1
|
Engler S, Buchner J. The evolution and diversification of the Hsp90 co-chaperone system. Biol Chem 2025:hsz-2025-0112. [PMID: 40261701 DOI: 10.1515/hsz-2025-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025]
Abstract
The molecular chaperone Hsp90 is the central element of a chaperone machinery in the cytosol of eukaryotic cells that is characterized by a large number of structurally and functionally different co-chaperones that influence the core chaperone component in different ways and increase its influence on the proteome. From yeast to humans, the number of Hsp90 co-chaperones has increased from 14 to over 40, and new co-chaperones are still being discovered. While Hsp90 itself has only undergone limited changes in structure and mechanism from yeast to humans, its increased importance and contribution to different processes in humans is based on the evolution and expansion of the cohort of co-chaperones. In this review, we provide an overview of Hsp90 co-chaperones, focusing on their roles in regulating Hsp90 function and their evolution from yeast to humans.
Collapse
Affiliation(s)
- Sonja Engler
- Center for Protein Assemblies (CPA), Department Bioscience, TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Strasse 8, D-85748 Garching, Germany
| | - Johannes Buchner
- Center for Protein Assemblies (CPA), Department Bioscience, TUM School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Strasse 8, D-85748 Garching, Germany
| |
Collapse
|
2
|
Bieder A, Chandrasekar G, Wason A, Erkelenz S, Gopalakrishnan J, Kere J, Tapia-Páez I. Genetic and protein interaction studies between the ciliary dyslexia candidate genes DYX1C1 and DCDC2. BMC Mol Cell Biol 2023; 24:20. [PMID: 37237337 DOI: 10.1186/s12860-023-00483-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND DYX1C1 (DNAAF4) and DCDC2 are two of the most replicated dyslexia candidate genes in genetic studies. They both have demonstrated roles in neuronal migration, in cilia growth and function and they both are cytoskeletal interactors. In addition, they both have been characterized as ciliopathy genes. However, their exact molecular functions are still incompletely described. Based on these known roles, we asked whether DYX1C1 and DCDC2 interact on the genetic and the protein level. RESULTS Here, we report the physical protein-protein interaction of DYX1C1 and DCDC2 as well as their respective interactions with the centrosomal protein CPAP (CENPJ) on exogenous and endogenous levels in different cell models including brain organoids. In addition, we show a synergistic genetic interaction between dyx1c1 and dcdc2b in zebrafish exacerbating the ciliary phenotype. Finally, we show a mutual effect on transcriptional regulation among DYX1C1 and DCDC2 in a cellular model. CONCLUSIONS In summary, we describe the physical and functional interaction between the two genes DYX1C1 and DCDC2. These results contribute to the growing understanding of the molecular roles of DYX1C1 and DCDC2 and set the stage for future functional studies.
Collapse
Affiliation(s)
- Andrea Bieder
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Arpit Wason
- Center for Molecular Medicine, Institute for Biochemistry I of the University of Cologne, Cologne, Germany
| | - Steffen Erkelenz
- Institute of Human Genetics, Universitätsklinikum, Heinrich Heine University, Düsseldorf, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Universitätsklinikum, Heinrich Heine University, Düsseldorf, Germany
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Molecular Neurology Research Program, University of Helsinki, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Isabel Tapia-Páez
- Department of Medicine, Solna, Karolinska Institutet, Solnavägen 30, SE-171 76, Solna, Sweden.
| |
Collapse
|
3
|
The Role of Hsp90-R2TP in Macromolecular Complex Assembly and Stabilization. Biomolecules 2022; 12:biom12081045. [PMID: 36008939 PMCID: PMC9406135 DOI: 10.3390/biom12081045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Hsp90 is a ubiquitous molecular chaperone involved in many cell signaling pathways, and its interactions with specific chaperones and cochaperones determines which client proteins to fold. Hsp90 has been shown to be involved in the promotion and maintenance of proper protein complex assembly either alone or in association with other chaperones such as the R2TP chaperone complex. Hsp90-R2TP acts through several mechanisms, such as by controlling the transcription of protein complex subunits, stabilizing protein subcomplexes before their incorporation into the entire complex, and by recruiting adaptors that facilitate complex assembly. Despite its many roles in protein complex assembly, detailed mechanisms of how Hsp90-R2TP assembles protein complexes have yet to be determined, with most findings restricted to proteomic analyses and in vitro interactions. This review will discuss our current understanding of the function of Hsp90-R2TP in the assembly, stabilization, and activity of the following seven classes of protein complexes: L7Ae snoRNPs, spliceosome snRNPs, RNA polymerases, PIKKs, MRN, TSC, and axonemal dynein arms.
