1
|
Zhang MG, Gallo RA, Tan CH, Camacho M, Fasih-Ahmad S, Moeyersoms AHM, Sayegh Y, Dubovy SR, Pelaez D, Rong AJ. Single-Cell RNA Profiling of Ocular Adnexal Sebaceous Carcinoma Reveals a Complex Tumor Microenvironment and Identifies New Biomarkers. Am J Ophthalmol 2025; 270:8-18. [PMID: 39393421 PMCID: PMC11735305 DOI: 10.1016/j.ajo.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
PURPOSE Ocular adnexal sebaceous carcinoma (OaSC) is an aggressive malignancy that often necessitates orbital exenteration. Its tumor composition and transcriptional profile remain largely unknown, which poses a significant barrier to medical advances. Here, we report the first in-depth transcriptomic analysis of OaSC at the single-cell resolution and discern mechanisms underlying cancer progression for the discovery of potential globe-sparing immunotherapies, targeted therapies, and biomarkers to guide clinical management. DESIGN Laboratory investigation with a retrospective observational case series. METHODS Single-cell RNA sequencing was performed on six patient specimens: three primary tumors, two tumors with pagetoid spread, and a normal tarsus sample. Cellular components were identified via gene signatures. Molecular pathways underlying tumorigenesis and pagetoid spread were discerned via gene ontology analysis of the differentially expressed genes between specimens. CALML5 immunohistochemistry was performed on an archival cohort of OaSC, squamous cell carcinoma, ocular surface squamous neoplasia (OSSN), and basal cell carcinoma cases. RESULTS Analysis of 29,219 cells from OaSC specimens revealed tumor, immune, and stromal cells. Tumor-infiltrating immune cells include a diversity of cell types, including exhausted T-cell populations. In primary OaSC tumors, mitotic nuclear division and oxidative phosphorylation pathways are upregulated, while lipid biosynthesis and metabolism pathways are downregulated. Epithelial tissue migration pathways are upregulated in tumor cells undergoing pagetoid spread. Single-cell RNA sequencing analyses also revealed that CALML5 is upregulated in OaSC tumor cells. Diffuse nuclear and cytoplasmic CALML5 staining was present in 28 of 28 (100%) OaSC cases. Diffuse nuclear and membranous CALML5 staining was present in 5 of 25 (20%) squamous cell carcinoma and OSSN cases, while diffuse nuclear staining was present in 1 of 12 (8%) basal cell carcinoma cases. CONCLUSIONS This study reveals a complex OaSC tumor microenvironment and confirms that the CALML5 immunohistochemical stain is a sensitive diagnostic marker.
Collapse
Affiliation(s)
- Michelle G Zhang
- From the Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center (M.G.Z., R.A.G., A.H.M., D.P., and A.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Sylvester Comprehensive Cancer Center (M.G.Z., R.A.G., D.P., and A.J.R.), University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ryan A Gallo
- From the Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center (M.G.Z., R.A.G., A.H.M., D.P., and A.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Sylvester Comprehensive Cancer Center (M.G.Z., R.A.G., D.P., and A.J.R.), University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Charissa H Tan
- Department of Ophthalmology (C.H.T., M.C., S.F.A., Y.S., and S.R.D.), Florida Lions Ocular Pathology Laboratory, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Matthew Camacho
- Department of Ophthalmology (C.H.T., M.C., S.F.A., Y.S., and S.R.D.), Florida Lions Ocular Pathology Laboratory, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sohaib Fasih-Ahmad
- Department of Ophthalmology (C.H.T., M.C., S.F.A., Y.S., and S.R.D.), Florida Lions Ocular Pathology Laboratory, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Acadia H M Moeyersoms
- From the Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center (M.G.Z., R.A.G., A.H.M., D.P., and A.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Sylvester Comprehensive Cancer Center (M.G.Z., R.A.G., D.P., and A.J.R.), University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yoseph Sayegh
- Department of Ophthalmology (C.H.T., M.C., S.F.A., Y.S., and S.R.D.), Florida Lions Ocular Pathology Laboratory, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sander R Dubovy
- Department of Ophthalmology (C.H.T., M.C., S.F.A., Y.S., and S.R.D.), Florida Lions Ocular Pathology Laboratory, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Daniel Pelaez
- From the Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center (M.G.Z., R.A.G., A.H.M., D.P., and A.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Sylvester Comprehensive Cancer Center (M.G.Z., R.A.G., D.P., and A.J.R.), University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Andrew J Rong
- From the Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center (M.G.Z., R.A.G., A.H.M., D.P., and A.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Sylvester Comprehensive Cancer Center (M.G.Z., R.A.G., D.P., and A.J.R.), University of Miami Miller School of Medicine, Miami, Florida, USA; Division of Oculofacial Plastic, Reconstructive, and Orbital Surgery (A.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
2
|
Wahdan-Alaswad RS, Edgerton SM, Kim HM, Tan AC, Haugen BR, Liu B, Thor AD. Thyroid hormone enhances estrogen-mediated proliferation and cell cycle regulatory pathways in steroid receptor-positive breast Cancer. Cell Cycle 2023:1-20. [PMID: 37723865 DOI: 10.1080/15384101.2023.2249702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/15/2023] [Indexed: 09/20/2023] Open
Abstract
Estrogen receptor (ER) α expression and associated signaling is a major driver of over two-thirds of all breast cancers (BC). ER targeting strategies are typically used as a first-line therapy in patients with steroid receptor positive (SR+) disease. Secondary resistance to anti-estrogenic agents may occur with clonal expansion and disease progression. Mechanisms underlying hormone resistance are an expanding field of significant translational importance. Cross-talk with other nuclear hormones, receptors, and signaling pathways, including thyroid hormones (TH) and their receptors (THRs), have been shown to promote endocrine therapy resistance in some studies. We have shown that TH replacement therapy (THRT) was independently and significantly associated with higher rates of relapse and mortality in SR positive (+), node-negative (LN-) BC patients, whereas it showed no association with outcomes in SR negative (-) patients. LN-, SR+ patients receiving THRT and tamoxifen had the worst outcomes, suggesting a pro-carcinogenic interaction that significantly and independently shortened survival and increased mortality. Using in vivo and in vitro models, we previously showed hormonal cross-talk, altered gene signaling, target gene activation, and resistance to tamoxifen in the presence of TH. In this report, we show TH ± E2 ± tamoxifen inhibits cell cycle control signaling, reduces apoptosis, and enhances cell proliferation, tumor growth, tamoxifen resistance, and clonal expansion. Mechanistically these changes involve numerous genes and pathways, including critical cell cycle regulatory proteins and genes identified using various molecular methods. These studies facilitate a greater mechanistic understanding of the biological and molecular impact of TH on SR+ BC.
