp53-pPRIME-miR30-shRNA-IGF1R therapy in animals, models of BALB-C nude mice bearing subcutaneous human hepatocellular carcinoma were established. The influence of the growth of subcutaneously transplanted tumor, expression of Wtp53 protein, apoptosis, and microvessel formation on the overall level of AFP-Wtp53 pPRIME-miR30-shRNA-IGF1R were also evaluated. RESULTS Recombinant lentivirus was successfully constructed, and its functional plaque-forming unit titer was determined as 4.58 × 10(9)plaque-forming units/ml. A positive strand was detected by polymerase chain reaction and Western blotting. Lentiviral construction worked effectively in AFP-positive liver cancer cells. In vitro and in vivo experiments showed that the recombinant lentivirus was more efficacious in inhibiting the proliferation of Hep3B cells. CONCLUSIONS The Wtp53-pPRIME-miR30-shRNA gene can be subjected to targeted transduction into liver cancer cells under the mediation of anti-alpha fetoprotein scFv-directed lentivirus. The Wtp53-pPRIME-miR30-shRNA system has targeting ability and lethal effects on liver cancer cells.
Collapse
Affiliation(s)
- Ye-Wei Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Shimizu M, Shirakami Y, Sakai H, Iwasa J, Shiraki M, Takai K, Naiki T, Moriwaki H. Combination of acyclic retinoid with branched-chain amino acids inhibits xenograft growth of human hepatoma cells in nude mice. Hepatol Res 2012. [PMID: 23181540 DOI: 10.1111/j.1872-034x.2012.01045.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Combination chemoprevention is a promising strategy to improve the prognosis of hepatocellular carcinoma (HCC). A malfunction of retinoid X receptor-α (RXR-α) due to phosphorylation by Ras/mitogen-activated protein kinase is closely associated with liver carcinogenesis and acyclic retinoid (ACR) can prevent HCC development by inhibiting RXR-α phosphorylation. The present study examined the possible combined effects of ACR plus branched-chain amino acids (BCAA), which can also prevent the development of HCC in obese patients with liver cirrhosis, in human HCC xenografts in nude mice. METHODS This study examined the effects of the combination of ACR plus BCAA on the growth of Huh7 human HCC xenografts in nude mice. The effects of the combination on the phosphorylation of RXR-α, extracellular signal-regulated kinase (ERK), Akt and insulin-like growth factor-1 receptor (IGF-1R) proteins, and on the expression levels of retinoic acid receptor-β (RAR-β) and p21(CIP1) mRNA, were also examined by western blot and real-time reverse transcription polymerase chain reaction analyses, respectively. RESULTS The combined treatment with ACR plus BCAA significantly inhibited the growth of Huh7 xenografts. The combination of these agents caused a marked inhibition of the phosphorylation of RXR-α, ERK, Akt and IGF-1R proteins in the xenografts. In addition, the expression levels of RAR-β and p21(CIP1) mRNA significantly increased by these agents. CONCLUSION The combination of ACR and BCAA restores the function of RXR-α by inhibiting its phosphorylation and increasing the level of RAR-β, a heterodimeric partner for RXR-α, and thus suppresses the growth of HCC xenografts. Therefore, this combination might be an effective regimen for the treatment and, probably, chemoprevention of HCC.
Collapse
Affiliation(s)
- Masahito Shimizu
- Department of Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sung TI, Wang YJ, Chen CY, Hung TL, Guo HR. Increased serum level of epidermal growth factor receptor in liver cancer patients and its association with exposure to arsenic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 424:74-78. [PMID: 22446113 DOI: 10.1016/j.scitotenv.2012.02.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 02/29/2012] [Accepted: 02/29/2012] [Indexed: 05/31/2023]
Abstract
Arsenic is a human carcinogen and can activate epidermal growth factor receptor (EGFR) in human cell lines. As EGFR is associated with the occurrence of cancers, we conducted a study to evaluate whether serum EGFR may increase in liver cancer patients, particularly in those with exposure to arsenic. We recruited 100 patients of liver cancer and 100 age- and sex-matched controls in Taiwan and determined EGFR levels in sera by enzyme-linked immunosorbent assay. The patients had higher EGFR levels (668.1 vs. 243.1 fmol/mL, p<0.01), and after adjusting for hepatitis B and C, they still had an average EGFR level 406.1 fmol/mL higher than that of the controls (p<0.01). When we compared 22 patients residing in an endemic area of arsenic intoxication to 22 age- and sex-matched patients residing outside the area, we found that patients from the endemic area had higher EGFR levels (882.8 vs. 511.6 fmol/mL, p = 0.04). We concluded that EGFR is over-expressed in patients of liver cancer, particularly in those with exposure to arsenic, and therefore, serum EGFR level is not only a potential biomarker of liver cancer, but also a potential biomarker of cancers associated with arsenic exposure.