Collapse
|
4
|
Dean ME, Johnson JL. Human Hsp90 cochaperones: perspectives on tissue-specific expression and identification of cochaperones with similar in vivo functions. Cell Stress Chaperones 2021; 26:3-13. [PMID: 33037995 PMCID: PMC7736379 DOI: 10.1007/s12192-020-01167-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The Hsp90 molecular chaperone is required for the function of hundreds of different cellular proteins. Hsp90 and a cohort of interacting proteins called cochaperones interact with clients in an ATP-dependent cycle. Cochaperone functions include targeting clients to Hsp90, regulating Hsp90 ATPase activity, and/or promoting Hsp90 conformational changes as it progresses through the cycle. Over the last 20 years, the list of cochaperones identified in human cells has grown from the initial six identified in complex with steroid hormone receptors and protein kinases to about fifty different cochaperones found in Hsp90-client complexes. These cochaperones may be placed into three groups based on shared Hsp90 interaction domains. Available evidence indicates that cochaperones vary in client specificity, abundance, and tissue distribution. Many of the cochaperones have critical roles in regulation of cancer and neurodegeneration. A more limited set of cochaperones have cellular functions that may be limited to tissues such as muscle and testis. It is likely that a small set of cochaperones are part of the core Hsp90 machinery required for the folding of a wide range of clients. The presence of more selective cochaperones may allow greater control of Hsp90 activities across different tissues or during development.
Collapse
Affiliation(s)
- Marissa E Dean
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3051, USA
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3051, USA.
- Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844-3051, USA.
| |
Collapse
|
5
|
Role of the Novel Hsp90 Co-Chaperones in Dynein Arms' Preassembly. Int J Mol Sci 2019; 20:ijms20246174. [PMID: 31817850 PMCID: PMC6940843 DOI: 10.3390/ijms20246174] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
The outer and inner dynein arms (ODAs and IDAs) are composed of multiple subunits including dynein heavy chains possessing a motor domain. These complex structures are preassembled in the cytoplasm before being transported to the cilia. The molecular mechanism(s) controlling dynein arms’ preassembly is poorly understood. Recent evidence suggests that canonical R2TP complex, an Hsp-90 co-chaperone, in cooperation with dynein axonemal assembly factors (DNAAFs), plays a crucial role in the preassembly of ODAs and IDAs. Here, we have summarized recent data concerning the identification of novel chaperone complexes and their role in dynein arms’ preassembly and their association with primary cilia dyskinesia (PCD), a human genetic disorder.
Collapse
|
6
|
Leigh MW, Horani A, Kinghorn B, O'Connor MG, Zariwala MA, Knowles MR. Primary Ciliary Dyskinesia (PCD): A genetic disorder of motile cilia. ACTA ACUST UNITED AC 2019; 4:51-75. [PMID: 31572664 DOI: 10.3233/trd-190036] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Margaret W Leigh
- Department of Pediatrics and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - BreAnna Kinghorn
- Seattle Children's Hospital, Department of Pediatrics, University of Washington School of Medicine; Seattle, Washington
| | - Michael G O'Connor
- Department of Pediatrics, Vanderbilt University Medical Center and Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tennessee
| | - Maimoona A Zariwala
- Department of Pathology/Lab Medicine and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Michael R Knowles
- Department of Medicine and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
7
|
Lynham J, Houry WA. The Multiple Functions of the PAQosome: An R2TP- and URI1 Prefoldin-Based Chaperone Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:37-72. [DOI: 10.1007/978-3-030-00737-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Ji ZY, Sha YW, Ding L, Li P. Genetic factors contributing to human primary ciliary dyskinesia and male infertility. Asian J Androl 2018; 19:515-520. [PMID: 27270341 PMCID: PMC5566842 DOI: 10.4103/1008-682x.181227] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal-recessive disorder resulting from the loss of normal ciliary function. Symptoms include neonatal respiratory distress, chronic sinusitis, bronchiectasis, situs inversus, and infertility. However, only 15 PCD-associated genes have been identified to cause male infertility to date. Owing to the genetic heterogeneity of PCD, comprehensive molecular genetic testing is not considered the standard of care. Here, we provide an update of the progress on the identification of genetic factors related to PCD associated with male infertility, summarizing the underlying molecular mechanisms, and discuss the clinical implications of these findings. Further research in this field will impact the diagnostic strategy for male infertility, enabling clinicians to provide patients with informed genetic counseling, and help to adopt the best course of treatment for developing directly targeted personalized medicine.