Collapse
Affiliation(s)
- Reema S Wahdan-Alaswad
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
| | - Susan M Edgerton
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
| | - Hyun Min Kim
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Aik Choon Tan
- Department of Oncological Sciences and Biomedical Informatics, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Bryan R Haugen
- University of Colorado Cancer Center, Aurora, CO, USA
- Division of Endocrinology, Metabolism, & Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Bolin Liu
- Department of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA
| | - Ann D Thor
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
| |
Collapse
|
3
|
Kanamori K, Suina K, Shukuya T, Takahashi F, Hayashi T, Hara K, Saito T, Mitsuishi Y, Shimamura SS, Winardi W, Tajima K, Ko R, Mimori T, Asao T, Itoh M, Kawaji H, Suehara Y, Takamochi K, Suzuki K, Takahashi K. CALML5 is a novel diagnostic marker for differentiating thymic squamous cell carcinoma from type B3 thymoma. Thorac Cancer 2023; 14:1089-1097. [PMID: 36924358 PMCID: PMC10125782 DOI: 10.1111/1759-7714.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Thymic squamous cell carcinoma and type B3 thymoma are primary neoplasms of the anterior mediastinum that are sometimes difficult to differentiate from one another histologically. However, only a few immunohistochemical markers are available for the differential diagnosis. The purpose of this study was to discover a novel marker for differentiating between thymic squamous cell carcinoma and type B3 thymoma. METHODS We used histological samples of thymic carcinomas (n = 26) and type B3 thymomas (n = 38) which were resected between 1986 and 2017. To search for candidates of differential markers, gene expression levels were evaluated in samples using promoter analysis by cap analysis of gene expression (CAGE) sequencing. RESULTS Promoter level expression of CALML5 genes was significantly higher in thymic carcinomas than in type B3 thymomas. We further validated the results of the CAGE analysis in all 26 thymic carcinomas and 38 type B3 thymomas by immunohistochemistry (IHC). CALML5 was strongly expressed in the cytoplasm in 19 of 26 cases with thymic carcinoma, whereas positivity at the protein level was shown in two of 38 type B3 thymomas. Thus, the sensitivity (73.1%) and specificity (94.7%) of CALML5 as markers for immunohistochemical diagnosis of thymic carcinoma were extremely high. CONCLUSION We identified CALML5 as a potential marker for differentiating thymic squamous cell carcinoma from type B3 thymoma. It is assumed that future clinical use of CALML5 may improve the diagnostic accuracy of differentiating between these two diseases.
