1
|
Cho H, Levy D. The impact of competition between cancer cells and healthy cells on optimal drug delivery. MATHEMATICAL MODELLING OF NATURAL PHENOMENA 2020; 15:42. [DOI: 10.1051/mmnp/2019043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Cell competition is recognized to be instrumental to the dynamics and structure of the tumor-host interface in invasive cancers. In mild competition scenarios, the healthy tissue and cancer cells can coexist. When the competition is aggressive, competitive cells, the so called super-competitors, expand by killing other cells. Novel chemotherapy drugs and molecularly targeted drugs are commonly administered as part of cancer therapy. Both types of drugs are susceptible to various mechanisms of drug resistance, obstructing or preventing a successful outcome. In this paper, we develop a cancer growth model that accounts for the competition between cancer cells and healthy cells. The model incorporates resistance to both chemotherapy and targeted drugs. In both cases, the level of drug resistance is assumed to be a continuous variable ranging from fully-sensitive to fully-resistant. Using our model we demonstrate that when the competition is moderate, therapies using both drugs are more effective compared with single drug therapies. However, when cancer cells are highly competitive, targeted drugs become more effective. The results of the study stress the importance of adjusting the therapy to the pre-treatment resistance levels. We conclude with a study of the spatiotemporal propagation of drug resistance in a competitive setting, verifying that the same conclusions hold in the spatially heterogeneous case.
Collapse
|
2
|
Zou M, Jin B, Liu Y, Chen H, Zhang Z, Zhang C, Zhao Z, Zheng L. Synthesis and Biological Evaluation of Some Novel Thiophene-bearing Quinazoline Derivatives as EGFR Inhibitors. LETT DRUG DES DISCOV 2018. [DOI: 10.2174/1570180815666180803125935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:With the approval of gefitinib, erlotinib, afatinib, and osimertinib for clinical use, targeting Epidermal Growth Factor Receptor (EGFR) has been intensively pursued. Similar to most therapies, challenges related to the treatment resistance against these drugs have emerged over time, so new EGFR Tyrosine Kinase Inhibitors (TKIs) need to be developed. This study aimed to investigate the potential use of a series of thiophene-bearing quinazoline derivatives as EGFR inhibitors. We designed and synthesized nine quinazolin derivatives, among which five compounds (5e, 5f, 5g, 5h, and 5i) were reported for the first time. </P><P> Methods: Two cancer cell lines, A431 (overexpressing EGFR) and A549 (EGFR wild-type and Kras mutation), were treated by these compounds and subjected to MTT assay. The A431 cells were selected for further treatment (5e) and Western blot analysis.Results:Although the compounds exerted no obvious effects on the proliferation of A549 cells, seven out of the nine compounds significantly inhibited the growth of A431 cells. In particular, the IC50 values of 5e and erlotinib were nearly equal. Western blot results showed that 5e significantly inhibited EGFR autophosphorylation in A431 cells. Structure-activity relationships indicated that quinazolines bearing 6,7-side chains were more potent than those unsubstituted at the 6,7-positions. Moreover, electron-withdrawing hydrophobic groups on the 5-position of the thiophene were preferred, such as chlorine or bromine atom.Conclusion:Nine 4-aminoquinazolin derivatives were designed, synthesized, and evaluated against A431 and A549 cell lines. Seven compounds significantly inhibited the growth of A431 cells. In particular, 5e possessed similar antitumor potency to that of erlotinib.
Collapse
Affiliation(s)
- Min Zou
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Bo Jin
- Henan Provincial Eye Hospital, Henan Provincial Peoples Hospital, Zhengzhou, 450000, China
| | - Yanrong Liu
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Huiping Chen
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhuangli Zhang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Changzheng Zhang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhihong Zhao
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Liyun Zheng
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
3
|
Chen W, Chen R, Li J, Fu Y, Yang L, Su H, Yao Y, Li L, Zhou T, Lu W. Pharmacokinetic/Pharmacodynamic Modeling of Schedule-Dependent Interaction between Docetaxel and Cabozantinib in Human Prostate Cancer Xenograft Models. J Pharmacol Exp Ther 2018; 364:13-25. [PMID: 29084815 DOI: 10.1124/jpet.117.243931] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/26/2017] [Indexed: 01/03/2023] Open
Abstract
In this work, a semimechanistic pharmacokinetic/pharmacodynamic (PK/PD) model to quantitatively describe the antitumor activity of docetaxel (Doc) and cabozantinib (Cab) under monotherapy, concurrent therapy, interval therapy, and different sequential therapy in mouse xenograft models of castration-resistant prostate cancer was developed and evaluated. The pharmacokinetics (PK) of Doc and Cab when administered separately and simultaneously were investigated in nude mice, and PD study was conducted in tumor-bearing mice treated with different dosing schedules. The PK interaction between Doc and Cab was expressed by adding the effect of Cab on the clearance of Doc in the PK model. And the PD interaction between the two drugs was demonstrated by the developed PK/PD model through the combination index "φ" Our results showed that the concurrent therapy and Doc followed by Cab (Doc ∼ Cab) sequential therapy exhibited better tumor inhibitory efficacy than monotherapy. The Cab followed by Doc (Cab ∼ Doc) sequential schedule was less effective than monotherapy, and the interval therapy did not enhance the antitumor efficacy compared with the concurrent therapy. The parameter φ estimated from the PK/PD model quantitatively characterized the action between Doc and Cab. There was no significant PD interaction between Doc and Cab in both the concurrent schedule and the interval schedule, whereas the effect of the two drugs in the "Doc ∼ Cab" and "Cab ∼ Doc" sequential schedule was synergistic and antagonistic, respectively. The proposed model properly described the antitumor effects of Doc and Cab under different treatment schedules and could be used for dose optimization through model-based simulation.