Collapse
Affiliation(s)
- Zhi-Yong Ji
- The Center for Reproductive Medicine, Xiamen Maternity and Child Care Hospital, No. 10 Zhenhai Road, Xiamen, China
| | - Yan-Wei Sha
- The Center for Reproductive Medicine, Xiamen Maternity and Child Care Hospital, No. 10 Zhenhai Road, Xiamen, China
| | - Lu Ding
- The Center for Reproductive Medicine, Xiamen Maternity and Child Care Hospital, No. 10 Zhenhai Road, Xiamen, China
| | - Ping Li
- The Center for Reproductive Medicine, Xiamen Maternity and Child Care Hospital, No. 10 Zhenhai Road, Xiamen, China
| |
Collapse
|
9
|
Horani A, Ustione A, Huang T, Firth AL, Pan J, Gunsten SP, Haspel JA, Piston DW, Brody SL. Establishment of the early cilia preassembly protein complex during motile ciliogenesis. Proc Natl Acad Sci U S A 2018; 115:E1221-E1228. [PMID: 29358401 PMCID: PMC5819421 DOI: 10.1073/pnas.1715915115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Motile cilia are characterized by dynein motor units, which preassemble in the cytoplasm before trafficking into the cilia. Proteins required for dynein preassembly were discovered by finding human mutations that result in absent ciliary motors, but little is known about their expression, function, or interactions. By monitoring ciliogenesis in primary airway epithelial cells and MCIDAS-regulated induced pluripotent stem cells, we uncovered two phases of expression of preassembly proteins. An early phase, composed of HEATR2, SPAG1, and DNAAF2, preceded other preassembly proteins and was independent of MCIDAS regulation. The early preassembly proteins colocalized within perinuclear foci that also contained dynein arm proteins. These proteins also interacted based on immunoprecipitation and Förster resonance energy transfer (FRET) studies. FRET analysis of HEAT domain deletions and human mutations showed that HEATR2 interacted with itself and SPAG1 at multiple HEAT domains, while DNAAF2 interacted with SPAG1. Human mutations in HEATR2 did not affect this interaction, but triggered the formation of p62/Sequestosome-1-positive aggregates containing the early preassembly proteins, suggesting that degradation of an early preassembly complex is responsible for disease and pointing to key regions required for HEATR2 scaffold stability. We speculate that HEATR2 is an early scaffold for the initiation of dynein complex assembly in motile cilia.
Collapse
Affiliation(s)
- Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110;
| | - Alessandro Ustione
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Tao Huang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Amy L Firth
- Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033
| | - Jiehong Pan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Sean P Gunsten
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jeffrey A Haspel
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
10
|
Olcese C, Patel MP, Shoemark A, Kiviluoto S, Legendre M, Williams HJ, Vaughan CK, Hayward J, Goldenberg A, Emes RD, Munye MM, Dyer L, Cahill T, Bevillard J, Gehrig C, Guipponi M, Chantot S, Duquesnoy P, Thomas L, Jeanson L, Copin B, Tamalet A, Thauvin-Robinet C, Papon JF, Garin A, Pin I, Vera G, Aurora P, Fassad MR, Jenkins L, Boustred C, Cullup T, Dixon M, Onoufriadis A, Bush A, Chung EMK, Antonarakis SE, Loebinger MR, Wilson R, Armengot M, Escudier E, Hogg C, Amselem S, Sun Z, Bartoloni L, Blouin JL, Mitchison HM. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3. Nat Commun 2017; 8:14279. [PMID: 28176794 PMCID: PMC5309803 DOI: 10.1038/ncomms14279] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/15/2016] [Indexed: 01/06/2023] Open
Abstract
By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2-DNAAF4-HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins.