Collapse
Affiliation(s)
- Koichiro Kanamori
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Kentaro Suina
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Takehito Shukuya
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Kieko Hara
- Department of Human Pathology, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Yoichiro Mitsuishi
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Shoko Sonobe Shimamura
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Wira Winardi
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Ken Tajima
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Ryo Ko
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Tomoyasu Mimori
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Tetsuhiko Asao
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Masayoshi Itoh
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Saitama, Japan.,RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hideya Kawaji
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Saitama, Japan.,Preventive Medicine and Applied Genomics Unit, RIKEN Advanced Center for Computing and Communication, Yokohama, Japan.,Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Orthopedic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Kenji Suzuki
- Department of General Thoracic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan.,Research Institute for Diseases of Old Ages, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Bu J, Zhang Y, Niu N, Bi K, Sun L, Qiao X, Wang Y, Zhang Y, Jiang X, Wang D, Ma Q, Li H, Liu C. Dalpiciclib partially abrogates ER signaling activation induced by pyrotinib in HER2 +HR + breast cancer. eLife 2023; 12:85246. [PMID: 36602226 PMCID: PMC9822241 DOI: 10.7554/elife.85246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Recent evidences from clinical trials (NCT04486911) revealed that the combination of pyrotinib, letrozole, and dalpiciclib exerted optimistic therapeutic effect in treating HER2+HR+ breast cancer; however, the underlying molecular mechanism remained elusive. Through the drug sensitivity test, the drug combination efficacy of pyrotinib, tamoxifen, and dalpiciclib to BT474 cells was tested. The underlying molecular mechanisms were investigated using immunofluorescence, Western blot analysis, immunohistochemical staining, and cell cycle analysis. Potential risk factor that may indicate the responsiveness to drug treatment in HER2+/HR+ breast cancer was identified using RNA-sequence and evaluated using immunohistochemical staining and in vivo drug susceptibility test. We found that pyrotinib combined with dalpiciclib exerted better cytotoxic efficacy than pyrotinib combined with tamoxifen in BT474 cells. Degradation of HER2 could enhance ER nuclear transportation, activating ER signaling pathway in BT474 cells, whereas dalpiciclib could partially abrogate this process. This may be the underlying mechanism by which combination of pyrotinib, tamoxifen, and dalpiciclib exerted best cytotoxic effect. Furthermore, CALML5 was revealed to be a risk factor in the treatment of HER2+/HR+ breast cancer and the usage of dalpiciclib might overcome the drug resistance to pyrotinib + tamoxifen due to CALML5 expression. Our study provided evidence that the usage of dalpiciclib in the treatment of HER2+/HR+ breast cancer could partially abrogate the estrogen signaling pathway activation caused by anti-HER2 therapy and revealed that CALML5 could serve as a risk factor in the treatment of HER2+/HR+ breast cancer.
Collapse
Affiliation(s)
- Jiawen Bu
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Yixiao Zhang
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina,Department of Urology Surgery, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Nan Niu
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Kewei Bi
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Lisha Sun
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Xinbo Qiao
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Yimin Wang
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Yinan Zhang
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Xiaofan Jiang
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Dan Wang
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Qingtian Ma
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Huajun Li
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co LtdShanghaiChina
| | - Caigang Liu
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
5
|
Role of K63-linked ubiquitination in cancer. Cell Death Dis 2022; 8:410. [PMID: 36202787 PMCID: PMC9537175 DOI: 10.1038/s41420-022-01204-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022]
Abstract
Ubiquitination is a critical type of post-translational modifications, of which K63-linked ubiquitination regulates interaction, translocation, and activation of proteins. In recent years, emerging evidence suggest involvement of K63-linked ubiquitination in multiple signaling pathways and various human diseases including cancer. Increasing number of studies indicated that K63-linked ubiquitination controls initiation, development, invasion, metastasis, and therapy of diverse cancers. Here, we summarized molecular mechanisms of K63-linked ubiquitination dictating different biological activities of tumor and highlighted novel opportunities for future therapy targeting certain regulation of K63-linked ubiquitination in tumor.
Collapse
|
6
|
Wang X, Ye F, Xiong M, Xiu B, Chi W, Zhang Q, Xue J, Chen M, Zhang L, Wu J, Chi Y. Cross-talk of four types of RNA modification proteins with adenosine reveals the landscape of multivariate prognostic patterns in breast cancer. Front Genet 2022; 13:943378. [PMID: 36118888 PMCID: PMC9479131 DOI: 10.3389/fgene.2022.943378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Breast cancer (BC) is the most common malignant tumour, and its heterogeneity is one of its major characteristics. N6-methyladenosine (m6A), N1-methyladenosine (m1A), alternative polyadenylation (APA), and adenosine-to-inosine (A-to-I) RNA editing constitute the four most common adenosine-associated RNA modifications and represent the most typical and critical forms of epigenetic regulation contributing to the immunoinflammatory response, tumorigenesis and tumour heterogeneity. However, the cross-talk and potential combined profiles of these RNA-modified proteins (RMPs) in multivariate prognostic patterns of BC remain unknown.Methods: A total of 48 published RMPs were analysed and found to display significant expression alterations and genomic mutation rates between tumour and normal tissues in the TCGA-BRCA cohort. Data from 4188 BC patients with clinical outcomes were downloaded from the Gene Expression Omnibus (GEO), the Cancer Genome Atlas (TCGA), and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), normalized and merged into one cohort. The prognostic value and interconnections of these RMPs were also studied. The four prognosis-related genes (PRGs) with the greatest prognostic value were then selected to construct diverse RMP-associated prognostic models through univariate Cox (uniCox) regression analysis, differential expression analysis, Least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox (multiCox) regression. Alterations in biological functional pathways, genomic mutations, immune infiltrations, RNAss scores and drug sensitivities among different models, as well as their prognostic value, were then explored.Results: Utilizing a large number of samples and a comprehensive set of genes contributing to adenosine-associated RNA modification, our study revealed the joint potential bio-functions and underlying features of these diverse RMPs and provided effective models (PRG clusters, gene clusters and the risk model) for predicting the clinical outcomes of BC. The individuals with higher risk scores showed poor prognoses, cell cycle function enrichment, upregulation of stemness scores, higher tumour mutation burdens (TMBs), immune activation and specific drug resistance. This work highlights the significance of comprehensively examining post-transcriptional RNA modification genes.Conclusion: Here, we designed and verified an advanced forecasting model to reveal the underlying links between BC and RMPs and precisely predict the clinical outcomes of multivariate prognostic patterns for individuals.