Collapse
Affiliation(s)
- Wenjun Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Rong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Jian Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Yu Fu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Liang Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Hong Su
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Ye Yao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Liang Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Tianyan Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Wei Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| |
Collapse
|
4
|
Novel 4-arylaminoquinazoline derivatives with (E)-propen-1-yl moiety as potent EGFR inhibitors with enhanced antiproliferative activities against tumor cells. Eur J Med Chem 2017; 138:689-697. [PMID: 28711703 DOI: 10.1016/j.ejmech.2017.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022]
Abstract
A series of novel 4-anilinoquinazoline derivatives with (E)-propen-1-yl moiety were designed, synthesized and evaluated for biological activities in vitro. Most compounds exhibited highly antiproliferative activities against all tested tumor cell lines including A431, A549, NCI-H1975 and SW480 cells. Especially, compound 6e not only presented strong antiproliferative activities against the tested four tumor cell lines (IC50 of 1.35, 8.83, 5.53 and 6.08 μM, respectively) which expressed wild type or L858R/T790M double mutant epidermal growth factor receptor (EGFR), but also showed potent inhibitory activity against wild type EGFR (IC50 = 20.72 nM). The result of molecular docking with EGFR suggested the binding mode of 6e was similar to gefitinib, but different from lapatinib. Additionally, western blot analysis showed that 6e inhibited the phosphorylation of EGFR and its downstream signaling proteins in lung cancer cells. The work could be very useful starting point for developing a new series of tyrosine kinase inhibitors targeting EGFR.
Collapse
|
5
|
Chen B, Zheng J, Zeng Y, Li B, Xie B, Zheng J, Zhou J, Zhang W. Sequence-dependent antiproliferative effects of gefitinib and docetaxel on non-small cell lung cancer (NSCLC) cells and the possible mechanism. PLoS One 2014; 9:e114074. [PMID: 25474307 PMCID: PMC4256223 DOI: 10.1371/journal.pone.0114074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/03/2014] [Indexed: 12/02/2022] Open
Abstract
Purpose Recent clinical trials showed that the sequential combination of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) and chemotherapy could prolong the PFS and/or OS of advanced non-small cell lung cancer (NSCLC) patients with EGFR mutation. The aim of present study was to assess the optimal combination sequence and to explore its possible mechanism. Methods PC-9 cells and A549 cells, the lung adenocarcinoma cells with mutant and wide-type EGFR respectively, were treated with docetaxel/gefitinib alone or in different combination schedules. The EGFR and K-ras gene status was determined by qPCR-HRM technique. Cell proliferation was detected by MTT assay. The expression and phosphorylation of EGFR, ERK, Akt and IGF-1R were detected by western blot. Cell cycle distribution was observed by flow cytometry. Results Only sequential administration of docetaxel followed by gefitinib (D→G) induced significant synergistic effect in both cell lines (Combination Index<0.9). The reverse sequence (G→D) resulted in an antagonistic interaction in both cell lines (CI>1.1), whereas the concurrent administration (D+G) showed additive (0.9<CI<1.1)-synergistic effect in PC-9 cells and antagonistic-additive effect in A549 cells. Mechanism studies showed that docetaxel-induced phosphorylation of EGFR and ERK was repressed by subsequently used gefitinib, but not by concurrent exposure of gefitinib. The gefitinib-repressed phosphorylation of EGFR and ERK was reversed neither by concurrent nor by subsequent administration of docetaxel. D+G reinforced their inhibition on the phosphorylation of IGF-1R in PC-9 cells. Conclusions The cytotoxic drugs followed by EGFR-TKIs may be the optimal combination for antiproliferative effects in EGFR-mutant NSCLC cells, and the phosphorylation of EGFR and ERK might contribute to this effect.
Collapse
Affiliation(s)
- Bei Chen
- Department of Oncology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China
| | - Jingxian Zheng
- Department of Oncology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China
| | - Yunyun Zeng
- Department of Oncology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China
| | - Baofeng Li
- Department of Oncology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China
| | - Bo Xie
- Department of Oncology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China
| | - Jihua Zheng
- Department of Oncology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China
| | - Juan Zhou
- Department of Oncology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China
| | - Weimin Zhang
- Department of Oncology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|