1
|
Epithelial-to-Mesenchymal Transition in Metastasis: Focus on Laryngeal Carcinoma. Biomedicines 2022; 10:biomedicines10092148. [PMID: 36140250 PMCID: PMC9496235 DOI: 10.3390/biomedicines10092148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
In epithelial neoplasms, such as laryngeal carcinoma, the survival indexes deteriorate abruptly when the tumor becomes metastatic. A molecular phenomenon that normally appears during embryogenesis, epithelial-to-mesenchymal transition (EMT), is reactivated at the initial stage of metastasis when tumor cells invade the adjacent stroma. The hallmarks of this phenomenon are the abolishment of the epithelial and acquisition of mesenchymal traits by tumor cells which enhance their migratory capacity. EMT signaling is mediated by complex molecular pathways that regulate the expression of crucial molecules contributing to the tumor’s metastatic potential. Effectors of EMT include loss of adhesion, cytoskeleton remodeling, evasion of apoptosis and immune surveillance, upregulation of metalloproteinases, neovascularization, acquisition of stem-cell properties, and the activation of tumor stroma. However, the current approach to EMT involves a holistic model that incorporates the acquisition of potentials beyond mesenchymal transition. As EMT is inevitably associated with a reverse mesenchymal-to-epithelial transition (MET), a model of partial EMT is currently accepted, signifying the cell plasticity associated with invasion and metastasis. In this review, we identify the cumulative evidence which suggests that various aspects of EMT theory apply to laryngeal carcinoma, a tumor of significant morbidity and mortality, introducing novel molecular targets with prognostic and therapeutic potential.
Collapse
|
2
|
Zhang J, Zhao R, Xing D, Cao J, Guo Y, Li L, Sun Y, Tian L, Liu M. Magnesium Isoglycyrrhizinate Induces an Inhibitory Effect on Progression and Epithelial-Mesenchymal Transition of Laryngeal Cancer via the NF-κB/Twist Signaling. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5633-5644. [PMID: 33376307 PMCID: PMC7765753 DOI: 10.2147/dddt.s272323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Background Magnesium isoglycyrrhizinate (MI) was extracted from roots of the plant Glycyrrhiza glabra, which displays multiple pharmacological activities such as anti-inflammation, anti-apoptosis, and anti-tumor. Here, we aimed to investigate the effect of MI on the progression and epithelial–mesenchymal transition (EMT) of laryngeal cancer. Methods Forty laryngeal cancer clinical samples were used. The role of MI in the proliferation of laryngeal cancer cells was assessed by MTT assay, Edu assay and colony formation assay. The function of MI in the migration and invasion of laryngeal cancer cells was tested by transwell assays. The effect of MI on apoptosis of laryngeal cancer cells was determined by cell apoptosis assay. The impact of MI on tumor growth in vivo was analyzed by tumorigenicity analysis using Balb/c nude mice. qPCR and Western blot analysis were performed to measure the expression levels of gene and protein, respectively. Results We identified that EMT-related transcription factor Twist was significantly elevated in the laryngeal cancer tissues. The expression of Twist was also enhanced in the human laryngeal carcinoma HEP-2 cells compared with that in the primary laryngeal epithelial cells. The high expression of Twist was remarkably correlated with poor overall survival of patients with laryngeal cancer. Meanwhile, our data revealed that MI reduced cell proliferation, migration and invasion and enhanced apoptosis of laryngeal cancer cells in vitro. Moreover, MI decreased transcriptional activation and the expression levels of NF-κB and Twist, and alleviated EMT in vitro and in vivo. MI remarkably inhibited tumor growth and EMT of laryngeal cancer cells in vivo. Conclusion MI restrains the progression of laryngeal cancer and induces an inhibitory effect on EMT in laryngeal cancer by modulating the NF-κB/Twist signaling. Our finding provides new insights into the mechanism by which MI inhibits laryngeal carcinoma development, enriching the understanding of the anti-tumor function of MI.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Rui Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Dongliang Xing