Collapse
Affiliation(s)
- Xuliren Wang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Xiong
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Bingqiu Xiu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weiru Chi
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qi Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jingyan Xue
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ming Chen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Liyi Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jiong Wu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Collaborative Innovation Center for Cancer Medicine, Shanghai, China
- *Correspondence: Jiong Wu, ; Yayun Chi,
| | - Yayun Chi
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- *Correspondence: Jiong Wu, ; Yayun Chi,
| |
Collapse
|
7
|
Bagaria J, Kim KO, Bagyinszky E, An SSA, Baek JH. Discriminating Potential Genetic Markers for Complete Response and Non-Complete Response Patients to Neoadjuvant Chemotherapy with Locally Advanced Rectal Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074008. [PMID: 35409691 PMCID: PMC8997875 DOI: 10.3390/ijerph19074008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
Background: Neoadjuvant chemoradiotherapy (nCRT) prior to surgery is considered standard therapy for locally advanced rectal cancer. Unfortunately, most patients with rectal cancer are resistant to radiotherapy. This might be a genetic cause. The role of certain rectal cancer-causing genes has not been completely elucidated. This study aims to investigate the genes responsible for locally advanced rectal cancer patients not reacting to radiotherapy. Methods: Whole exome sequencing of the DNA samples was performed on the samples. Bioinformatic analysis on the subjects was established. Individual genetic information was screened to identify differently expressed genes that more frequently appeared in non-complete response (NCR) compared to complete response (CR) patients after nCRT. All variations were verified by Sanger sequencing. Results: Genotyping information and pathway analyses of the samples indicated genes such as FLCN, CALML5, and ANTXR1 to be commonly mutated in CR group, whereas genes such as GALNTL14, CNKSR1, ACD, and CUL3 were more commonly mutated in the NCR group. Chi-square test revealed some significant variants (<0.05) such as rs3744124 (FLCN), rs28365986 (ANTXR1), rs10904516 (CALML5), rs3738952 (CUL3), rs13394 and rs2293013 (PIH1D1), rs2274531 (GPA33), rs4963048 (BRSK2), rs17883366 (IL3RA), rs2297575 (PSMD5), rs2288101 (GALNT14), and rs11954652 (DCTN4). Conclusion: Identifying an array of genes that separate NCRs from CRs would lead to finding genetic biomarkers for early detection of rectal cancer patients that are resistant to nCRT. A further investigation to validate the significance of genetic biomarkers to segregate NCRs from CRs should be performed with a larger CRC dataset. Protein expression levels, as well as transcriptomic analysis, would also help us understand the mechanism of how these genes could play a role in preventing radiation therapy to patients. This would be essential to prevent redundant radiation therapy.
Collapse
Affiliation(s)
- Jaya Bagaria
- Department of Bionano Technology, Gachon University, Seongnam-si 13120, Korea; (J.B.); (E.B.)
| | - Kyung-Ok Kim
- Gachon Medical Research Institute, Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Eva Bagyinszky
- Department of Bionano Technology, Gachon University, Seongnam-si 13120, Korea; (J.B.); (E.B.)
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam-si 13120, Korea; (J.B.); (E.B.)
- Correspondence: (S.S.A.A.); (J.-H.B.); Tel.: +82-10-4344-9633 (S.S.A.A.); +82-10-5248-6656 (J.-H.B.)
| | - Jeong-Heum Baek
- Division of Colon and Rectal Surgery, Department of Surgery, Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: (S.S.A.A.); (J.-H.B.); Tel.: +82-10-4344-9633 (S.S.A.A.); +82-10-5248-6656 (J.-H.B.)
| |
Collapse
|
8
|
Meyer FAH, Kraus D, Glassmann A, Veit N, Winter J, Probstmeier R. The Presence of Yin-Yang Effects in the Migration Pattern of Staurosporine-Treated Single versus Collective Breast Carcinoma Cells. Int J Mol Sci 2021; 22:ijms222111961. [PMID: 34769389 PMCID: PMC8584475 DOI: 10.3390/ijms222111961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/23/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Staurosporine-dependent single and collective cell migration patterns of breast carcinoma cells MDA-MB-231, MCF-7, and SK-BR-3 were analysed to characterise the presence of drug-dependent migration promoting and inhibiting yin-yang effects. METHODS Migration patterns of various breast cancer cells after staurosporine treatment were investigated using Western blot, cell toxicity assays, single and collective cell migration assays, and video time-lapse. Statistical analyses were performed with Kruskal-Wallis and Fligner-Killeen tests. RESULTS Application of staurosporine induced the migration of single MCF-7 cells but inhibited collective cell migration. With the exception of low-density SK-BR-3 cells, staurosporine induced the generation of immobile flattened giant cells. Video time-lapse analysis revealed that within the borderline of cell collectives, staurosporine reduced the velocity of individual MDA-MB-231 and SK-BR-3, but not of MCF-7 cells. In individual MCF-7 cells, mainly the directionality of migration became disturbed, which led to an increased migration rate parallel to the borderline, and hereby to an inhibition of the migration of the cell collective as a total. Moreover, the application of staurosporine led to a transient activation of ERK1/2 in all cell lines. CONCLUSION Dependent on the context (single versus collective cells), a drug may induce opposite effects in the same cell line.