Collapse
Affiliation(s)
- Chiara Olcese
- Department of Genetic Medicine and Development, University of Geneva School of Medicine, CH-1211 Geneva, Switzerland
- Department of Life Sciences and Biotechnologies, University of Ferrara, 46-44121 Ferrara, Italy
| | - Mitali P. Patel
- Genetics and Genomic Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, Guilford Street, London WC1N 1EH, UK
| | - Amelia Shoemark
- Paediatric Department, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Santeri Kiviluoto
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Marie Legendre
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S933 and Service de Génétique et Embryologie Médicales, Hôpital Armand-Trousseau, AP-HP, Paris 75012, France
| | - Hywel J. Williams
- GOSgene, Genetics and Genomic Medicine Programme, University College London (UCL) Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Cara K. Vaughan
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, Biological Sciences, Malet Street, London, WC1E 7HX, UK
| | - Jane Hayward
- Genetics and Genomic Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, Guilford Street, London WC1N 1EH, UK
| | - Alice Goldenberg
- Service de Génétique, CHU de Rouen, INSERM U1079, Université de Rouen, Centre Normand de Génomique Médicale et Médecine Personnalisée, Rouen, France
| | - Richard D. Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Mustafa M. Munye
- Genetics and Genomic Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, Guilford Street, London WC1N 1EH, UK
| | - Laura Dyer
- Genetics and Genomic Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, Guilford Street, London WC1N 1EH, UK
| | - Thomas Cahill
- Paediatric Department, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Jeremy Bevillard
- Department of Genetic Medicine and Development, University of Geneva School of Medicine, CH-1211 Geneva, Switzerland
| | - Corinne Gehrig
- Department of Genetic Medicine and Development, University of Geneva School of Medicine, CH-1211 Geneva, Switzerland
| | - Michel Guipponi
- Department of Genetic Medicine and Development, University of Geneva School of Medicine, CH-1211 Geneva, Switzerland
- Department of Genetic Medicine and Laboratory, University Hospitals of Geneva, CH-1211 Geneva, Switzerland
| | - Sandra Chantot
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S933 and Service de Génétique et Embryologie Médicales, Hôpital Armand-Trousseau, AP-HP, Paris 75012, France
| | - Philippe Duquesnoy
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S933 and Service de Génétique et Embryologie Médicales, Hôpital Armand-Trousseau, AP-HP, Paris 75012, France
| | - Lucie Thomas
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S933 and Service de Génétique et Embryologie Médicales, Hôpital Armand-Trousseau, AP-HP, Paris 75012, France
| | - Ludovic Jeanson
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S933 and Service de Génétique et Embryologie Médicales, Hôpital Armand-Trousseau, AP-HP, Paris 75012, France
| | - Bruno Copin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S933 and Service de Génétique et Embryologie Médicales, Hôpital Armand-Trousseau, AP-HP, Paris 75012, France
| | - Aline Tamalet
- Service de Pneumologie Pédiatrique, Centre National de Référence des Maladies Respiratoires Rares, Hôpital Armand-Trousseau, AP-HP, Paris 75012, France
| | - Christel Thauvin-Robinet
- Centre de génétique, CHU Dijon Bourgogne, Équipe EA4271 GAD, Université de Bourgogne, Hôpital François Mitterrand, 21000 Dijon, France
| | - Jean- François Papon
- Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Maxillo-Faciale, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre 94275, France
| | - Antoine Garin
- Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Maxillo-Faciale, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre 94275, France
| | - Isabelle Pin
- Pédiatrie, CHU Grenoble Alpes, INSERM U 1209, Institut for Advanced Biosciences, Université Grenoble Alpes, Grenoble, France
| | - Gabriella Vera
- Service de Génétique, CHU de Rouen, INSERM U1079, Université de Rouen, Centre Normand de Génomique Médicale et Médecine Personnalisée, Rouen, France
| | - Paul Aurora
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital for Children, London WC1N 3JH, UK
- Department of Respiratory, Critical Care and Anaesthesia Unit, University College London (UCL) Great Ormond Street Institute of Child Health, Guilford Street, London WC1N 1EH, UK
| | - Mahmoud R. Fassad
- Genetics and Genomic Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, Guilford Street, London WC1N 1EH, UK
- Human Genetics Department, Medical Research Institute, Alexandria University, El-Hadra Alexandria 21561, Egypt