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Jing Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Yan Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Liang Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Yanan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Linli Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Ming Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| |
Collapse
|
3
|
Kaşıkcı E, Aydemir E, Bayrak ÖF, Şahin F. Inhibition of Migration, Invasion and Drug Resistance of Pancreatic Adenocarcinoma Cells - Role of Snail, Slug and Twist and Small Molecule Inhibitors. Onco Targets Ther 2020; 13:5763-5777. [PMID: 32606788 PMCID: PMC7308789 DOI: 10.2147/ott.s253418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The main purpose of this study is to demonstrate the effects of epithelial to mesenchymal transition activating transcription factor silencing (EMT-ATF silencing) on migration, invasion, drug resistance and tumor-forming abilities of various pancreatic cancer cell lines. Additionally, the contribution of small molecule inhibitors of EMT (SD-208 and CX4945) to the effects of gene silencing was evaluated. METHODS EMT activating transcription factors "Snail, Slug and Twist" were silenced by short hairpins on Panc-1, MIA PaCa-2, BxPC-3, and AsPC-1 pancreatic cancer cell lines. The changes in migration, invasion, laminin attachment, cancer stem-like cell properties and tumor-forming abilities were investigated. Chemosensitivity assays and small molecule inhibitors of EMT were applied to the metastatic pancreatic cancer cell line AsPC-1. RESULTS EMT-ATF silencing reduced EMT and stem cell-like characteristics of pancreatic cancer cell lines. Following EMT-ATF silencing amongst the four PC cell lines, AsPC-1 showed the best response and was chosen for further chemoresistance and combinational therapy applications. EMT downregulated AsPC-1 cells showed less resistance to select chemotherapeutics compared to the control group. Both small molecule inhibitors enhanced the outcomes of EMT-ATF silencing. CONCLUSION Overall it was found that EMT-ATF silencing, either by EMT-ATF silencing or with the enhancement by small molecules, is a good candidate to treat pancreatic cancer since it simultaneously minimizes metastasis, stem cell properties, and drug resistance.
Collapse
Affiliation(s)
- Ezgi Kaşıkcı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul34755, Turkey
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY10461, USA
| | - Esra Aydemir
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul34755, Turkey
| | - Ömer Faruk Bayrak
- Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul34718, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul34755, Turkey
| |
Collapse
|
4
|
Jiedu Sangen Decoction Inhibits Migration and Invasion of Colon Cancer SW480 Cells via Suppressing Epithelial Mesenchymal Transition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1495768. [PMID: 30356400 PMCID: PMC6176311 DOI: 10.1155/2018/1495768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/18/2018] [Accepted: 09/05/2018] [Indexed: 12/16/2022]
Abstract
Jiedu Sangen Decoction (JSD), a traditional Chinese medicine (TCM) formula, has been widely used in China to treat gastrointestinal cancer, especially as an adjuvant therapy in colorectal cancer (CRC) patients. This study aimed to evaluate the efficacy of JSD and Jiedu Sangen aqueous extract (JSAE) in colon cancer cells and explored the underlining mechanisms by cytotoxicity assay, scratch assay, transwell migration assay, matrigel invasion assay, confocal laser scanning microscopy, and western blot analysis. We demonstrated that JSAE inhibited the growth of colon cancer SW480 cells in a dose-dependent manner and JSAE repressed cancer cell migration and invasion. Furthermore, epithelial mesenchymal transition (EMT) was reversed by JSAE via enhancing E-cadherin expression and attenuating protein levels of EMT promoting factors such as N-cadherin, Slug, and ZEB1. These findings provided the first experimental evidence confirming the efficacy of JSAE in repressing invasion and metastasis of CRC and paving a way for the broader use of JSD in clinic.