Collapse
Affiliation(s)
- Frank A. H. Meyer
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University Hospital, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (F.A.H.M.); (N.V.); (R.P.)
| | - Dominik Kraus
- Department of Prosthodontics, Preclinical Education, and Material Sciences, University Hospital, Medical Faculty, University of Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany;
| | - Alexander Glassmann
- Life Science Inkubator, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany;
- Department of Immunology and Cell Biology, University of Applied Science Bonn-Rhein-Sieg, Campus Rheinbach, von-Liebig-Str. 20, 53359 Rheinbach, Germany
| | - Nadine Veit
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University Hospital, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (F.A.H.M.); (N.V.); (R.P.)
| | - Jochen Winter
- Oral Cell Biology Group, Department of Periodontology, Operative and Preventive Dentistry, University Hospital, Medical Faculty, University of Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany
- Correspondence: ; Tel.: +49-228-287-22011
| | - Rainer Probstmeier
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University Hospital, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (F.A.H.M.); (N.V.); (R.P.)
| |
Collapse
|
9
|
Zhou X, Cai X. Joint eQTL mapping and inference of gene regulatory network improves power of detecting both cis- and trans-eQTLs. Bioinformatics 2021; 38:149-156. [PMID: 34487140 PMCID: PMC8696109 DOI: 10.1093/bioinformatics/btab609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Genetic variations of expression quantitative trait loci (eQTLs) play a critical role in influencing complex traits and diseases development. Two main factors that affect the statistical power of detecting eQTLs are: (i) relatively small size of samples available, and (ii) heavy burden of multiple testing due to a very large number of variants to be tested. The later issue is particularly severe when one tries to identify trans-eQTLs that are far away from the genes they influence. If one can exploit co-expressed genes jointly in eQTL-mapping, effective sample size can be increased. Furthermore, using the structure of the gene regulatory network (GRN) may help to identify trans-eQTLs without increasing multiple testing burden. RESULTS In this article, we use the structure equation model (SEM) to model both GRN and effect of eQTLs on gene expression, and then develop a novel algorithm, named sparse SEM for eQTL mapping (SSEMQ), to conduct joint eQTL mapping and GRN inference. The SEM can exploit co-expressed genes jointly in eQTL mapping and also use GRN to determine trans-eQTLs. Computer simulations demonstrate that our SSEMQ significantly outperforms nine existing eQTL mapping methods. SSEMQ is further used to analyze two real datasets of human breast and whole blood tissues, yielding a number of cis- and trans-eQTLs. AVAILABILITY AND IMPLEMENTATION R package ssemQr is available at https://github.com/Ivis4ml/ssemQr.git. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL 33146, USA
| | | |
Collapse
|
10
|
Wirsing AM, Bjerkli IH, Steigen SE, Rikardsen O, Magnussen SN, Hegge B, Seppola M, Uhlin-Hansen L, Hadler-Olsen E. Validation of Selected Head and Neck Cancer Prognostic Markers from the Pathology Atlas in an Oral Tongue Cancer Cohort. Cancers (Basel) 2021; 13:cancers13102387. [PMID: 34069237 PMCID: PMC8156750 DOI: 10.3390/cancers13102387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
The Pathology Atlas is an open-access database that reports the prognostic value of protein-coding transcripts in 17 cancers, including head and neck cancer. However, cancers of the various head and neck anatomical sites are specific biological entities. Thus, the aim of the present study was to validate promising prognostic markers for head and neck cancer reported in the Pathology Atlas in oral tongue squamous cell carcinoma (OTSCC). We selected three promising markers from the Pathology Atlas (CALML5, CD59, LIMA1), and analyzed their prognostic value in a Norwegian OTSCC cohort comprising 121 patients. We correlated target protein and mRNA expression in formalin-fixed, paraffin-embedded cancer tissue to five-year disease-specific survival (DSS) in univariate and multivariate analyses. Protein expression of CALML5 and LIMA1 were significantly associated with five-year DSS in the OTSCC cohort in univariate analyses (p = 0.016 and p = 0.043, respectively). In multivariate analyses, lymph node metastases, tumor differentiation, and CALML5 were independent prognosticators. The prognostic role of the other selected markers for head and neck cancer patients identified through unbiased approaches could not be validated in our OTSCC cohort. This underlines the need for subsite-specific analyses for head and neck cancer.
Collapse
Affiliation(s)
- Anna Maria Wirsing
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
| | - Inger-Heidi Bjerkli
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
- Department of Otorhinolaryngology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Sonja Eriksson Steigen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
- Department of Clinical Pathology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Oddveig Rikardsen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
- Department of Otorhinolaryngology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Synnøve Norvoll Magnussen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
| | - Beate Hegge
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
| | - Marit Seppola
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
| | - Lars Uhlin-Hansen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
- Department of Clinical Pathology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Elin Hadler-Olsen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway; (A.M.W.); (I.-H.B.); (S.E.S.); (O.R.); (S.N.M.); (B.H.); (M.S.); (L.U.-H.)
