1
|
Liu X, Huang S, Gu X, Yang Z, Xiu J, Xu X, Cao Y, Wang J, Zhao Y, Peng M, Tian Z, Hua X, Wang HL, Huang C. Downregulation of the phosphatase PHLPP1 contributes to NNK-induced malignant transformation of human bronchial epithelial cells (HBECs). J Biol Chem 2025; 301:108221. [PMID: 39863100 PMCID: PMC11889559 DOI: 10.1016/j.jbc.2025.108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/03/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Cigarette smoking (CS) is one of the greatest health concerns, which can cause lung cancer. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific nitrosamine, has been well-documented for its carcinogenic activity in both epidemiological and laboratory studies. PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) and phosphatase and tensin homolog (PTEN) are two well-known phosphatase tumor suppressors that have been reported to be downregulated in human lung cancer tissues. However, the effect of NNK exposure on the expression of PHLPP1 and PTEN is unknown, and such effects may be early events leading to lung carcinogenesis. We explored this question in current studies and found that exposure of human bronchial epithelial BEP2D cells to NNK resulted in cell malignant transformation accompanied by a remarkable downregulation of PHLPP1 and PTEN. Such downregulation of PHLPP1 and PTEN was also consistently observed in vivo in Cigarette Smoking-exposed mouse lung tissues. Our studies further showed that overexpression of PHLPP1 or PTEN alleviated NNK-induced BEP2D cell transformation. Ectopic expression of PHLPP1 promoted PTEN protein expression, while PTEN overexpression did not affect PHLPP1 expression. Mechanistic studies showed that NNK was able to inhibit PP2A-C activity, which directly attenuated c-Jun phosphorylation at Ser63/73, and subsequently inhibited the PHLPP1 transcription and expression. Further, the downregulation of PHLPP1 led to a reduction of pten mRNA stability and expression through the HUR/Jun D/miR-613/NCL axis. Taken together, our studies advance the field of tobacco-induced lung cancer research by uncovering new mechanistic insights and identifying a novel molecular axis that could inform future therapeutic strategies. It also adds a new dimension by exploring the interaction between PHLPP1 and PTEN in the context of tobacco carcinogen exposure.
Collapse
Affiliation(s)
- Xuelei Liu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shirui Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaozhen Gu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Ziyi Yang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiajun Xiu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Xiaodan Xu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Yaxin Cao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Jingjing Wang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Yunping Zhao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Minggang Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongxian Tian
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohui Hua
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Hui-Li Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Chuanshu Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Liu F, Chen J, Li K, Li H, Zhu Y, Zhai Y, Lu B, Fan Y, Liu Z, Chen X, Jia X, Dong Z, Liu K. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Mol Cancer 2024; 23:148. [PMID: 39048965 PMCID: PMC11270804 DOI: 10.1186/s12943-024-02046-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
Ubiquitination, a pivotal posttranslational modification of proteins, plays a fundamental role in regulating protein stability. The dysregulation of ubiquitinating and deubiquitinating enzymes is a common feature in various cancers, underscoring the imperative to investigate ubiquitin ligases and deubiquitinases (DUBs) for insights into oncogenic processes and the development of therapeutic interventions. In this review, we discuss the contributions of the ubiquitin-proteasome system (UPS) in all hallmarks of cancer and progress in drug discovery. We delve into the multiple functions of the UPS in oncology, including its regulation of multiple cancer-associated pathways, its role in metabolic reprogramming, its engagement with tumor immune responses, its function in phenotypic plasticity and polymorphic microbiomes, and other essential cellular functions. Furthermore, we provide a comprehensive overview of novel anticancer strategies that leverage the UPS, including the development and application of proteolysis targeting chimeras (PROTACs) and molecular glues.
Collapse
Affiliation(s)
- Fangfang Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Jingyu Chen
- Department of Pediatric Medicine, School of Third Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Kai Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Haochen Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yiyi Zhu
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yubo Zhai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanle Fan
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Ziyue Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaojie Chen
- School of Basic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Zigang Dong
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Kangdong Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
3
|
Shao Y, Ren W, Dai H, Yang F, Li X, Zhang S, Liu J, Yao X, Zhao Q, Sun X, Zheng Z, Xu C. SKP2 Contributes to AKT Activation by Ubiquitination Degradation of PHLPP1, Impedes Autophagy, and Facilitates the Survival of Thyroid Carcinoma. Mol Cells 2023; 46:360-373. [PMID: 36694914 PMCID: PMC10258456 DOI: 10.14348/molcells.2022.2242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/18/2022] [Accepted: 03/31/2022] [Indexed: 01/26/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid carcinoma. Despite a good prognosis, approximately a quarter of PTC patients are likely to relapse. Previous reports suggest an association between S-phase kinase-associated protein 2 (SKP2) and the prognosis of thyroid cancer. SKP1 is related to apoptosis of PTC cells; however, its role in PTC remains largely elusive. This study aimed to understand the expression and molecular mechanism of SKP2 in PTC. SKP2 expression was upregulated in PTC tissues and closely associated with clinical diagnosis. In vitro and in vivo knockdown of SKP2 expression in PTC cells suppressed cell growth and proliferation and induced apoptosis. SKP2 depletion promoted cell autophagy under glucose deprivation. SKP2 interacted with PH domain leucine-rich repeat protein phosphatase-1 (PHLPP1), triggering its degradation by ubiquitination. Furthermore, SKP2 activates the AKT-related pathways via PHLPP1, which leads to the cytoplasmic translocation of SKP2, indicating a reciprocal regulation between SKP2 and AKT. In conclusion, the upregulation of SKP2 leads to PTC proliferation and survival, and the regulatory network among SKP2, PHLPP1, and AKT provides novel insight into the molecular basis of SKP2 in tumor progression.
Collapse
Affiliation(s)
- Yuan Shao
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Wanli Ren
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Hao Dai
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Fangli Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Xiang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Shaoqiang Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Junsong Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Xiaobao Yao
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Qian Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Xin Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| | - Zhiwei Zheng
- The Third Ward of General Surgery Department, Rizhao People’s Hospital, Rizhao, China
| | - Chongwen Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi’An Jiaotong University, Xi’an, China
| |
Collapse
|
4
|
Naik A, Dalpatraj N, Thakur N. Comparative analysis of the occupancy of Histone H3 Lysine 4 methylation in the cells treated with TGFβ and Interferonγ. Gene 2023:147601. [PMID: 37394048 DOI: 10.1016/j.gene.2023.147601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
In this current study, we have compared our H3K4me3 Chip-Sequencing data in PC3 cells in response to 6h and 24h TGFβ stimulation with the IFNγ stimulated/unstimulated HeLa S3 cells Since both TGFβ and IFNγ play an essential role in tumorigenesis both as a tumor promoter and tumor suppressor and known to antagonize each other's signalling, it would be of utmost importance to find out the regions undergoing histone modification changes in response to TGFβ and IFNγ and compare them to explore the genes common to both as well as the specific for each ligand. Our study has compared the genes showing H3K4me3 occupancy in response to both TGFβ and IFNγ. Several genes were found to be shared between the TGFβ and IFNγ. DAVID Functional enrichment analysis in the TGFβ and IFNγ dataset revealed association of genes with different biological processes such as miRNA-mediated gene silencing, positive regulation of ERK cascade, hypoxia-induced apoptosis repression, translational regulation and molecular functions such as TGFβR activity, GPCR activity, TGFβ binding activity. Further analysis of these genes can reveal fascinating insights into epigenetic regulation by growth factor stimulation.