Collapse
|
5
|
Marioni G, Cappellesso R, Ottaviano G, Fasanaro E, Marchese-Ragona R, Favaretto N, Giacomelli L, Guzzardo V, Martini A, Fassina A, Blandamura S. Nuclear nonmetastatic protein 23-H1 expression and epithelial-mesenchymal transition in laryngeal carcinoma: A pilot investigation. Head Neck 2018; 40:2020-2028. [DOI: 10.1002/hed.25188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/05/2018] [Accepted: 03/02/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Gino Marioni
- Department of Neuroscience DNS, Otolaryngology Section; University of Padova; Padova Italy
| | | | - Giancarlo Ottaviano
- Department of Neuroscience DNS, Otolaryngology Section; University of Padova; Padova Italy
| | - Elena Fasanaro
- Department of Radiotherapy; Veneto Institute of Oncology IOV-IRCCS; Padova Italy
| | | | - Niccolò Favaretto
- Department of Neuroscience DNS, Otolaryngology Section; University of Padova; Padova Italy
| | | | | | - Alessandro Martini
- Department of Neuroscience DNS, Otolaryngology Section; University of Padova; Padova Italy
| | - Ambrogio Fassina
- Department of Medicine DIMED; University of Padova; Padova Italy
| | | |
Collapse
|
6
|
Zhu GJ, Song PP, Zhou H, Shen XH, Wang JG, Ma XF, Gu YJ, Liu DD, Feng AN, Qian XY, Gao X. Role of epithelial-mesenchymal transition markers E-cadherin, N-cadherin, β-catenin and ZEB2 in laryngeal squamous cell carcinoma. Oncol Lett 2018; 15:3472-3481. [PMID: 29467869 PMCID: PMC5796309 DOI: 10.3892/ol.2018.7751] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 10/13/2017] [Indexed: 12/23/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) allows neoplastic cells to gain the invasive phenotype and become migratory, which is required for cancer progression and metastasis. In the present study, the expression of EMT-associated biomarkers and their association with clinicopathological parameters in laryngeal squamous cell carcinoma (LSCC) was investigated. E-cadherin, N-cadherin, β-catenin and zinc finger E-box binding homeobox 2 (ZEB2) protein expression was evaluated with immunohistochemistry in a cohort of 76 patients with operable LSCC. The association between these transition markers, clinicopathological parameters and their prognostic impact in LSCC was analyzed. Immunohistochemical analysis revealed that EMT-associated proteins were differentially expressed between LSCC and adjacent non-neoplastic laryngeal tissue. Negative E-cadherin expression and positive N-cadherin, β-catenin and ZEB2 expression were associated with a later tumor (T) stage, decreasing tumor differentiation and a reduced overall survival (OS) time (OS: E-cadherin, P=0.016; N-cadherin, P=0.003; β-catenin, P=0.002; ZEB2, P=0.0003). E-cadherin/β-catenin co-expression was significantly associated with the majority of clinicopathological parameters assessed, including lymph node metastases, T stage and tumor cell differentiation (P=0.004, P=0.005, and P<0.001, respectively). Multivariate analysis indicated that T stage and the positive expression of β-catenin and ZEB2 were independent risk factors for OS in LSCC (P=0.014, P=0.025 and P=0.003, respectively). It was concluded that EMT mediates tumor progression, and reduces OS time in patients with LSCC. E-cadherin/β-catenin co-expression may be associated with clinicopathological parameters. T stage, and the positive co-expression of β-catenin and ZEB2 may be independent predictors of prognosis in LSCC.