- The Public Dental Health Service Competence Centre of Northern Norway, 9019 Tromsø, Norway
- Correspondence: ; Tel.: +47-48-06-72-49
| |
Collapse
|
11
|
Chai H, Zhou X, Zhang Z, Rao J, Zhao H, Yang Y. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction. Comput Biol Med 2021; 134:104481. [PMID: 33989895 DOI: 10.1016/j.compbiomed.2021.104481] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Genomic information is nowadays widely used for precise cancer treatments. Since the individual type of omics data only represents a single view that suffers from data noise and bias, multiple types of omics data are required for accurate cancer prognosis prediction. However, it is challenging to effectively integrate multi-omics data due to the large number of redundant variables but relatively small sample size. With the recent progress in deep learning techniques, Autoencoder was used to integrate multi-omics data for extracting representative features. Nevertheless, the generated model is fragile from data noises. Additionally, previous studies usually focused on individual cancer types without making comprehensive tests on pan-cancer. Here, we employed the denoising Autoencoder to get a robust representation of the multi-omics data, and then used the learned representative features to estimate patients' risks. RESULTS By applying to 15 cancers from The Cancer Genome Atlas (TCGA), our method was shown to improve the C-index values over previous methods by 6.5% on average. Considering the difficulty to obtain multi-omics data in practice, we further used only mRNA data to fit the estimated risks by training XGboost models, and found the models could achieve an average C-index value of 0.627. As a case study, the breast cancer prognosis prediction model was independently tested on three datasets from the Gene Expression Omnibus (GEO), and shown able to significantly separate high-risk patients from low-risk ones (C-index>0.6, p-values<0.05). Based on the risk subgroups divided by our method, we identified nine prognostic markers highly associated with breast cancer, among which seven genes have been proved by literature review. CONCLUSION Our comprehensive tests indicated that we have constructed an accurate and robust framework to integrate multi-omics data for cancer prognosis prediction. Moreover, it is an effective way to discover cancer prognosis-related genes.
Collapse
Affiliation(s)
- Hua Chai
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510000, China
| | - Xiang Zhou
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510000, China
| | - Zhongyue Zhang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510000, China
| | - Jiahua Rao
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510000, China
| | - Huiying Zhao
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China.
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510000, China; Key Laboratory of Machine Intelligence and Advanced Computing (MOE), Sun Yat-sen University, Guangzhou, 510000, China.
| |
Collapse
|
12
|
Liu WQ, Li WL, Ma SM, Liang L, Kou ZY, Yang J. Discovery of core gene families associated with liver metastasis in colorectal cancer and regulatory roles in tumor cell immune infiltration. Transl Oncol 2021; 14:101011. [PMID: 33450702 PMCID: PMC7810789 DOI: 10.1016/j.tranon.2021.101011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 01/21/2023] Open
Abstract
In this study, we aimed to uncover genes that drive the pathogenesis of liver metastasis in colorectal cancer (CRC), and identify effective genes that could serve as potential therapeutic targets for treating with colorectal liver metastasis patients based on two GEO datasets. Several bioinformatics approaches were implemented. First, differential expression analysis screened out key differentially expressed genes (DEGs) across the two GEO datasets. Based on gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, we identified the enrichment functions and pathways of the DEGs that were associated with liver metastasis in CRC. Second, immune infiltration analysis identified key immune signature gene sets associated with CRC liver metastasis, among which two key immune gene families (CD and CCL) identified as key DEGs were filtered by protein-protein interaction (PPI) network. Some of the members in these gene families were associated with disease free survival (DFS) or overall survival (OS) in two subtypes of CRC, namely COAD and READ. Finally, functional enrichment analysis of the two gene families and their neighboring genes revealed that they were closely associated with cytokine, leukocyte proliferation and chemotaxis. These results are valuable in comprehending the pathogenesis of liver metastasis in CRC, and are of seminal importance in understanding the role of immune tumor infiltration in CRC. Our study also identified potentially effective therapeutic targets for liver metastasis in CRC including CCL20, CCL24 and CD70.
Collapse
Affiliation(s)
- Wei-Qing Liu
- Department of Internal Medicine-Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, PR China
| | - Wen-Liang Li
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang road, Kunming, Yunnan 650032, PR China
| | - Shu-Min Ma
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang road, Kunming, Yunnan 650032, PR China
| | - Lei Liang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang road, Kunming, Yunnan 650032, PR China
| | - Zhi-Yong Kou
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang road, Kunming, Yunnan 650032, PR China
| | - Jun Yang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang road, Kunming, Yunnan 650032, PR China.