| | - Lucy Jenkins
- North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, Queen Square, London WC1N 3BH, UK
| | - Christopher Boustred
- North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, Queen Square, London WC1N 3BH, UK
| | - Thomas Cullup
- North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, Queen Square, London WC1N 3BH, UK
| | - Mellisa Dixon
- Paediatric Department, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Alexandros Onoufriadis
- Department of Medical and Molecular Genetics, Division of Genetics and Molecular Medicine, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Andrew Bush
- Paediatric Department, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
- Department of Paediatric Respiratory Medicine, National Heart and Lung Institute, Imperial College London, London SW3 6LR, UK
| | - Eddie M. K. Chung
- Population, Policy and Practice, University College London (UCL) Great Ormond Street Institute of Child Health, Guilford Street, London WC1N 1EH, UK
| | - Stylianos E. Antonarakis
- Department of Genetic Medicine and Development, University of Geneva School of Medicine, CH-1211 Geneva, Switzerland
- Department of Genetic Medicine and Laboratory, University Hospitals of Geneva, CH-1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva, iGE3, CH-1211 Geneva, Switzerland
| | - Michael R. Loebinger
- Host Defence Unit, Respiratory Medicine, Royal Brompton Hospital, London SW3 6NP, UK
| | - Robert Wilson
- Host Defence Unit, Respiratory Medicine, Royal Brompton Hospital, London SW3 6NP, UK
| | - Miguel Armengot
- Rhinology and Primary Ciliary Dyskinesia Unit, General and University Hospital, Medical School, Valencia University, Valencia E-46014, Spain
| | - Estelle Escudier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S933 and Service de Génétique et Embryologie Médicales, Hôpital Armand-Trousseau, AP-HP, Paris 75012, France
| | - Claire Hogg
- Paediatric Department, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Serge Amselem
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S933 and Service de Génétique et Embryologie Médicales, Hôpital Armand-Trousseau, AP-HP, Paris 75012, France
| | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Lucia Bartoloni
- Department of Genetic Medicine and Development, University of Geneva School of Medicine, CH-1211 Geneva, Switzerland
- UOSD Laboratorio Analisi Venezia, ULSS12 Veneziana, 30121 Venezia, Italy
| | - Jean-Louis Blouin
- Department of Genetic Medicine and Development, University of Geneva School of Medicine, CH-1211 Geneva, Switzerland
- Department of Genetic Medicine and Laboratory, University Hospitals of Geneva, CH-1211 Geneva, Switzerland
| | - Hannah M. Mitchison
- Genetics and Genomic Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
11
|
Tarkar A, Loges NT, Slagle CE, Francis R, Dougherty GW, Tamayo JV, Shook B, Cantino M, Schwartz D, Jahnke C, Olbrich H, Werner C, Raidt J, Pennekamp P, Abouhamed M, Hjeij R, Köhler G, Griese M, Li Y, Lemke K, Klena N, Liu X, Gabriel G, Tobita K, Jaspers M, Morgan LC, Shapiro AJ, Letteboer SJ, Mans DA, Carson JL, Leigh MW, Wolf WE, Chen S, Lucas JS, Onoufriadis A, Plagnol V, Schmidts M, Boldt K, Roepman R, Zariwala M, Lo CW, Mitchison HM, Knowles MR, Burdine RD, LoTurco JJ, Omran H. DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet 2013; 45:995-1003. [PMID: 23872636 PMCID: PMC4000444 DOI: 10.1038/ng.2707] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/24/2013] [Indexed: 11/08/2022]
Abstract
DYX1C1 has been associated with dyslexia and neuronal migration in the developing neocortex. Unexpectedly, we found that deleting exons 2-4 of Dyx1c1 in mice caused a phenotype resembling primary ciliary dyskinesia (PCD), a disorder characterized by chronic airway disease, laterality defects and male infertility. This phenotype was confirmed independently in mice with a Dyx1c1 c.T2A start-codon mutation recovered from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. Morpholinos targeting dyx1c1 in zebrafish also caused laterality and ciliary motility defects. In humans, we identified recessive loss-of-function DYX1C1 mutations in 12 individuals with PCD. Ultrastructural and immunofluorescence analyses of DYX1C1-mutant motile cilia in mice and humans showed disruptions of outer and inner dynein arms (ODAs and IDAs, respectively). DYX1C1 localizes to the cytoplasm of respiratory epithelial cells, its interactome is enriched for molecular chaperones, and it interacts with the cytoplasmic ODA and IDA assembly factor DNAAF2 (KTU). Thus, we propose that DYX1C1 is a newly identified dynein axonemal assembly factor (DNAAF4).