Collapse
Affiliation(s)
- Guang-Jie Zhu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, P.R. China.,Department of Research Institution of Otolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Pan-Pan Song
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, P.R. China.,Department of Research Institution of Otolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Han Zhou
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, P.R. China.,Department of Research Institution of Otolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Xiao-Hui Shen
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, P.R. China.,Department of Research Institution of Otolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Jun-Guo Wang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, P.R. China.,Department of Research Institution of Otolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Xiao-Feng Ma
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, P.R. China.,Department of Research Institution of Otolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Ya-Jun Gu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, P.R. China.,Department of Research Institution of Otolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Ding-Ding Liu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, P.R. China.,Department of Research Institution of Otolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - An-Ning Feng
- Department of Pathology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Xiao-Yun Qian
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, P.R. China.,Department of Research Institution of Otolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, P.R. China.,Department of Research Institution of Otolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
7
|
Kim R, Park SI, Lee CY, Lee J, Kim P, Oh S, Lee H, Lee MY, Kim J, Chung YA, Hwang KC, Maeng LS, Chang W. Alternative new mesenchymal stem cell source exerts tumor tropism through ALCAM and N-cadherin via regulation of microRNA-192 and -218. Mol Cell Biochem 2016; 427:177-185. [PMID: 28039611 PMCID: PMC5306073 DOI: 10.1007/s11010-016-2909-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/03/2016] [Indexed: 12/26/2022]
Abstract
Gliomas are the most common type of malignant primary brain tumors. Some treatments of gliomas exist, but they are rarely curative. Mesenchymal stem cells (MSCs) are emerging as potential modes of targeted cancer therapy owing to their capacity for homing toward tumor sites. It has been proposed that MSCs derived from various sources, such as bone marrow, adipose tissue and umbilical cord blood, can be used as cell-based therapy for brain tumors. Here, MSCs obtained from the synovial fluid of osteoarthritis or rheumatoid arthritis patients were investigated as therapeutic candidates. Specifically, we compared migratory and adhesive abilities, as well as expression levels of related genes and microRNA in bone marrow derived-MSCs (BMMSCs), adipose derived-MSCs (ADMSCs), and synovial fluid derived-MSCs (SFMSCs) after treatment with conditioned medium from gliomas. Migration and adhesion of SFMSCs increased through upregulation of the activated lymphocyte cell adhesion molecule (ALCAM) and N-cadherin by microRNA-192 and -218 downregulation, similar to BMMSCs and ADMSCs. Migratory capacities of all types of MSCs were evaluated in vivo, and SFMSCs migrated intensively toward gliomas. These results suggest that SFMSCs have potential for use in cell-based antitumor therapies.
Collapse
Affiliation(s)
- Ran Kim
- Department of Biology Education, College of Education, Pusan National University, Pusan, 609-735, South Korea
| | - Sang In Park
- Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Incheon, 403-720, South Korea
| | - Chang Youn Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Jihyun Lee
- Department of Biology Education, College of Education, Pusan National University, Pusan, 609-735, South Korea
| | - Pilseog Kim
- Department of Biology Education, College of Education, Pusan National University, Pusan, 609-735, South Korea
| | - Sekyung Oh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hojin Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Min Young Lee
- Department of Molecular Physiology, College of Pharmacy, Kyungpook National University, Daegu, 702-701, South Korea
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women's University, 52 Hyochangwon-gil, Seoul, 140-742, South Korea
| | - Yong-An Chung
- Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Incheon, 403-720, South Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangwon-do, 210-701, South Korea.,Catholic Kwandong University International, St. Mary's Hospital, Incheon, 404-834, South Korea
| | - Lee-So Maeng
- Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Incheon, 403-720, South Korea.
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Pusan, 609-735, South Korea.