Collapse
Affiliation(s)
- Ankit Naik
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Nidhi Dalpatraj
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Noopur Thakur
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad-380009, Gujarat, India.
| |
Collapse
|
5
|
Huang J, Zhou H, He L, Zhong L, Zhou D, Yin Z. The promotive role of USP1 inhibition in coordinating osteogenic differentiation and fracture healing during nonunion. J Orthop Surg Res 2023; 18:152. [PMID: 36859264 PMCID: PMC9979441 DOI: 10.1186/s13018-023-03594-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Nonunion is a failure of fracture healing and a major complication after fractures. Ubiquitin-specific protease 1 (USP1) is a deubiquitinase that involved in cell differentiation and cell response to DNA damage. Herein we investigated the expression, function and mechanism of USP1 in nonunion. METHODS AND RESULTS Clinical samples were used to detect the USP1 expression in nonunion. ML323 was selected to inhibit USP1 expression throughout the study. Rat models and mouse embryonic osteoblasts cells (MC3T3-E1) were used to investigate the effects of USP1 inhibition on fracture healing and osteogenesis in vivo and in vitro, respectively. Histological changes were examined by micro-computerized tomography (Micro-CT), hematoxylin & eosin (H&E) staining and Masson staining. Alkaline phosphatase (ALP) activity detection and alizarin red staining were used for osteogenic differentiation observation. The expression of related factors was detected by quantitative real-time PCR, western blot or immunohistochemistry (IHC). It was shown that USP1 was highly expressed in nonunion patients and nonunion rats. USP1 inhibition by ML323 promoted fracture healing in nonunion rats and facilitated the expression of osteogenesis-related factors and the signaling of PI3K/Akt pathway. In addition, USP1 inhibition accelerated osteogenic differentiation and promoting PI3K/Akt signaling in MC3T3-E1 cells. CONCLUSIONS USP1 inhibition plays a promotive role in coordinating osteogenic differentiation and fracture healing during nonunion. PI3K/Akt may be the downstream pathway of USP1.
Collapse
Affiliation(s)
- Jun Huang
- The Microscopic Repair and Reconstruction Department of Hand and Foot, Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Hongxiang Zhou
- The Microscopic Repair and Reconstruction Department of Hand and Foot, Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Liang He
- The Microscopic Repair and Reconstruction Department of Hand and Foot, Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Lin Zhong
- The Microscopic Repair and Reconstruction Department of Hand and Foot, Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Ding Zhou
- The Microscopic Repair and Reconstruction Department of Hand and Foot, Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Zongsheng Yin
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
6
|
Hunter JE, Campbell AE, Kerridge S, Fraser C, Hannaway NL, Luli S, Ivanova I, Brownridge PJ, Coxhead J, Taylor L, Leary P, Hasoon MSR, Eyers CE, Perkins ND. Up-regulation of the PI3K/AKT and RHO/RAC/PAK signalling pathways in CHK1 inhibitor resistant Eµ-Myc lymphoma cells. Biochem J 2022; 479:2131-2151. [PMID: 36240067 PMCID: PMC9704644 DOI: 10.1042/bcj20220103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022]
Abstract
The development of resistance and the activation of bypass pathway signalling represents a major problem for the clinical application of protein kinase inhibitors. While investigating the effect of either a c-Rel deletion or RelAT505A phosphosite knockin on the Eµ-Myc mouse model of B-cell lymphoma, we discovered that both NF-κB subunit mutations resulted in CHK1 inhibitor resistance, arising from either loss or alteration of CHK1 activity, respectively. However, since Eµ-Myc lymphomas depend on CHK1 activity to cope with high levels of DNA replication stress and consequent genomic instability, it was not clear how these mutant NF-κB subunit lymphomas were able to survive. To understand these survival mechanisms and to identify potential compensatory bypass signalling pathways in these lymphomas, we applied a multi-omics strategy. With c-Rel-/- Eµ-Myc lymphomas we observed high levels of Phosphatidyl-inositol 3-kinase (PI3K) and AKT pathway activation. Moreover, treatment with the PI3K inhibitor Pictilisib (GDC-0941) selectively inhibited the growth of reimplanted c-Rel-/- and RelAT505A, but not wild type (WT) Eµ-Myc lymphomas. We also observed up-regulation of a RHO/RAC pathway gene expression signature in both Eµ-Myc NF-κB subunit mutation models. Further investigation demonstrated activation of the RHO/RAC effector p21-activated kinase (PAK) 2. Here, the PAK inhibitor, PF-3758309 successfully overcame resistance of RelAT505A but not WT lymphomas. These findings demonstrate that up-regulation of multiple bypass pathways occurs in CHK1 inhibitor resistant Eµ-Myc lymphomas. Consequently, drugs targeting these pathways could potentially be used as either second line or combinatorial therapies to aid the successful clinical application of CHK1 inhibitors.
Collapse
Affiliation(s)
- Jill E. Hunter
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Amy E. Campbell
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Scott Kerridge
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Callum Fraser
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Nicola L. Hannaway
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Saimir Luli
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging (PIVI), Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Iglika Ivanova
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Philip J. Brownridge
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Jonathan Coxhead
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Leigh Taylor
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Peter Leary
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Megan S. R. Hasoon
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Claire E. Eyers
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Neil D. Perkins
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|
7
|
Yang J, Ye J, Ma T, Tang F, Huang L, Liu Z, Tian S, Cheng X, Zhang L, Guo Z, Tu F, He M, Xu X, Lu X, Wu Y, Zeng X, Zou J, Wang X, Peng W, Zhang P. Tripartite motif-containing protein 11 promotes hepatocellular carcinogenesis through ubiquitin-proteasome-mediated degradation of pleckstrin homology domain leucine-rich repeats protein phosphatase 1. Hepatology 2022; 76:612-629. [PMID: 34767673 DOI: 10.1002/hep.32234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS HCC is one of the main types of primary liver cancer, with high morbidity and mortality and poor treatment effect. Tripartite motif-containing protein 11 (TRIM11) has been shown to promote tumor formation in lung cancer, breast cancer, gastric cancer, and so on. However, the specific function and mechanism of TRIM11 in HCC remain open for study. APPROACH AND RESULTS Through clinical analysis, we found that the expression of TRIM11 was up-regulated in HCC tissues and was associated with high tumor node metastasis (TNM) stages, advanced histological grade, and poor patient survival. Then, by gain- and loss-of-function investigations, we demonstrated that TRIM11 promoted cell proliferation, migration, and invasion in vitro and tumor growth in vivo. Mechanistically, RNA sequencing and mass spectrometry analysis showed that TRIM11 interacted with pleckstrin homology domain leucine-rich repeats protein phosphatase 1 (PHLPP1) and promoted K48-linked ubiquitination degradation of PHLPP1 and thus promoted activation of the protein kinase B (AKT) signaling pathway. Moreover, overexpression of PHLPP1 blocked the promotional effect of TRIM11 on HCC function. CONCLUSIONS Our study confirmed that TRIM11 plays an oncogenic role in HCC through the PHLPP1/AKT signaling pathway, suggesting that targeting TRIM11 may be a promising target for the treatment of HCC.