Collapse
Affiliation(s)
- Tzu-I Sung
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
13
|
Zapata-Benavides P, Manilla-Muñoz E, Zamora-Avila DE, Saavedra-Alonso S, Franco-Molina MA, Trejo-Avila LM, Davalos-Aranda G, Rodríguez-Padilla C. WT1 silencing by RNAi synergizes with chemotherapeutic agents and induces chemosensitization to doxorubicin and cisplatin in B16F10 murine melanoma cells. Oncol Lett 2012; 3:751-755. [PMID: 22740987 DOI: 10.3892/ol.2012.578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/17/2011] [Indexed: 12/20/2022] Open
Abstract
The Wilm's tumor gene (WT1), encoding a transcription factor that modulates the expression of certain genes that are involved in proliferation and apoptosis, is overexpressed in numerous solid tumors. WT1 is important for cell proliferation and in the diagnosis of melanoma. The objectives of this study were to investigate whether WT1 silencing is capable of synergizing with chemotherapeutic agents and whether this silencing is capable of sensitizing cancer cells to doxorubicin and cisplatin in the B16F10 murine melanoma cell line. In the present study, B16F10 cells were simultaneously treated with median lethal doses (LD50s) of WT1-1 or WT1-2 small hairpin RNAs (shRNAs) and chemotherapeutic agents. A total of 24 h post-transfection, a [3-(4,5-dimethylthiazol-2yl)-2,5- diphenyl tetrazolium bromide assay] MTT assay was performed. To determine whether shRNA interference (shRNAi) is capable of sensitizing B16F10 cells to chemotherapeutic agents, cells were transfected with an LD50 of each of the recombinant plasmids, treated with varying concentrations of doxorubicin or cisplatin 24 h post-transfection, and analyzed 48 h later for inhibition of cell proliferation using the MTT assay. We observed that WT1-RNAi and the two chemotherapeutic agents acted synergistically to inhibit B16F10 cell proliferation. The greatest inhibition of cell proliferation was observed with the WT1-2/cisplatin (91%) and WT1-1/cisplatin combinations (85%). WT1 silencing using shRNAi induced the chemosensitization of cells to doxorubicin and cisplatin, with the greatest inhibition (85%) of cell proliferation being observed in the cells treated with the WT1-2/cisplatin 6 ng/µl combination. Our results provide direct evidence that WT1 gene silencing has a synergistic effect with chemotherapeutic drugs and sensitizes B16F10 melanoma cells to doxorubicin and cisplatin. This suggests that these combination strategies are potentially utilized in melanoma therapy.
Collapse
Affiliation(s)
- Pablo Zapata-Benavides
- Laboratorio de Inmunología y Virología, Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas de la Universidad Autónoma de Nuevo León, San Nicolás de los Garza, N.L. México
| | | | | | | | | | | | | | | |
Collapse
|
14
|
SM22α inhibits cell proliferation and protects against anticancer drugs and γ-radiation in HepG2 cells: Involvement of metallothioneins. FEBS Lett 2009; 583:3356-62. [DOI: 10.1016/j.febslet.2009.09.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 11/23/2022]
|
15
|
Vardatsikos G, Sahu A, Srivastava AK. The insulin-like growth factor family: molecular mechanisms, redox regulation, and clinical implications. Antioxid Redox Signal 2009; 11:1165-90. [PMID: 19014342 DOI: 10.1089/ars.2008.2161] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin-like growth factor (IGF)-induced signaling networks are vital in modulating multiple fundamental cellular processes, such as cell growth, survival, proliferation, and differentiation. Aberrations in the generation or action of IGF have been suggested to play an important role in several pathological conditions, including metabolic disorders, neurodegenerative diseases, and multiple types of cancer. Yet the exact mechanism involved in the pathogenesis of these diseases by IGFs remains obscure. Redox pathways involving reactive oxygen species (ROS) and reactive nitrogen species (RNS) contribute to the pathogenetic mechanism of various diseases by modifying key signaling pathways involved in cell growth, proliferation, survival, and apoptosis. Furthermore, ROS and RNS have been demonstrated to alter IGF production and/or action, and vice versa, and thereby have the ability to modulate cellular functions, leading to clinical manifestations of diseases. In this review, we provide an overview on the IGF system and discuss the potential role of IGF-1/IGF-1 receptor and redox pathways in the pathophysiology of several diseases.
Collapse
Affiliation(s)
- George Vardatsikos
- Laboratory of Cell Signaling, Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|