Collapse
Affiliation(s)
- Aarti Tarkar
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | - Niki T. Loges
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster; Germany
| | | | - Richard Francis
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - Gerard W. Dougherty
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster; Germany
| | - Joel V. Tamayo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Brett Shook
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | - Marie Cantino
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | - Daniel Schwartz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | - Charlotte Jahnke
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster; Germany
| | - Heike Olbrich
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster; Germany
| | - Claudius Werner
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster; Germany
| | - Johanna Raidt
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster; Germany
| | - Petra Pennekamp
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster; Germany
| | - Marouan Abouhamed
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster; Germany
| | - Rim Hjeij
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster; Germany
| | - Gabriele Köhler
- Department of Pathology, University Hospital Muenster, 48149 Muenster, Germany
| | - Matthias Griese
- Dr. von Haunersches Children‘s Hospital, Ludwig Maximilian University, 80337 Munich, Germany
| | - You Li
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - Kristi Lemke
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - Nikolas Klena
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - George Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - Kimimasa Tobita
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - Martine Jaspers
- University Hospital Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Lucy C. Morgan
- Department of Respiratory Medicine, Concord Hospital, Concord 2139, Australia
| | - Adam J. Shapiro
- Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Stef J.F. Letteboer
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dorus A. Mans
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Johnny L. Carson
- Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Margaret W. Leigh
- Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Whitney E. Wolf
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Serafine Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jane S. Lucas
- Primary Ciliary Dyskinesia Centre, NIHR Southampton Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO17 1BJ, UK
| | - Alexandros Onoufriadis
- Molecular Medicine Unit, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Vincent Plagnol
- University College London, Genetics Institute, London, WC1E 6BT, UK
| | - Miriam Schmidts
- Molecular Medicine Unit, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Karsten Boldt
- Institute for Ophthalmic Research, Division of Experimental Ophthalmology and Medical Proteome Center, University of Tuebingen, D-72076 Tuebingen, Germany
| | | | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Maimoona Zariwala
- Department of Pathology & Laboratory Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - Hannah M. Mitchison
- Molecular Medicine Unit, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Michael R. Knowles
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Rebecca D. Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Joseph J. LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | - Heymut Omran
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster; Germany
| |
Collapse
|
12
|
The zebrafish orthologue of the dyslexia candidate gene DYX1C1 is essential for cilia growth and function. PLoS One 2013; 8:e63123. [PMID: 23650548 PMCID: PMC3641089 DOI: 10.1371/journal.pone.0063123] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/28/2013] [Indexed: 11/19/2022] Open
Abstract
DYX1C1, a susceptibility gene for dyslexia, encodes a tetratricopeptide repeat domain containing protein that has been implicated in neuronal migration in rodent models. The developmental role of this gene remains unexplored. To understand the biological function(s) of zebrafish dyx1c1 during embryonic development, we cloned the zebrafish dyx1c1 and used morpholino-based knockdown strategy. Quantitative real-time PCR analysis revealed the presence of dyx1c1 transcripts in embryos, early larval stages and in a wide range of adult tissues. Using mRNA in situ hybridization, we show here that dyx1c1 is expressed in many ciliated tissues in zebrafish. Inhibition of dyx1c1 produced pleiotropic phenotypes characteristically associated with cilia defects such as body curvature, hydrocephalus, situs inversus and kidney cysts. We also demonstrate that in dyx1c1 morphants, cilia length is reduced in several organs including Kupffer’s vesicle, pronephros, spinal canal and olfactory placode. Furthermore, electron microscopic analysis of cilia in dyx1c1 morphants revealed loss of both outer (ODA) and inner dynein arms (IDA) that have been shown to be required for cilia motility. Considering all these results, we propose an essential role for dyx1c1 in cilia growth and function.