Collapse
Affiliation(s)
- Juan Yang
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Jianming Ye
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Tengfei Ma
- Department of Neurology, Huanggang Central Hospital, Huanggang, China.,Huanggang Institute of Translational Medicine, Huanggang, China
| | - Fangfang Tang
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Li Huang
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Zhen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhenli Guo
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Fuping Tu
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Miao He
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Xueming Xu
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Xiaojuan Lu
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Yanyang Wu
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Xiaoli Zeng
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Jiahua Zou
- Cancer Center of Huanggang Central Hospital, Huanggang, China
| | - Xiangcai Wang
- Gannan Innovation and Translational Medicine Research Institute, Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China.,Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, China
| | - Weijie Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.,Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
| | - Peng Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Zhao J, Guo J, Wang Y, Ma Q, Shi Y, Cheng F, Lu Q, Fu W, Ouyang G, Zhang J, Xu Q, Hu X. Research Progress of DUB Enzyme in Hepatocellular Carcinoma. Front Oncol 2022; 12:920287. [PMID: 35875077 PMCID: PMC9303014 DOI: 10.3389/fonc.2022.920287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
According to GLOBOCAN 2021 cancer incidence and mortality statistics compiled by the International Agency for Research on Cancer, hepatocellular carcinoma (HCC) is the most common malignancy in the human liver and one of the leading causes of cancer death worldwide. Although there have been great advances in the treatment of HCC, such as regofenib, sorafenib, and lomvatinib, which have been developed and approved for the clinical treatment of advanced or metastatic HCC. However, they only prolong survival by a few months, and patients with advanced liver cancer are susceptible to tumor invasion metastasis and drug resistance. Ubiquitination modification is a type of post-translational modification of proteins. It can affect the physiological activity of cells by regulating the localization, stability and activity of proteins, such as: gene transcription, DNA damage signaling and other pathways. The reversible process of ubiquitination is called de-ubiquitination: it is the process of re-releasing ubiquitinated substrates with the participation of de-ubiquitinases (DUBs) and other active substances. There is growing evidence that many dysregulations of DUBs are associated with tumorigenesis. Although dysregulation of deuquitinase function is often found in HCC and other cancers, The mechanisms of action of many DUBs in HCC have not been elucidated. In this review, we focused on several deubiquitinases (DUBs) associated with hepatocellular carcinoma, including their structure, function, and relationship to hepatocellular carcinoma. hepatocellular carcinoma was highlighted, as well as the latest research reports. Among them, we focus on the USP family and OTU family which are more studied in the HCC. In addition, we discussed the prospects and significance of targeting DUBs as a new strategy for the treatment of hepatocellular carcinoma. It also briefly summarizes the research progress of some DUB-related small molecule inhibitors and their clinical application significance as a treatment for HCC in the future.
Collapse
Affiliation(s)
- Jie Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yanan Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiancheng Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu Shi
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Feng Cheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wen Fu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | | | - Ji Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiuran Xu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiaoge Hu, ; Qiuran Xu,
| | - Xiaoge Hu
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou, China
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiaoge Hu, ; Qiuran Xu,
| |
Collapse
|
9
|
USP1 Promotes GC Metastasis via Stabilizing ID2. DISEASE MARKERS 2021; 2021:3771990. [PMID: 34873426 PMCID: PMC8643267 DOI: 10.1155/2021/3771990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/03/2021] [Indexed: 12/02/2022]
Abstract
Gastric cancer (GC) is one of the most common malignant tumors all over the world. And recurrence and metastasis are still the main causes of low survival rate for advanced GC. USP1 has been shown overexpressed in multiple cancers, which indicate its important biomarker in tumorigenesis and development. Our study is aimed at defining the exact role of USP1 on GC metastasis and the underlying mechanism. USP1 was firstly found overexpressed in GC tissues and relatively high-expression levels conferred poor survival rates. Then, real-time cellular analysis (RTCA) showed that USP1 knockdown inhibited GC metastasis both in vitro and in vivo. Mechanically, we demonstrated that USP1 promoted GC metastasis via upregulating ID2 expression and further confirmed that USP1 stabilized ID2 expression through deubiquitinating ID2 in GC. In conclusion, our study showed that USP1 promoted GC metastasis via stabilizing ID2 expression, which provides a potential biomarker and therapy target for GC.
Collapse
|
10
|
Jang SW, Kim JM. Mutation of aspartic acid 199 in USP1 disrupts its deubiquitinating activity and impairs DNA repair. FEBS Lett 2021; 595:1997-2006. [PMID: 34128540 DOI: 10.1002/1873-3468.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/06/2022]
Abstract
The deubiquitinating enzyme USP1 contains highly conserved motifs forming its catalytic center. Recently, the COSMIC mutation database identified a mutation in USP1 at Asp-199 in endometrial cancer. Here, we investigated the role of Asp-199 for USP1 function. The mutation of aspartic acid to alanine (D199A) resulted in failure of USP1 to undergo autocleavage and form a complex with ubiquitin, indicating D199A Usp1 is catalytically inactive. The D199A mutation did not affect the interaction with Uaf1. Moreover, D199A Usp1 had defects in deubiquitination of FANCD2 and PCNA and displayed reduced FANCD2 foci formation and DNA repair efficiency. Furthermore, mutation of Asp-199 to glutamic acid resulted in phenotypes similar to the D199A mutation. Collectively, our findings demonstrate the importance of Asp-199 for USP1 activity and suggest the implications of USP1 downregulation in cancer.
Collapse
Affiliation(s)
- Seok Won Jang
- Department of Pharmacology, Chonnam National University Medical School, Jellanamdo, Korea
| | - Jung Min Kim
- Department of Pharmacology, Chonnam National University Medical School, Jellanamdo, Korea
| |
Collapse
|
11
|
FBXO22, ubiquitination degradation of PHLPP1, ameliorates rotenone induced neurotoxicity by activating AKT pathway. Toxicol Lett 2021; 350:1-9. [PMID: 34182063 DOI: 10.1016/j.toxlet.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused by the lacking of dopaminergic neurons. Many reports have illustrated that rotenone is applied to establish the experimental model of PD, which simulates PD-like symptoms. FBXO22 is a poorly understood protein that may be involved in neurological disorders. However, little is known about FBXO22 in PD. In this study, first, SH-SY5Y cells were treated with rotenone to construct PD model in vitro. It was discovered that the FBXO22 expression was down-regulated following rotenone treatment. Additionally, overexpression of FBXO22 reduced rotenone treatment-mediated cell apoptosis in SH-SY5Y cells. In view of the ubiquitination effect of FBXO22, our study uncovered that FBXO22 bound with and degraded PHLPP1 by ubiquitination. Next, the effects of PHLPP1 on AKT pathway in PD were further explored. It was demonstrated that PHLPP1 inactivated AKT pathway through down-regulating the pAKT/AKT and pmTOR/mTOR levels. Through rescue assays, the results showed that PHLPP1 overexpression partially reversed the reduction of rotenone induced neurotoxicity caused by FBXO22 overexpression. Finally, we found that overexpression of FBXO22 alleviated rotenone-induced PD symptoms in rat model. Moreover, it was discovered that l-dopa treatment could not affect the FBXO22 expression in PD. In conclusion, findings from our work proved that FBXO22 degraded PHLPP1 by ubiquitination to ameliorate rotenone induced neurotoxicity, which attributed to activate AKT pathway. This work suggested that FBXO22 may be an effective biological marker for PD treatment.