| |
Collapse
|
13
|
Misawa K, Imai A, Matsui H, Kanai A, Misawa Y, Mochizuki D, Mima M, Yamada S, Kurokawa T, Nakagawa T, Mineta H. Identification of novel methylation markers in HPV-associated oropharyngeal cancer: genome-wide discovery, tissue verification and validation testing in ctDNA. Oncogene 2020; 39:4741-4755. [PMID: 32415241 PMCID: PMC7286817 DOI: 10.1038/s41388-020-1327-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 12/03/2022]
Abstract
Human papilloma virus (HPV)-associated oropharyngeal cancer (OPC) is an independent tumour type with regard to cellular, biological, and clinical features. The use of non-invasive biomarkers such as circulating tumour DNA (ctDNA) may be relevant in early diagnosis and eventually improve the outcomes of patients with head and neck squamous cell carcinoma (HNSCC). Genome-wide discovery using RNA sequencing and reduced representation bisulfite sequencing yielded 21 candidates for methylation-targeted genes. A verification study (252 HNSCC patients) using quantitative methylation-specific PCR (Q-MSP) identified 10 genes (ATP2A1, CALML5, DNAJC5G, GNMT, GPT, LY6D, LYNX1, MAL, MGC16275, and MRGPRF) that showed a significant increase recurrence in methylation groups with OPC. Further study on ctDNA using Q-MSP in HPV-associated OPC showed that three genes (CALML5, DNAJC5G, and LY6D) had a high predictive ability as emerging biomarkers for a validation set, each capable of discriminating between the plasma of the patients from healthy individuals. Among the 42 ctDNA samples, methylated CALML5, DNAJC5G, and LY6D were observed in 31 (73.8%), 19 (45.2%), and 19 (45.2%) samples, respectively. Among pre-treatment ctDNA samples, methylated CALML5, DNAJC5G, and LY6D were observed in 8/8 (100%), 7/8 (87.5%), and 7/8 (87.5%) samples, respectively. Methylated CALML5, DNAJC5G, and LY6D were found in 2/8 (25.0%), 0/8 (0%), and 1/8 (12.5%) of the final samples in the series, respectively. Here, we present the relationship between the methylation status of three specific genes and cancer recurrence for risk classification of HPV-associated OPC cases. In conclusion, ctDNA analysis has the potential to aid in determining patient prognosis and real-time surveillance for disease recurrences and serves as an alternative method of screening for HPV-associated OPC.
Collapse
Affiliation(s)
- Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan.
| | - Atsushi Imai
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akinori Kanai
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yuki Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Daiki Mochizuki
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masato Mima
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Satoshi Yamada
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tomoya Kurokawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takuya Nakagawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroyuki Mineta
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
14
|
Rodriguez-Ruiz ME, Buqué A, Hensler M, Chen J, Bloy N, Petroni G, Sato A, Yamazaki T, Fucikova J, Galluzzi L. Apoptotic caspases inhibit abscopal responses to radiation and identify a new prognostic biomarker for breast cancer patients. Oncoimmunology 2019; 8:e1655964. [PMID: 31646105 DOI: 10.1080/2162402x.2019.1655964] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 01/19/2023] Open
Abstract
Caspase 3 (CASP3) has a key role in the execution of apoptosis, and many cancer cells are believed to disable CASP3 as a mechanism of resistance to cytotoxic therapeutics. Alongside, CASP3 regulates stress-responsive immunomodulatory pathways, including secretion of type I interferon (IFN). Here, we report that mouse mammary carcinoma TSA cells lacking Casp3 or subjected to chemical caspase inhibition were as sensitive to the cytostatic and cytotoxic effects of radiation therapy (RT) in vitro as their control counterparts, yet secreted increased levels of type I IFN. This effect originated from the accrued accumulation of irradiated cells with cytosolic DNA, likely reflecting the delayed breakdown of cells experiencing mitochondrial permeabilization in the absence of CASP3. Casp3-/- TSA cells growing in immunocompetent syngeneic mice were more sensitive to RT than their CASP3-proficient counterparts, and superior at generating bona fide abscopal responses in the presence of an immune checkpoint blocker. Finally, multiple genetic signatures of apoptotic proficiency were unexpectedly found to have robust negative (rather than positive) prognostic significance in a public cohort of breast cancer patients. However, these latter findings were not consistent with genetic signatures of defective type I IFN signaling, which were rather associated with improved prognosis. Differential gene expression analysis on patient subgroups with divergent prognosis (as stratified by independent signatures of apoptotic proficiency) identified SLC7A2 as a new biomarker with independent prognostic value in breast cancer patients. With the caveats associated with the retrospective investigation of heterogeneous, public databases, our data suggest that apoptotic caspases may influence the survival of breast cancer patients (or at least some subsets thereof) via mechanisms not necessarily related to type I IFN signaling as they identify a novel independent prognostic biomarker that awaits prospective validation.
Collapse
Affiliation(s)
- Maria Esperanza Rodriguez-Ruiz
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Department of Radiation Oncology, University of Navarra Clinic and CIMA, Pamplona, Spain
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Jonathan Chen
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Norma Bloy
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ai Sato
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université Paris Descartes/Paris V, Paris, France
| |
Collapse
|
15
|
Kim N, Chung W, Eum HH, Lee HO, Park WY. Alternative polyadenylation of single cells delineates cell types and serves as a prognostic marker in early stage breast cancer. PLoS One 2019; 14:e0217196. [PMID: 31100099 PMCID: PMC6524824 DOI: 10.1371/journal.pone.0217196] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
Alternative polyadenylation (APA) in 3’ untranslated regions (3’ UTR) plays an important role in regulating transcript abundance, localization, and interaction with microRNAs. Length-variation of 3’UTRs by APA contributes to efficient proliferation of cancer cells. In this study, we investigated APA in single cancer cells and tumor microenvironment cells to understand the physiological implication of APA in different cell types. We analyzed APA patterns and the expression level of genes from the 515 single-cell RNA sequencing (scRNA-seq) dataset from 11 breast cancer patients. Although the overall 3’UTR length of individual genes was distributed equally in tumor and non-tumor cells, we found a differential pattern of polyadenylation in gene sets between tumor and non-tumor cells. In addition, we found a differential pattern of APA across tumor types using scRNA-seq data from 3 glioblastoma patients and 1 renal cell carcinoma patients. In detail, 1,176 gene sets and 53 genes showed the distinct pattern of 3’UTR shortening and over-expression as signatures for five cell types including B lymphocytes, T lymphocytes, myeloid cells, stromal cells, and breast cancer cells. Functional categories of gene sets for cellular proliferation demonstrated concordant regulation of APA and gene expression specific to cell types. The expression of APA genes in breast cancer was significantly correlated with the clinical outcome of earlier stage breast cancer patients. We identified cell type-specific APA in single cells, which allows the identification of cell types based on 3’UTR length variation in combination with gene expression. Specifically, an immune-specific APA signature in breast cancer could be utilized as a prognostic marker of early stage breast cancer.