Collapse
|
13
|
Tammimies K, Vitezic M, Matsson H, Le Guyader S, Bürglin TR, Ohman T, Strömblad S, Daub CO, Nyman TA, Kere J, Tapia-Páez I. Molecular networks of DYX1C1 gene show connection to neuronal migration genes and cytoskeletal proteins. Biol Psychiatry 2013; 73:583-90. [PMID: 23036959 DOI: 10.1016/j.biopsych.2012.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND The dyslexia susceptibility 1 candidate 1 (DYX1C1) gene has recently been associated with dyslexia and reading scores in several population samples. The DYX1C1 has also been shown to affect neuronal migration and modulate estrogen receptor signaling. METHODS We have analyzed the molecular networks of DYX1C1 by gene expression and protein interaction profiling in a human neuroblastoma cell line. RESULTS We find that DYX1C1 can modulate the expression of nervous system development and neuronal migration genes such as RELN and associate with a number of cytoskeletal proteins. We also show by live cell imaging that DYX1C1 regulates cell migration of the human neuroblastoma cell line dependent on its tetratricopeptide repeat and DYX1 protein domains. The DYX1 domain is a novel highly conserved domain identified in this study by multiple sequence alignment of DYX1C1 proteins recovered from a wide range of eukaryotic species. CONCLUSIONS Our results contribute to the hypothesis that dyslexia has a developmental neurobiological basis by linking DYX1C1 with many genes involved in neuronal migration disorders.
Collapse
Affiliation(s)
- Kristiina Tammimies
- Center for Biosciences, Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tammimies K, Tapia-Páez I, Rüegg J, Rosin G, Kere J, Gustafsson JÅ, Nalvarte I. The rs3743205 SNP is important for the regulation of the dyslexia candidate gene DYX1C1 by estrogen receptor β and DNA methylation. Mol Endocrinol 2012; 26:619-29. [PMID: 22383464 DOI: 10.1210/me.2011-1376] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Estrogen is involved in numerous physiological processes such as growth, differentiation, and function of the male and female reproductive tissues. In the developing brain, estrogen signaling has been linked to cognitive functions, such as learning and memory; however, the molecular mechanisms underlying this phenomenon are poorly understood. We have previously shown a link between developmental dyslexia and estrogen signaling, when we studied the functional interactions between the dyslexia candidate protein DYX1C1 and the estrogen receptors α (ERα) and β (ERβ). Here, we investigate the 17β-estradiol (E2)-dependent regulation of dyslexia susceptibility 1 candidate 1 (DYX1C1) expression. We demonstrate that ERβ, not ERα, binds to a transcriptionally active cis-regulatory region upstream of DYX1C1 transcriptional start site and that DYX1C1 expression is enhanced by E2 in a neuroblastoma cell line. This regulation is dependent on transcription factor II-I and liganded ERβ recruitment to this region. In addition, we describe that a single nucleotide polymorphism previously shown to be associated with dyslexia and located in the cis-regulatory region of DYX1C1 may alter the epigenetic and endocrine regulation of this gene. Our data provide important molecular insights into the relationship between developmental dyslexia susceptibility and estrogen signaling.