Collapse
|
12
|
The PHLPP1 N-Terminal Extension Is a Mitotic Cdk1 Substrate and Controls an Interactome Switch. Mol Cell Biol 2021; 41:e0033320. [PMID: 33397691 PMCID: PMC8088274 DOI: 10.1128/mcb.00333-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) is a tumor suppressor that directly dephosphorylates a wide array of substrates, most notably the prosurvival kinase Akt. However, little is known about the molecular mechanisms governing PHLPP1 itself. Here, we report that PHLPP1 is dynamically regulated in a cell cycle-dependent manner and deletion of PHLPP1 results in mitotic delays and increased rates of chromosomal segregation errors. We show that PHLPP1 is hyperphosphorylated during mitosis by Cdk1 in a functionally uncharacterized region known as the PHLPP1 N-terminal extension (NTE). A proximity-dependent biotin identification (BioID) interaction screen revealed that during mitosis, PHLPP1 dissociates from plasma membrane scaffolds, such as Scribble, by a mechanism that depends on its NTE and gains proximity to kinetochore and mitotic spindle proteins such as KNL1 and TPX2. Our data are consistent with a model in which phosphorylation of PHLPP1 during mitosis regulates binding to its mitotic partners and allows accurate progression through mitosis. The finding that PHLPP1 binds mitotic proteins in a cell cycle- and phosphorylation-dependent manner may have relevance to its tumor-suppressive function.
Collapse
|
13
|
Gregoire-Mitha S, Gray DA. What deubiquitinating enzymes, oncogenes, and tumor suppressors actually do: Are current assumptions supported by patient outcomes? Bioessays 2021; 43:e2000269. [PMID: 33415735 DOI: 10.1002/bies.202000269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022]
Abstract
Context can determine whether a given gene acts as an oncogene or a tumor suppressor. Deubiquitinating enzymes (DUBs) regulate the stability of many components of the pathways dictating cell fate so it would be expected that alterations in the levels or activity of these enzymes may have oncogenic or tumor suppressive consequences. In the current review we survey publications reporting that genes encoding DUBs are oncogenes or tumor suppressors. For many DUBs both claims have been made. For such "double agents," the effects of gain or loss of function will depend on the overall status of a complex of molecular signaling networks subject to extensive crosstalk. As the TGF-β paradox makes clear context is critical in cell fate decisions, and the disconnect between experimental findings and patient survival outcomes can in part be attributed to disparities between culture conditions and the microenvironment in vivo. Convincing claims for oncogene or tumor suppressor roles require the documentation of gene alterations in patient samples; survival curves are alone inadequate.
Collapse
Affiliation(s)
- Sophie Gregoire-Mitha
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Douglas A Gray
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
14
|
Baffi TR, Cohen-Katsenelson K, Newton AC. PHLPPing the Script: Emerging Roles of PHLPP Phosphatases in Cell Signaling. Annu Rev Pharmacol Toxicol 2021; 61:723-743. [PMID: 32997603 PMCID: PMC11003498 DOI: 10.1146/annurev-pharmtox-031820-122108] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Whereas protein kinases have been successfully targeted for a variety of diseases, protein phosphatases remain an underutilized therapeutic target, in part because of incomplete characterization of their effects on signaling networks. The pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) is a relatively new player in the cell signaling field, and new roles in controlling the balance among cell survival, proliferation, and apoptosis are being increasingly identified. Originally characterized for its tumor-suppressive function in deactivating the prosurvival kinase Akt, PHLPP may have an opposing role in promoting survival, as recent evidence suggests. Additionally, identification of the transcription factor STAT1 as a substrate unveils a role for PHLPP as a critical mediator of transcriptional programs in cancer and the inflammatory response. This review summarizes the current knowledge of PHLPP as both a tumor suppressor and an oncogene and highlights emerging functions in regulating gene expression and the immune system. Understanding the context-dependent functions of PHLPP is essential for appropriate therapeutic intervention.
Collapse
Affiliation(s)
- Timothy R Baffi
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721, USA;
| | - Ksenya Cohen-Katsenelson
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721, USA;
| | - Alexandra C Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721, USA;
| |
Collapse
|
15
|
McClurg UL, Azizyan M, Dransfield DT, Namdev N, Chit NCTH, Nakjang S, Robson CN. The novel anti-androgen candidate galeterone targets deubiquitinating enzymes, USP12 and USP46, to control prostate cancer growth and survival. Oncotarget 2018; 9:24992-25007. [PMID: 29861848 PMCID: PMC5982776 DOI: 10.18632/oncotarget.25167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/10/2018] [Indexed: 12/26/2022] Open
Abstract
Metastatic castration resistant prostate cancer is one of the main causes of male cancer associated deaths worldwide. Development of resistance is inevitable in patients treated with anti-androgen therapies. This highlights a need for novel therapeutic strategies that would be aimed upstream of the androgen receptor (AR). Here we report that the novel small molecule anti-androgen, galeterone targets USP12 and USP46, two highly homologous deubiquitinating enzymes that control the AR-AKT-MDM2-P53 signalling pathway. Consequently, galeterone is effective in multiple models of prostate cancer including both castrate resistant and AR-negative prostate cancer. However, we have observed that USP12 and USP46 selectively regulate full length AR protein but not the AR variants. This is the first report of deubiquitinating enzyme targeting as a strategy in prostate cancer treatment which we show to be effective in multiple, currently incurable models of this disease.
Collapse
Affiliation(s)
- Urszula L McClurg
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mahsa Azizyan
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniel T Dransfield
- Tokai Pharmaceuticals, 255 State Street, Boston, MA 02109, USA.,Current address: Siamab Therapeutics, Suite 100, Newton, MA 02458, USA
| | - Nivedita Namdev
- Tokai Pharmaceuticals, 255 State Street, Boston, MA 02109, USA
| | - Nay C T H Chit
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Sirintra Nakjang
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Craig N Robson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
16
|
Molecular mechanism of the TP53-MDM2-AR-AKT signalling network regulation by USP12. Oncogene 2018; 37:4679-4691. [DOI: 10.1038/s41388-018-0283-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 12/20/2017] [Accepted: 03/23/2018] [Indexed: 11/08/2022]
|
17
|
Gorrepati KDD, Lupse B, Annamalai K, Yuan T, Maedler K, Ardestani A. Loss of Deubiquitinase USP1 Blocks Pancreatic β-Cell Apoptosis by Inhibiting DNA Damage Response. iScience 2018; 1:72-86. [PMID: 30227958 PMCID: PMC6135944 DOI: 10.1016/j.isci.2018.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/09/2023] Open
Abstract
Impaired pancreatic β-cell survival contributes to the reduced β-cell mass in diabetes, but underlying regulatory mechanisms and key players in this process remain incompletely understood. Here, we identified the deubiquitinase ubiquitin-specific protease 1 (USP1) as an important player in the regulation of β-cell apoptosis under diabetic conditions. Genetic silencing and pharmacological suppression of USP1 blocked β-cell death in several experimental models of diabetes in vitro and ex vivo without compromising insulin content and secretion and without impairing β-cell maturation/identity genes in human islets. Our further analyses showed that USP1 inhibition attenuated DNA damage response (DDR) signals, which were highly elevated in diabetic β-cells, suggesting a USP1-dependent regulation of DDR in stressed β-cells. Our findings highlight a novel function of USP1 in the control of β-cell survival, and its inhibition may have a potential therapeutic relevance for the suppression of β-cell death in diabetes. Genetic and chemical inhibition of USP1 promoted β-cell survival USP1 inhibitors blocked β-cell death in human islets without affecting β-cell function USP1 inhibition reduced DDR signals in stressed β-cells
Collapse
Affiliation(s)
- Kanaka Durga Devi Gorrepati
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany
| | - Blaz Lupse
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany
| | - Karthika Annamalai
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany
| | - Ting Yuan
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany
| | - Kathrin Maedler
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany.