Collapse
Affiliation(s)
- Nayoung Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Woosung Chung
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Hye Hyeon Eum
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hae-Ock Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences &Technology, Sungkyunkwan University, Seoul, South Korea
- * E-mail: (HOL); (WYP)
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences &Technology, Sungkyunkwan University, Seoul, South Korea
- GENINUS Inc., Seoul, South Korea
- * E-mail: (HOL); (WYP)
| |
Collapse
|
16
|
Downregulation of CYB5D2 is associated with breast cancer progression. Sci Rep 2019; 9:6624. [PMID: 31036830 PMCID: PMC6488675 DOI: 10.1038/s41598-019-43006-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/10/2019] [Indexed: 12/14/2022] Open
Abstract
We report here that CYB5D2 is associated with tumor suppression function in breast cancer (BC). CYB5D2 expression was significantly reduced in tamoxifen resistant MCF7 cells and in MCF7 cell-derived xenografts treated with TAM. CYB5D2 overexpression induced apoptosis in MCF7 cells; CYB5D2 knockdown enhanced MCF7 cell proliferation. Using the TCGA and Curtis datasets within the Oncomine database, CYB5D2 mRNA expression was downregulated in primary BCs vs breast tissues and HER2-positive or triple negative BCs vs estrogen receptor (ER)-positive BCs. Using the TCGA and Metabric datasets (n = 817 and n = 2509) within cBioPortal, 660 and 4891 differentially expressed genes (DEGs) in relation to CYB5D2 were identified. These DEGs were enriched in pathways governing cell cycle progression, progesterone-derived oocyte maturation, oocyte-meiosis, estrogen-mediated S-phase entry, and DNA metabolism. CYB5D2 downregulation decreased overall survival (OS, p = 0.0408). A CYB5D2-derived 21-gene signature was constructed and robustly correlated with OS shortening (p = 5.72e-12), and independently predicted BC deaths (HR = 1.28; 95% CI 1.08–1.52; p = 0.004) once adjusting for known clinical factors. CYB5D2 reductions displayed relationship with mutations in PIK3CA, GATA3, MAP3K1, CDH1, TP53 and RB1. Impressively, 85% (560/659) of TP53 mutations occurred in the 21-gene signature-positive BC. Collectively, we provide the first evidence that CYB5D2 is a candidate tumor suppressor of BC.
Collapse
|
17
|
Tabatabaeifar S, Thomassen M, Larsen MJ, Larsen SR, Kruse TA, Sørensen JA. The subclonal structure and genomic evolution of oral squamous cell carcinoma revealed by ultra-deep sequencing. Oncotarget 2017; 8:16571-16580. [PMID: 28157713 PMCID: PMC5369985 DOI: 10.18632/oncotarget.15014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/24/2017] [Indexed: 01/15/2023] Open
Abstract
Recent studies suggest that head and neck squamous cell carcinomas are very heterogeneous between patients; however the subclonal structure remains unexplored mainly due to studies using only a single biopsy per patient. To deconvolute the clonal structure and describe the genomic cancer evolution, we applied whole-exome sequencing combined with ultra-deep targeted sequencing on oral squamous cell carcinomas (OSCC). From each patient, a set of biopsies was sampled from distinct geographical sites in primary tumor and lymph node metastasis.We demonstrate that the included OSCCs show a high degree of inter-patient heterogeneity but a low degree of intra-tumor heterogeneity. However, some OSCC cancers contain complex subclonal architectures comprising distinct subclones only found in geographically distinct regions of the primary tumors. In several cases we find mutations in the primary tumor that are not present in the lymph node metastasis. We conclude that metastatic potential in our population is acquired early in tumor evolution as evident by the ongoing parallel evolution in several primary tumors.
Collapse
Affiliation(s)
- Siavosh Tabatabaeifar
- Department of Plastic Surgery, Odense University Hospital, Odense, Denmark
- Department of University of Southern Denmark, Institute of Clinical Research, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of University of Southern Denmark, Institute of Clinical Research, Odense, Denmark
| | - Martin J Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of University of Southern Denmark, Institute of Clinical Research, Odense, Denmark
| | - Stine R Larsen
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
- Department of University of Southern Denmark, Institute of Clinical Research, Odense, Denmark
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of University of Southern Denmark, Institute of Clinical Research, Odense, Denmark
| | - Jens A Sørensen
- Department of Plastic Surgery, Odense University Hospital, Odense, Denmark
- Department of University of Southern Denmark, Institute of Clinical Research, Odense, Denmark
| |
Collapse
|