Collapse
Affiliation(s)
- Kristiina Tammimies
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-14183 Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
15
|
Rosin G, Hannelius U, Lindström L, Hall P, Bergh J, Hartman J, Kere J. The dyslexia candidate gene DYX1C1 is a potential marker of poor survival in breast cancer. BMC Cancer 2012; 12:79. [PMID: 22375924 PMCID: PMC3337251 DOI: 10.1186/1471-2407-12-79] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 02/29/2012] [Indexed: 01/20/2023] Open
Abstract
Background The dyslexia candidate gene, DYX1C1, shown to regulate and interact with estrogen receptors and involved in the regulation of neuronal migration, has recently been proposed as a putative cancer biomarker. This study was undertaken to assess the prognostic value and therapy-predictive potential of DYX1C1 mRNA and protein expression in breast cancer. Methods DYX1C1 mRNA expression was assessed at the mRNA level in three independent population-derived patient cohorts. An association to estrogen/progesterone receptor status, Elston grade, gene expression subtype and lymph node status was analyzed within these cohorts. DYX1C1 protein expression was examined using immunohistochemistry in cancer and normal breast tissue. The statistical analyses were performed using the non-parametric Wilcoxon rank-sum test, ANOVA, Fisher's exact test and a multivariate proportional hazard (Cox) model. Results DYX1C1 mRNA is significantly more highly expressed in tumors that have been classified as estrogen receptor α and progesterone receptor-positive. The expression of DYX1C1 among the molecular subtypes shows the lowest median expression within the basal type tumors, which are considered to have the worst prognosis. The expression of DYX1C1 is significantly lower in tumors graded as Elston grade 3 compared with grades 1 and 2. DYX1C1 protein is expressed in 88% of tumors and in all 10 normal breast tissues examined. Positive protein expression was significantly correlated to overall survival (Hazard ratio 3.44 [CI 1.84-6.42]) of the patients but not to any of the variables linked with mRNA expression. Conclusion We show that the expression of DYX1C1 in breast cancer is associated with several clinicopathological parameters and that loss of DYX1C1 correlates with a more aggressive disease, in turn indicating that DYX1C1 is a potential prognostic biomarker in breast cancer.
Collapse
Affiliation(s)
- Gustaf Rosin
- Department of Biosciences and Nutrition, Novum, and Science for Life Laboratory, Karolinska Institutet, Hälsovägen 7, Huddinge, Sweden.
| | | | | | | | | | | | | |
Collapse
|
16
|
Lim CKP, Ho CSH, Chou CHN, Waye MMY. Association of the rs3743205 variant of DYX1C1 with dyslexia in Chinese children. Behav Brain Funct 2011; 7:16. [PMID: 21599957 PMCID: PMC3123182 DOI: 10.1186/1744-9081-7-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/20/2011] [Indexed: 11/10/2022] Open
Abstract
Background Dyslexia is a learning disability that is characterized by difficulties in the acquisition of reading and spelling skills independent of intelligence, motivation or schooling. Studies of western populations have suggested that DYX1C1 is a candidate gene for dyslexia. In view of the different languages used in Caucasian and Chinese populations, it is therefore worthwhile to investigate whether there is an association of DYX1C1 in Chinese children with dyslexia. Method and Results Eight single nucleotide polymorphisms (SNPs) were genotyped from three hundred and ninety three individuals from 131 Chinese families with two which have been reported in the literature and six tag SNPs at DYX1C1. Analysis for allelic and haplotypic associations was performed with the UNPHASED program and multiple testing was corrected using false discovery rates. We replicated the previously reported association of rs3743205 in Chinese children with dyslexia (pcorrected = 0.0072). This SNP was also associated with rapid naming, phonological memory and orthographic skills in quantitative trait analysis. Conclusion Our findings suggest that DYX1C1 is associated with dyslexia in people of Chinese ethnicity in Hong Kong.
Collapse
Affiliation(s)
- Cadmon K P Lim
- Croucher Laboratory for Human Genomics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong
| | | | | | | |
Collapse
|
17
|
Poelmans G, Buitelaar JK, Pauls DL, Franke B. A theoretical molecular network for dyslexia: integrating available genetic findings. Mol Psychiatry 2011; 16:365-82. [PMID: 20956978 DOI: 10.1038/mp.2010.105] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Developmental dyslexia is a common specific childhood learning disorder with a strong heritable component. Previous studies using different genetic approaches have identified several genetic loci and candidate genes for dyslexia. In this article, we have integrated the current knowledge on 14 dyslexia candidate genes suggested by cytogenetic findings, linkage and association studies. We found that 10 of the 14 dyslexia candidate genes (ROBO1, KIAA0319, KIAA0319L, S100B, DOCK4, FMR1, DIP2A, GTF2I, DYX1C1 and DCDC2) fit into a theoretical molecular network involved in neuronal migration and neurite outgrowth. Based on this, we also propose three novel dyslexia candidate genes (SLIT2, HMGB1 and VAPA) from known linkage regions, and we discuss the possible involvement of genes emerging from the two reported genome-wide association studies for reading impairment-related phenotypes in the identified network.
Collapse
Affiliation(s)
- G Poelmans
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|