| | - Amin Ardestani
- Islet Biology Laboratory, University of Bremen, Centre for Biomolecular Interactions Bremen, Leobener Straße NW2, Room B2080, 28359 Bremen, Germany.
| |
Collapse
|
18
|
Zhou S, Xiong M, Dai G, Yu L, Zhang Z, Chen J, Guo W. MicroRNA-192-5p suppresses the initiation and progression of osteosarcoma by targeting USP1. Oncol Lett 2018; 15:6947-6956. [PMID: 29731868 PMCID: PMC5920969 DOI: 10.3892/ol.2018.8180] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/13/2018] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is the most frequent primary malignant bone tumor. An increasing body of evidence has suggested that microRNAs (miRNA/miRs) have emerged as critical regulators in the initiation and progression of osteosarcoma. The present study explored the biological function of miR-192-5p and ubiquitin-specific protease 1 (USP1), and investigated whether miR-192-5p could directly interact with USP1 in osteosarcoma. The results revealed that miR-192-5p was significantly downregulated in osteosarcoma tissues and cell lines, while a reverse expression profile of USP1 was observed. Ectopic expression of miR-192-5p restrained cell proliferation, apoptosis, migration and invasion. In addition, it increased the sensitivity of osteosarcoma cells to cisplatin. USP1 was also observed to be a direct target gene of miR-192-5p in osteosarcoma. Overexpression of USP1 promoted cell proliferation, apoptosis, migration and invasion, and decreased cell chemo-sensitivity; however, it could be partially reversed via the overexpression of miR-192-5p in osteosarcoma cell lines. Taken together, the present study demonstrated that miR-192-5p suppressed the initiation and progression of osteosarcoma by targeting USP1. Therefore, miR-192-5p may serve as a valuable biomarker and the miR-192-5p/USP1 axis may function as a novel therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Sheng Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Min Xiong
- Department of Orthopedics, Dongfeng General Hospital, Shiyan, Hubei 442001, P.R. China
| | - Guo Dai
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ling Yu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhengpei Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Chen
- Department of Orthopedics, Dongfeng General Hospital, Shiyan, Hubei 442001, P.R. China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
19
|
Mathur A, Pandey VK, Kakkar P. PHLPP: a putative cellular target during insulin resistance and type 2 diabetes. J Endocrinol 2017; 233:R185-R198. [PMID: 28428363 DOI: 10.1530/joe-17-0081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/20/2017] [Indexed: 12/29/2022]
Abstract
Progressive research in the past decade converges to the impact of PHLPP in regulating the cellular metabolism through PI3K/AKT inhibition. Aberrations in PKB/AKT signaling coordinates with impaired insulin secretion and insulin resistance, identified during T2D, obesity and cardiovascular disorders which brings in the relevance of PHLPPs in the metabolic paradigm. In this review, we discuss the impact of PHLPP isoforms in insulin signaling and its associated cellular events including mitochondrial dysfunction, DNA damage, autophagy and cell death. The article highlights the plausible molecular targets that share the role during insulin-resistant states, whose understanding can be extended into treatment responses to facilitate targeted drug discovery for T2D and allied metabolic syndromes.
Collapse
Affiliation(s)
- Alpana Mathur
- Herbal Research LaboratoryCSIR-Indian Institute of Toxicology Research, Lucknow, India
- Babu Banarasi Das UniversityBBD City, Lucknow, India
| | - Vivek Kumar Pandey
- Herbal Research LaboratoryCSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative ResearchCSIR-IITR, Lucknow, India
| | - Poonam Kakkar
- Herbal Research LaboratoryCSIR-Indian Institute of Toxicology Research, Lucknow, India
- Babu Banarasi Das UniversityBBD City, Lucknow, India
- Academy of Scientific and Innovative ResearchCSIR-IITR, Lucknow, India
| |
Collapse
|
20
|
Luo K, Li Y, Yin Y, Li L, Wu C, Chen Y, Nowsheen S, Hu Q, Zhang L, Lou Z, Yuan J. USP49 negatively regulates tumorigenesis and chemoresistance through FKBP51-AKT signaling. EMBO J 2017; 36:1434-1446. [PMID: 28363942 DOI: 10.15252/embj.201695669] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/24/2017] [Accepted: 03/08/2017] [Indexed: 12/21/2022] Open
Abstract
The AKT pathway is a fundamental signaling pathway that mediates multiple cellular processes, such as cell proliferation and survival, angiogenesis, and glucose metabolism. We recently reported that the immunophilin FKBP51 is a scaffolding protein that can enhance PHLPP-AKT interaction and facilitate PHLPP-mediated dephosphorylation of AKT at Ser473, negatively regulating AKT activation. However, the regulation of FKBP51-PHLPP-AKT pathway remains unclear. Here we report that a deubiquitinase, USP49, is a new regulator of the AKT pathway. Mechanistically, USP49 deubiquitinates and stabilizes FKBP51, which in turn enhances PHLPP's capability to dephosphorylate AKT Furthermore, USP49 inhibited pancreatic cancer cell proliferation and enhanced cellular response to gemcitabine in a FKBP51-AKT-dependent manner. Clinically, decreased expression of USP49 in patients with pancreatic cancer was associated with decreased FKBP51 expression and increased AKT phosphorylation. Overall, our findings establish USP49 as a novel regulator of AKT pathway with a critical role in tumorigenesis and chemo-response in pancreatic cancer.
Collapse
Affiliation(s)
- Kuntian Luo
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Yunhui Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yujiao Yin
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenming Wu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuping Chen
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Clinic School of Medicine, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Qi Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Lizhi Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China .,Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
21
|
Jin WL, Mao XY, Qiu GZ. Targeting Deubiquitinating Enzymes in Glioblastoma Multiforme: Expectations and Challenges. Med Res Rev 2016; 37:627-661. [PMID: 27775833 DOI: 10.1002/med.21421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/06/2016] [Accepted: 09/25/2016] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is regarded as the most common primary intracranial neoplasm. Despite standard treatment with tumor resection and radiochemotherapy, the outcome remains gloomy. It is evident that a combination of oncogenic gain of function and tumor-suppressive loss of function has been attributed to glioma initiation and progression. The ubiquitin-proteasome system is a well-orchestrated system that controls the fate of most proteins by striking a dynamic balance between ubiquitination and deubiquitination of substrates, having a profound influence on the modulation of oncoproteins, tumor suppressors, and cellular signaling pathways. In recent years, deubiquitinating enzymes (DUBs) have emerged as potential anti-cancer targets due to their targeting several key proteins involved in the regulation of tumorigenesis, apoptosis, senescence, and autophagy. This review attempts to summarize recent studies of GBM-associated DUBs, their roles in various cellular processes, and discuss the relation between DUBs deregulation and gliomagenesis, especially how DUBs regulate glioma stem cells pluripotency, microenvironment, and resistance of radiation and chemotherapy through core stem-cell transcriptional factors. We also review recent achievements and progress in the development of potent and selective reversible inhibitors of DUBs, and attempted to find a potential GBM treatment by DUBs intervention.