| |
Collapse
|
8
|
Li W, Wang Z, Zha L, Kong D, Liao G, Li H. HMGA2 regulates epithelial-mesenchymal transition and the acquisition of tumor stem cell properties through TWIST1 in gastric cancer. Oncol Rep 2016; 37:185-192. [DOI: 10.3892/or.2016.5255] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/06/2016] [Indexed: 11/05/2022] Open
|
9
|
Berardi DE, Flumian C, Campodónico PB, Urtreger AJ, Diaz Bessone MI, Motter AN, Bal de Kier Joffé ED, Farias EF, Todaro LB. Myoepithelial and luminal breast cancer cells exhibit different responses to all-trans retinoic acid. Cell Oncol (Dordr) 2015; 38:289-305. [PMID: 26044847 DOI: 10.1007/s13402-015-0230-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Breast cancer is the leading cause of death among women worldwide. The exact role of luminal epithelial (LEP) and myoephitelial (MEP) cells in breast cancer development is as yet unclear, as also how retinoids may affect their behaviour. Here, we set out to evaluate whether retinoids may differentially regulate cell type-specific processes associated with breast cancer development using the bi-cellular LM38-LP murine mammary adenocarcinoma cell line as a model. MATERIALS AND METHODS The bi-cellular LM38-LP murine mammary cell line was used as a model throughout all experiments. LEP and MEP subpopulations were separated using inmunobeads, and the expression of genes known to be involved in epithelial to mysenchymal transition (EMT) was assessed by qPCR after all-trans retinoic acid (ATRA) treatment. In vitro invasive capacities of LM38-LP cells were evaluated using 3D Matrigel cultures in conjunction with confocal microscopy. Also, in vitro proliferation, senescence and apoptosis characteristics were evaluated in the LEP and MEP subpopulations after ATRA treatment, as well as the effects of ATRA treatment on the clonogenic, adhesive and invasive capacities of these cells. Mammosphere assays were performed to detect stem cell subpopulations. Finally, the orthotopic growth and metastatic abilities of LM38-LP monolayer and mammosphere-derived cells were evaluated in vivo. RESULTS We found that ATRA treatment modulates a set of genes related to EMT, resulting in distinct gene expression signatures for the LEP or MEP subpopulations. We found that the MEP subpopulation responds to ATRA by increasing its adhesion to extracellular matrix (ECM) components and by reducing its invasive capacity. We also found that ATRA induces apoptosis in LEP cells, whereas the MEP compartment responded with senescence. In addition, we found that ATRA treatment results in smaller and more organized LM38-LP colonies in Matrigel. Finally, we identified a third subpopulation within the LM38-LP cell line with stem/progenitor cell characteristics, exhibiting a partial resistance to ATRA. CONCLUSIONS Our results show that the luminal epithelial (LEP) and myoephitelial (MEP) mammary LM38-P subpopulations respond differently to ATRA, i.e., the LEP subpopulation responds with increased cell cycle arrest and apoptosis and the MEP subpopulation responds with increased senescence and adhesion, thereby decreasing its invasive capacity. Finally, we identified a third subpopulation with stem/progenitor cell characteristics within the LM38-LP mammary adenocarcinoma cell line, which appears to be non-responsive to ATRA.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Cell Cycle Checkpoints/drug effects
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Disease Models, Animal
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mammary Neoplasms, Animal/drug therapy
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mice, Inbred BALB C
- Microscopy, Fluorescence
- Models, Biological
- Receptors, Retinoic Acid/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Tretinoin/pharmacology
- Tumor Burden/drug effects
Collapse
Affiliation(s)
- Damián E Berardi
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Av. San Martín 5481, C1417DTB, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cappellesso R, Marioni G, Crescenzi M, Giacomelli L, Guzzardo V, Mussato A, Staffieri A, Martini A, Blandamura S, Fassina A. The prognostic role of the epithelial-mesenchymal transition markers E-cadherin and Slug in laryngeal squamous cell carcinoma. Histopathology 2015; 67:491-500. [DOI: 10.1111/his.12668] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/04/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Rocco Cappellesso
- Surgical Pathology and Cytopathology Unit; Department of Medicine; University of Padova; Padova Italy
| | - Gino Marioni
- Otolaryngology Section; Department of Neurosciences; University of Padova; Padova Italy
| | - Marika Crescenzi