Collapse
Affiliation(s)
- Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, P. R. China
| | - Guan-Zhong Qiu
- Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan, 250031, P. R. China
| |
Collapse
|
22
|
Sourisseau T, Helissey C, Lefebvre C, Ponsonnailles F, Malka-Mahieu H, Olaussen KA, André F, Vagner S, Soria JC. Translational regulation of the mRNA encoding the ubiquitin peptidase USP1 involved in the DNA damage response as a determinant of Cisplatin resistance. Cell Cycle 2016; 15:295-302. [PMID: 26825230 DOI: 10.1080/15384101.2015.1120918] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cisplatin (cis-diaminedichloroplatin (II), CDDP) is part of the standard therapy for a number of solid tumors including Non-Small-Cell Lung Cancer (NSCLC). The initial response observed is in most cases only transient and tumors quickly become refractory to the drug. Tumor cell resistance to CDDP relies on multiple mechanisms, some of which still remain unknown. In search for such mechanisms, we examined the impact of CDDP on mRNA translation in a sensitive and in a matched resistant NSCLC cell line. We identified a set of genes whose mRNAs are differentially translated in CDDP resistant vs. sensitive cells. The translation of the mRNA encoding the Ubiquitin-Specific Peptidase 1 (USP1), a Ubiquitin peptidase with important function in multiple DNA repair pathways, is inhibited by CDDP exposure in the sensitive cells, but not in the resistant cells. This lack of down-regulation of USP1 expression at the translational level plays a primary role in CDDP resistance since inhibition of USP1 expression or activity by siRNA or the small molecule inhibitor ML323, respectively is sufficient to re-sensitize resistant cells to CDDP. We involved the USP1 mRNA translation as a major mechanism of CDDP resistance in NSCLC cells and suggest that USP1 could be evaluated as a candidate predictive marker and as a therapeutic target to overcome CDDP resistance. More generally, our results indicate that analysis of gene expression at the level of mRNA translation is a useful approach to identify new determinants of CDDP resistance.
Collapse
Affiliation(s)
- Tony Sourisseau
- a Inserm Unit 981, DHU TORINO; Gustave Roussy and University Paris Sud ; Villejuif , France
| | - Carole Helissey
- a Inserm Unit 981, DHU TORINO; Gustave Roussy and University Paris Sud ; Villejuif , France
| | - Céline Lefebvre
- a Inserm Unit 981, DHU TORINO; Gustave Roussy and University Paris Sud ; Villejuif , France
| | - Florence Ponsonnailles
- a Inserm Unit 981, DHU TORINO; Gustave Roussy and University Paris Sud ; Villejuif , France
| | - Hélène Malka-Mahieu
- a Inserm Unit 981, DHU TORINO; Gustave Roussy and University Paris Sud ; Villejuif , France
| | - Ken A Olaussen
- a Inserm Unit 981, DHU TORINO; Gustave Roussy and University Paris Sud ; Villejuif , France
| | - Fabrice André
- a Inserm Unit 981, DHU TORINO; Gustave Roussy and University Paris Sud ; Villejuif , France
| | - Stephan Vagner
- b Institut Curie ; Center de Recherche ; Orsay , France.,c CNRS UMR3348 ; Orsay , France.,d University Paris-Sud XI ; Orsay , France.,e PSL research university ; Paris , France
| | - Jean-Charles Soria
- a Inserm Unit 981, DHU TORINO; Gustave Roussy and University Paris Sud ; Villejuif , France
| |
Collapse
|
23
|
EXPRESSION OF UBIQUITIN SPECIFIC PEPTIDASE GENES IN IRE1 KNOCKDOWN U87 GLIOMA CELLS UPON GLUCOSE DEPRIVATION. BIOTECHNOLOGIA ACTA 2016. [DOI: 10.15407/biotech9.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
McClurg UL, Robson CN. Deubiquitinating enzymes as oncotargets. Oncotarget 2016; 6:9657-68. [PMID: 25962961 PMCID: PMC4496387 DOI: 10.18632/oncotarget.3922] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/08/2015] [Indexed: 12/19/2022] Open
Abstract
Carcinogenesis is a complex process tightly regulated at multiple levels by post-translational modifications. Epigenetics plays a major role in cancer development, all stable changes to the gene expression process that are not a result of a direct change in the DNA code are described as epigenetics. Epigenetic processes are regulated by post-translational modifications including ubiquitination which can directly affect either histones or transcription factors or may target their co-factors and interacting partners exerting an indirect effect. Deubiquitination of these target proteins is equally important and alterations in this pathway can also lead to cancer development, progression and metastasis. Only the correct, unaltered balance between ubiquitination and deubiquitination ensures healthy cellular homeostasis. In this review we focus on the role of deubiquitinating (DUB) enzymes in various aspects of epigenetics including the regulation of transcription factors, histone modifications, DNA damage repair pathways and cell cycle regulation. We discuss the impact of those processes on tumourigenesis and potential therapeutic applications of DUBs for cancer treatment.
Collapse
Affiliation(s)
- Urszula L McClurg
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Craig N Robson
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
25
|
Hou K, Zhu Z, Wang Y, Zhang C, Yu S, Zhu Q, Yan B. Overexpression and Biological Function of Ubiquitin-Specific Protease 42 in Gastric Cancer. PLoS One 2016; 11:e0152997. [PMID: 27030989 PMCID: PMC4816562 DOI: 10.1371/journal.pone.0152997] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/22/2016] [Indexed: 12/25/2022] Open
Abstract
Ubiquitin-specific protease 42 (USP42) is a member of deubiquitinating enzymes (DUBs). The alterations of DUBs are implicated in the pathogenesis of a wide variety of tumors. However, there are few studies on the expression and biological function of USP42 in gastric cancer (GC). Here, the expression levels of USP42 were significantly higher in GC tissues than in non-tumorous tissues. USP42 expression was significantly correlated with tumor size, TNM stage, lymph node metastasis and overall survival of patients with GC. Moreover, USP42 silencing in two GC cell lines, AGS and MKN-45, notably inhibited cell proliferation, but stimulated G1 phase arrest. The proteins promoting cell cycle progression (Cyclin D1, Cyclin E1 and PCNA) were down-regulated in USP42-suppressed cells. Moreover, inhibition of USP42 in GC cells impaired cell invasion via affecting the expression of matrix metalloproteinases (MMPs) and epithelial-mesenchymal transition (EMT) regulators. In conclusion, USP42 overexpression could be a potential prognostic marker for GC, regulate the survival and invasive properties of GC, and may represent a novel therapeutic molecular target for this tumor.
Collapse
Affiliation(s)
- Kun Hou
- Department of General Surgery, Shanghai Pudong District People’s Hospital, Shanghai 201299, China
| | - Zhenya Zhu
- Department of General Surgery, Shanghai Pudong District People’s Hospital, Shanghai 201299, China
| | - Yong Wang
- Department of General Surgery, Punan Hospital, Pudong New District, Shanghai 200125, China
| | - Chunhui Zhang
- Department of General Surgery, Shanghai Pudong District People’s Hospital, Shanghai 201299, China
| | - Shiyong Yu
- Department of General Surgery, Shanghai Pudong District People’s Hospital, Shanghai 201299, China
| | - Qi Zhu
- Department of General Surgery, Shanghai Pudong District People’s Hospital, Shanghai 201299, China
| | - Bo Yan
- Department of General Surgery, Shanghai Pudong District People’s Hospital, Shanghai 201299, China
- * E-mail:
| |
Collapse
|
26
|
Hribal ML, Mancuso E, Spiga R, Mannino GC, Fiorentino TV, Andreozzi F, Sesti G. PHLPP phosphatases as a therapeutic target in insulin resistance-related diseases. Expert Opin Ther Targets 2016; 20:663-75. [PMID: 26652182 DOI: 10.1517/14728222.2016.1130822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Pleckstrin homology domain leucine-rich repeat protein phosphatases (PHLPPs), originally identified as Akt kinase hydrophobic motif specific phosphatases, have subsequently been shown to regulate several molecules recurring within the insulin signaling pathway. This observation suggests that PHLPP phosphatases may have a clinically relevant role in the pathogenesis of insulin resistance-related diseases and may thus represent suitable targets for the treatment of these conditions. AREAS COVERED The literature pertaining to PHLPPs substrates is reviewed herein, along with information on the molecular players involved in regulating the activity and expression of PHLPP phosphatases. In the present review, knowledge of genetic variants in the genes that encode for PHLPP isozymes and the surrounding regulatory regions is also summarized. In addition, data from the studies addressing the role of PHLPPs in insulin resistance-related disorders and from those investigating the possibility to manipulate these phosphatases for therapeutic purposes are presented. EXPERT OPINION A number of issues should be resolved before PHLPPs are pursued as therapeutic targets including: the mechanisms regulating the specificity of PHLPP isozymes; the possibility of differentially regulating PHLPP family members and the possible impact of PHLPPs modulation on the risk of cancer.
Collapse
Affiliation(s)
- Marta Letizia Hribal
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Elettra Mancuso
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Rosangela Spiga
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Gaia Chiara Mannino
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Teresa Vanessa Fiorentino
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Francesco Andreozzi
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| | - Giorgio Sesti
- a Department of Medical and Surgical Sciences , University Magna Græcia of Catanzaro , Catanzaro , Italy
| |
Collapse
|
27
|
McClurg UL, Summerscales EE, Harle VJ, Gaughan L, Robson CN. Deubiquitinating enzyme Usp12 regulates the interaction between the androgen receptor and the Akt pathway. Oncotarget 2015; 5:7081-92. [PMID: 25216524 PMCID: PMC4196185 DOI: 10.18632/oncotarget.2162] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The androgen receptor (AR) is a transcription factor involved in prostate cell growth, homeostasis and transformation regulated by post-translational modifications, including ubiquitination. We have recently reported that AR is deubiquitinated and stabilised by Usp12 resulting in increased transcriptional activity. In this study we have investigated the relationship between Usp12, PHLPP and PHLPPL tumour suppressors in the regulation of AR transcriptional activity in prostate cancer (PC). PHLPP and PHLPPL are pro-apoptotic phosphatases that dephosphorylate and subsequently deactivate Akt. Phosphorylated Akt is reported to deactivate AR in PC by phosphorylation at Ser213 and Ser791 leading to ligand dissociation and AR degradation. In contrast, PHLPP- and PHLPPL-mediated dephosphorylation and inactivation of Akt elevates the levels of active AR. In this report we demonstrate that Usp12, in complex with Uaf-1 and WDR20, directly deubiquitinates and stabilises the Akt phosphatases PHLPP and PHLPPL resulting in decreased levels of active pAkt. Decreased pAkt in turn down-regulates AR Ser213 phosphorylation resulting in enhanced receptor stability and transcriptional activity. Additionally, we observe that depleting Usp12 sensitises PC cells to therapies aimed at Akt inhibition irrespectively of their sensitivity to androgen ablation therapy. We propose that Usp12 inhibition could offer a therapeutic alternative for castration resistant prostate cancer.
Collapse
Affiliation(s)
- Urszula L McClurg
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Emma E Summerscales
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Victoria J Harle
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Luke Gaughan
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Craig N Robson
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
28
|
Artificial Recruitment of UAF1-USP Complexes by a PHLPP1-E1 Chimeric Helicase Enhances Human Papillomavirus DNA Replication. J Virol 2015; 89:6227-39. [PMID: 25833051 DOI: 10.1128/jvi.00560-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/18/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The E1 helicase from anogenital human papillomavirus (HPV) types interacts with the cellular WD repeat-containing protein UAF1 in complex with the deubiquitinating enzyme USP1, USP12, or USP46. This interaction stimulates viral DNA replication and is required for maintenance of the viral episome in keratinocytes. E1 associates with UAF1 through a short UAF1-binding site (UBS) located within the N-terminal 40 residues of the protein. Here, we investigated if the E1 UBS could be replaced by the analogous domain from an unrelated protein, the pleckstrin homology domain and leucine-rich repeat protein phosphatase 1 (PHLPP1). We found that PHLPP1 and E1 interact with UAF1 in a mutually exclusive manner and mapped the minimal PHLPP1 UBS (PUBS) to a 100-amino-acid region sufficient for assembly into UAF1-USP complexes. Similarly to the E1 UBS, overexpression of PUBS in trans inhibited HPV DNA replication, albeit less efficiently. Characterization of a PHLPP1-E1 chimeric helicase revealed that PUBS could partially substitute for the E1 UBS in enhancing viral DNA replication and that the stimulatory effect of PUBS likely involves recruitment of UAF1-USP complexes, as it was abolished by mutations that weaken UAF1-binding and by overexpression of catalytically inactive USPs. Although functionally similar to the E1 UBS, PUBS is larger in size and requires both the WD repeat region and C-terminal ubiquitin-like domain of UAF1 for interaction, in contrast to E1, which does not contact the latter. Overall, this comparison of two heterologous UBSs indicates that these domains function as transferable protein interaction modules and provide further evidence that the association of E1 with UAF1-containing deubiquitinating complexes stimulates HPV DNA replication. IMPORTANCE The E1 protein from anogenital HPV types interacts with the UAF1-associated deubiquitinating enzymes USP1, USP12, and USP46 to stimulate replication of the viral genome. Little is known about the molecular nature of the E1-UAF1 interaction and, more generally, how UAF1-USP complexes recognize their substrate proteins. To address this question, we characterized the UAF1-binding site (UBS) of PHLPP1, a protein unrelated to E1. Using a PHLPP1-E1 chimeric helicase, we show that the PHLPP1 UBS (PUBS) can partially substitute for the E1 UBS in stimulating HPV DNA replication. This stimulation required conserved sequences in PUBS that meditate its interaction with UAF1, including a motif common to the E1 UBS. These results indicate that UAF1-binding sequences function as transferable protein interaction modules and provide further evidence that UAF1-USP complexes stimulate HPV DNA replication.