- Radiotherapy Unit; Istituto Oncologico Veneto IOV; IRCCS; Padova Italy
| | - Luciano Giacomelli
- Surgical Pathology and Cytopathology Unit; Department of Medicine; University of Padova; Padova Italy
| | - Vincenza Guzzardo
- Surgical Pathology and Cytopathology Unit; Department of Medicine; University of Padova; Padova Italy
| | - Alessio Mussato
- Surgical Pathology and Cytopathology Unit; Department of Medicine; University of Padova; Padova Italy
| | - Alberto Staffieri
- Otolaryngology Section; Department of Neurosciences; University of Padova; Padova Italy
| | - Alessandro Martini
- Otolaryngology Section; Department of Neurosciences; University of Padova; Padova Italy
| | - Stella Blandamura
- Surgical Pathology and Cytopathology Unit; Department of Medicine; University of Padova; Padova Italy
| | - Ambrogio Fassina
- Surgical Pathology and Cytopathology Unit; Department of Medicine; University of Padova; Padova Italy
| |
Collapse
|
11
|
Yu L, Mu Y, Sa N, Wang H, Xu W. Tumor necrosis factor α induces epithelial-mesenchymal transition and promotes metastasis via NF-κB signaling pathway-mediated TWIST expression in hypopharyngeal cancer. Oncol Rep 2013; 31:321-7. [PMID: 24220622 DOI: 10.3892/or.2013.2841] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/14/2013] [Indexed: 11/05/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important mechanism in cancer metastasis. Tumor necrosis factor α (TNFα) can induce cancer invasion and metastasis associated with EMT. However, the underlying mechanisms are not entirely clear. Therefore, we investigated whether TNFα has an effect on EMT and invasion and metastasis in human hypopharyngeal cancer FaDu cells, and further explored the potential mechanisms. In the present study, we demonstrated that TNFα induced EMT in FaDu cells and promoted FaDu cell migration and invasion. TNFα-induced EMT was characterized by a change from well organized cell-cell adhesion and cell polarity to loss of cell-cell contacts, cell scattering and increased expression of vimentin and N-cadherin accompanied by a decrease in E-cadherin. Furthermore, we found that p65 translocated to the nucleus after TNFα stimulation and increased the nuclear expression of TWIST. We demonstrated that TNFα treatment also increased the expression of TWIST by activating the NF-κB signaling pathway. While p65 was inhibited by siRNA-65 or BAY11-7082 (inhibitor of NF-κB), TWIST expression was also decreased. Therefore, we conclude that TNFα induces EMT and promotes metastasis via NF-κB signaling pathway-mediated TWIST expression in hypopharyngeal cancer.
Collapse
Affiliation(s)
- Liang Yu
- Department of Otolaryngology - Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | | | | | | | | |
Collapse
|
12
|
González Alva P, Gómez Plata E, Arzate H. Localización de las proteínas específicas del cemento radicular CEMP1 y CAP en células neoplásicas. JOURNAL OF ORAL RESEARCH 2013. [DOI: 10.17126/joralres.2013.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
HMGA2 elicits EMT by activating the Wnt/β-catenin pathway in gastric cancer. Dig Dis Sci 2013; 58:724-33. [PMID: 23135750 DOI: 10.1007/s10620-012-2399-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/28/2012] [Indexed: 12/27/2022]
Abstract
BACKGROUND The high mobility group protein A2 (HMGA2) is an architectural transcription factor that plays an important role in the development and progression of many malignant neoplasms. High expression of HMGA2 in gastric cancer correlates with invasiveness of cancer and is an independent prognostic factor. The reason for this might be HMGA2 promoting epithelial-mesenchymal transitions (EMT), which is the key process of metastasis for some underlying mechanisms. AIMS This study was designed to test whether HMGA2 participates in the EMT and to further understand the underlying mechanisms of EMT promoted by HMGA2. METHODS We examined the cell biology and molecular biology changes after overexpression and knockdown HMGA2 of gastric cancer cells in vitro and vivo. To further understand the underlying mechanisms of EMT promoted by HMGA2, based on our previous study, we examined the changes of target genes of HMGA2 after overexpression and knockdown HMGA2 of gastric cancer cells. RESULTS The results indicated that overexpressing HMGA2 enabled enhancing the oncogenic properties of gastric epithelial origin cell in vitro and in vivo. Furthermore, our study showed that HMGA2 was able to elicit EMT and regulate several genes which are closely related to the Wnt/β-catenin pathway by directly binding to their promoter thereby activating the Wnt/β-catenin pathway. CONCLUSIONS The Wnt/β-catenin pathway activated by HMGA2 might be the underlying mechanism of EMT in gastric cancer cells.