Collapse
|
29
|
Cell death and deubiquitinases: perspectives in cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:435197. [PMID: 25121098 PMCID: PMC4119901 DOI: 10.1155/2014/435197] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 12/19/2022]
Abstract
The process of cell death has important physiological implications. At the organism level it is mostly involved in maintenance of tissue homeostasis. At the cellular level, the strategies of cell death may be categorized as either suicide or sabotage. The mere fact that many of these processes are programmed and that these are often deregulated in pathological conditions is seed to thought. The various players that are involved in these pathways are highly regulated. One of the modes of regulation is via post-translational modifications such as ubiquitination and deubiquitination. In this review, we have first dealt with the different modes and pathways involved in cell death and then we have focused on the regulation of several proteins in these signaling cascades by the different deubiquitinating enzymes, in the perspective of cancer. The study of deubiquitinases is currently in a rather nascent stage with limited knowledge both in vitro and in vivo, but the emerging roles of the deubiquitinases in various processes and their specificity have implicated them as potential targets from the therapeutic point of view. This review throws light on another aspect of cancer therapeutics by targeting the deubiquitinating enzymes.
Collapse
|
30
|
Gangula NR, Maddika S. WD repeat protein WDR48 in complex with deubiquitinase USP12 suppresses Akt-dependent cell survival signaling by stabilizing PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1). J Biol Chem 2013; 288:34545-54. [PMID: 24145035 PMCID: PMC3843068 DOI: 10.1074/jbc.m113.503383] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PHLPP1 (PH domain leucine-rich repeat protein phosphatase 1) is a protein-serine/threonine phosphatase and a negative regulator of the PI3-kinase/Akt pathway. Although its function as a suppressor of tumor cell growth has been established, the mechanism of its regulation is not completely understood. In this study, by utilizing the tandem affinity purification approach we have identified WDR48 and USP12 as novel PHLPP1-associated proteins. The WDR48·USP12 complex deubiquitinates PHLPP1 and thereby enhances its protein stability. Similar to PHLPP1 function, WDR48 and USP12 negatively regulate Akt activation and thus promote cellular apoptosis. Functionally, we show that WDR48 and USP12 suppress proliferation of tumor cells. Importantly, we found a WDR48 somatic mutation (L580F) that is defective in stabilizing PHLPP1 in colorectal cancers, supporting a WDR48 role in tumor suppression. Together, our results reveal WDR48 and USP12 as novel PHLPP1 regulators and potential suppressors of tumor cell survival.
Collapse
Affiliation(s)
- Narmadha Reddy Gangula
- From the Laboratory of Cell Death and Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India
| | | |
Collapse
|
31
|
Wang Z, Shu H, Wang Z, Li G, Cui J, Wu H, Cai S, He W, He Y, Zhan W. Loss expression of PHLPP1 correlates with lymph node metastasis and exhibits a poor prognosis in patients with gastric cancer. J Surg Oncol 2013; 108:427-32. [PMID: 24037758 DOI: 10.1002/jso.23419] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/31/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Zhixiong Wang
- Department of Gastrointestinal Surgery and Centre of Gastric Cancer; First Affiliated Hospital of Sun Yat-sen University; Guangzhou Guangdong Province People's Republic of China
| | - Haihua Shu
- Department of Anesthesiology; First Affiliated Hospital of Sun Yat-sen University; Guangzhou Guangdong Province People's Republic of China
| | - Zhao Wang
- Department of Gastrointestinal Surgery and Centre of Gastric Cancer; First Affiliated Hospital of Sun Yat-sen University; Guangzhou Guangdong Province People's Republic of China
| | - Guanghua Li
- Department of Gastrointestinal Surgery and Centre of Gastric Cancer; First Affiliated Hospital of Sun Yat-sen University; Guangzhou Guangdong Province People's Republic of China
| | - Ji Cui
- Department of Gastrointestinal Surgery and Centre of Gastric Cancer; First Affiliated Hospital of Sun Yat-sen University; Guangzhou Guangdong Province People's Republic of China
| | - Hui Wu
- Department of Gastrointestinal Surgery and Centre of Gastric Cancer; First Affiliated Hospital of Sun Yat-sen University; Guangzhou Guangdong Province People's Republic of China
| | - Shirong Cai
- Department of Gastrointestinal Surgery and Centre of Gastric Cancer; First Affiliated Hospital of Sun Yat-sen University; Guangzhou Guangdong Province People's Republic of China
| | - Weiling He
- Department of Gastrointestinal Surgery and Centre of Gastric Cancer; First Affiliated Hospital of Sun Yat-sen University; Guangzhou Guangdong Province People's Republic of China
| | - Yulong He
- Department of Gastrointestinal Surgery and Centre of Gastric Cancer; First Affiliated Hospital of Sun Yat-sen University; Guangzhou Guangdong Province People's Republic of China
| | - Wenhua Zhan
- Department of Gastrointestinal Surgery and Centre of Gastric Cancer; First Affiliated Hospital of Sun Yat-sen University; Guangzhou Guangdong Province People's Republic of China
| |
Collapse
|
32
|
García-Santisteban I, Peters GJ, Giovannetti E, Rodríguez JA. USP1 deubiquitinase: cellular functions, regulatory mechanisms and emerging potential as target in cancer therapy. Mol Cancer 2013; 12:91. [PMID: 23937906 PMCID: PMC3750636 DOI: 10.1186/1476-4598-12-91] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/30/2013] [Indexed: 01/12/2023] Open
Abstract
Reversible protein ubiquitination is emerging as a key process for maintaining cell homeostasis, and the enzymes that participate in this process, in particular E3 ubiquitin ligases and deubiquitinases (DUBs), are increasingly being regarded as candidates for drug discovery. Human DUBs are a group of approximately 100 proteins, whose cellular functions and regulatory mechanisms remain, with some exceptions, poorly characterized. One of the best-characterized human DUBs is ubiquitin-specific protease 1 (USP1), which plays an important role in the cellular response to DNA damage. USP1 levels, localization and activity are modulated through several mechanisms, including protein-protein interactions, autocleavage/degradation and phosphorylation, ensuring that USP1 function is carried out in a properly regulated spatio-temporal manner. Importantly, USP1 expression is deregulated in certain types of human cancer, suggesting that USP1 could represent a valid target in cancer therapy. This view has gained recent support with the finding that USP1 inhibition may contribute to revert cisplatin resistance in an in vitro model of non-small cell lung cancer (NSCLC). Here, we describe the current knowledge on the cellular functions and regulatory mechanisms of USP1. We also summarize USP1 alterations found in cancer, combining data from the literature and public databases with our own data. Finally, we discuss the emerging potential of USP1 as a target, integrating published data with our novel findings on the effects of the USP1 inhibitor pimozide in combination with cisplatin in NSCLC cells.
Collapse
Affiliation(s)
- Iraia García-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jose Antonio Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|