Collapse
|
14
|
Pai HC, Chang LH, Peng CY, Chang YL, Chen CC, Shen CC, Teng CM, Pan SL. Moscatilin inhibits migration and metastasis of human breast cancer MDA-MB-231 cells through inhibition of Akt and Twist signaling pathway. J Mol Med (Berl) 2012; 91:347-56. [PMID: 22961111 DOI: 10.1007/s00109-012-0945-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 08/01/2012] [Accepted: 08/06/2012] [Indexed: 11/28/2022]
Abstract
Breast cancer metastasis is more resistant to chemotherapy and radiotherapy than is cancer of the visceral tissues; therefore, new treatment strategies are urgently needed. Moscatilin, derived from the orchid Dendrobrium loddigesii, has shown anticancer activity. We evaluated the mechanism by which moscatilin suppresses the migration and metastasis of human breast cancer MDA-MB-231 cells in vitro and in vivo. We demonstrated that moscatilin significantly inhibits MDA-MB-231 cell migration by using scratch assays and Boyden chambers. Transcriptional factors inducing epithelial-mesenchymal transition, such as Twist, Snail, and Akt, play important roles in cell migration and cancer metastasis. Moscatilin inhibited the mRNA and protein expression of Twist, but not that of Snail, and subsequently inhibited N-cadherin expression. However, these effects were reversed by constitutively expressing active myristoylated (myr)-Akt and Twist overexpression. Moscatilin also suppressed Akt phosphorylation. However, Akt overexpression reversed the inhibitory effects of moscatilin on phospho-Akt protein expression but not its effects on Twist. The moscatilin-mediated inhibition of cell migration was reversed by Akt and Twist overexpression, demonstrating that moscatilin blocked cell migration by inhibiting Akt and Twist. In an MDA-MB-231 metastatic animal model, moscatilin (100 mg/kg) significantly suppressed breast cancer metastasis to the lungs and reduced the number of metastatic lung nodules and lung weight without causing any toxicity. These results indicated that moscatilin inhibited MDA-MB-231 cell migration via Akt- and Twist-dependent pathways; this finding was consistent with moscatilin's antimetastatic activity in vivo. Therefore, moscatilin may be an effective compound for the prevention of human breast cancer metastasis.
Collapse
Affiliation(s)
- Hui-Chen Pai
- Phamacological Institute, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Sec. 1, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Li B, Han Q, Zhu Y, Yu Y, Wang J, Jiang X. Down-regulation of miR-214 contributes to intrahepatic cholangiocarcinoma metastasis by targeting Twist. FEBS J 2012; 279:2393-8. [PMID: 22540680 DOI: 10.1111/j.1742-4658.2012.08618.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
miRNAs play an important role in many human diseases, including cancer metastasis. However, the mechanisms by which miRNAs regulate intrahepatic cholangiocarcinoma metastasis remain poorly understood. In the present study, we assayed the expression level of miR-214 in intrahepatic cholangiocarcinoma tissues by real-time PCR, and defined the target gene and biological function by luciferase reporter assay and Western blot analysis. We found that the miR-214 levels were remarkably decreased in metastatic intrahepatic cholangiocarcinoma tissues compared to non-metastatic tissues. Inhibition of miR-214 levels by its inhibitor promoted metastasis of human intrahepatic cholangiocarcinoma cell. We further demonstrated that down-regulation of miR-214 increased the transcript levels of the epithelial-mesenchymal transition-associated gene Twist, and then decreased E-cadherin levels. We confirmed that down-regulation of miR-214 promoted the epithelial-mesenchymal transition by directly targeting the Twist gene. These results suggest an important role for miR-214 in regulating metastasis of intrahepatic cholangiocarcinoma, and potential application of miR-214 in intrahepatic cholangiocarcinoma therapy.
Collapse
Affiliation(s)
- Bin Li
- Department of Biliary Truct Surgery I, Eastern Hepatobiliary Hospital, Secondary Military Medicine University, Shanghai, China
| | | | | | | | | | | |
Collapse
|