1
|
Role of IGF-1R in epithelial-mesenchymal transdifferentiation of human peritoneal mesothelial cells. Clin Exp Nephrol 2022; 26:630-639. [PMID: 35325324 DOI: 10.1007/s10157-022-02209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/06/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Peritoneal fibrosis (PF) is caused by epithelial-mesenchymal transdifferentiation (EMT) in the peritoneum under high glucose (HG) conditions. The study aimed to explored the role of Insulin-like growth factor 1 receptor (IGF-1R) in the regulation of EMT in human peritoneal mesothelial cells (HPMCs). METHODS We used HG peritoneal dialysis fluid (PDF) to induce in vivo PF in mice, and treated HPMCs with HG in vitro to stimulate EMT. RESULTS In the mice, the higher the glucose concentration in the dialysate, the more obvious the peritoneal tissue thickening and the more that collagen was deposited. The in vitro study indicated that the expression of IGF-1R, α-SMA, vimentin was upregulated, while the expression of occludin, ZO-1, and E-cadherin was downregulated in HPMCs under HG and IGF-1R overexpression conditions. Conversely, the expression of IGF-1R, α-SMA, and vimentin was downregulated, while the expression of occludin, ZO-1, and E-cadherin was upregulated in IGF-1R-underexpressed HPMCs under HG conditions. The cell migration abilities were increased, while the cell adhesion abilities were reduced in HPMCs under HG and IGF-1R overexpression conditions. In contrast, cell migration abilities were reduced, while cell adhesion abilities were increased in IGF-1Runderexpressed HPMCs under HG conditions. CONCLUSIONS Targeting at IGF-1R may provide novel insights into the prevention and treatment of PF.
Collapse
|
2
|
Wu X, Wu Q, Zhou X, Huang J. SphK1 functions downstream of IGF-1 to modulate IGF-1-induced EMT, migration and paclitaxel resistance of A549 cells: A preliminary in vitro study. J Cancer 2019; 10:4264-4269. [PMID: 31413745 PMCID: PMC6691691 DOI: 10.7150/jca.32646] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/25/2019] [Indexed: 12/28/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) -induced epithelial-mesenchymal transition (EMT) plays a key role in the metastasis and drug resistance of non-small cell lung cancer (NSCLC). Sphingosine kinase-1 (SphK1) is also involved in EMT of NSCLC. However, the interaction between SphK1 and IGF-1 in the EMT of NSCLC is largely unknown. To clarify this issue, we examined the involvement of SphK1 in IGF-1-induced EMT using human lung cancer cell line A549, and its paclitaxel-resistant subline. Cell viability was evaluated by cell counting kit-8 assay; Migratory ability was examined using scratch wound healing test; Protein expression levels of SphK1, vimentin, fibronectin, N-cadherin and E-cadherin were detected by western blot analysis, respectively. The results showed that, IGF-1 treatment of A549 cells stimulated the expression of SphK1, the activation of ERK and AKT, the cell migration, and the expression of EMT hallmark proteins, while inhibition of SphK1 by its specific inhibitor SKI-II suppressed all the above changes and increased the sensitivity of A549 cells to paclitaxel. Our data demonstrate that SphK1 acts as a downstream effector of IGF-1 and plays a critical role in IGF-1-induced EMT, cell migration and paclitaxel resistance of A549 cells, suggesting that SphK1 might be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xingping Wu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Jiangsu, P.R. China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, P.R. China.,Department of Respirology, the First People's Hospital of Lianyungang, Jiangsu, P.R. China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, P.R. China
| | - Xiqiao Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu, P.R. China
| | - Jianan Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Jiangsu, P.R. China
| |
Collapse
|
3
|
Zhu S, Soutto M, Chen Z, Piazuelo MB, Washington MK, Belkhiri A, Zaika A, Peng D, El-Rifai W. Activation of IGF1R by DARPP-32 promotes STAT3 signaling in gastric cancer cells. Oncogene 2019; 38:5805-5816. [PMID: 31235784 PMCID: PMC6639157 DOI: 10.1038/s41388-019-0843-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 01/12/2023]
Abstract
Dopamine and cAMP-regulated phosphoprotein, Mr 32000 (DARPP-32), is frequently overexpressed in early stages of gastric cancers. We utilized in vitro assays, 3D gastric gland organoid cultures, mouse models, and human tissue samples to investigate the biological and molecular impact of DARPP-32 on activation of IGF1R and STAT3 signaling and gastric tumorigenesis. DARPP-32 enhanced phosphorylation of IGF1R (Y1135), a step that was critical for STAT3 phosphorylation at Y705, nuclear localization, and transcription activation. By using proximity ligation and co-immunoprecipitation assays, we found that IGF1R and DARPP-32 co-existed in the same protein complex. Binding of DARPP-32 to IGF1R promoted IGF1R phosphorylation with subsequent activation of downstream SRC and STAT3. Analysis of gastric tissues from the TFF1 knockout (KO) mouse model of gastric neoplasia, demonstrated phosphorylation of STAT3 in the early stages of gastric tumorigenesis. By crossing the TFF1 KO mice with DARPP-32 (DP) knockout (KO) mice, that have normal stomach, we obtained double knockout (TFF1 KO/DP KO). The gastric mucosa from the double KO mice did not show phosphorylation of IGF1R or STAT3. In addition, the TFF1 KO/DP KO mice had a significant delay in developing neoplastic gastric lesions. Analysis of human gastric cancer tissue microarrays, showed high levels of DARPP-32 and positive immunostaining for nuclear STAT3 in cancer tissues, as compared to non-cancer histologically normal tissues. In summary, the DARPP-32-IGF1R signaling axis plays a key role in regulating the STAT3 signaling, a critical step in gastric tumorigenesis.
Collapse
Affiliation(s)
- Shoumin Zhu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Mohammed Soutto
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA
| | - Zheng Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Kay Washington
- Department of Pathology, and Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexander Zaika
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Dunfa Peng
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| |
Collapse
|
4
|
Sex determining region Y-box 12 (SOX12) promotes gastric cancer metastasis by upregulating MMP7 and IGF1. Cancer Lett 2019; 452:103-118. [DOI: 10.1016/j.canlet.2019.03.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/02/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
|
5
|
Cevenini A, Orrù S, Mancini A, Alfieri A, Buono P, Imperlini E. Molecular Signatures of the Insulin-like Growth Factor 1-mediated Epithelial-Mesenchymal Transition in Breast, Lung and Gastric Cancers. Int J Mol Sci 2018; 19:ijms19082411. [PMID: 30111747 PMCID: PMC6122069 DOI: 10.3390/ijms19082411] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
The insulin-like growth factor (IGF) system, which is constituted by the IGF-1 and IGF-2 peptide hormones, their corresponding receptors and several IGF binding proteins, is involved in physiological and pathophysiological processes. The IGF system promotes cancer proliferation/survival and its signaling induces the epithelial-mesenchymal transition (EMT) phenotype, which contributes to the migration, invasiveness, and metastasis of epithelial tumors. These cancers share two major IGF-1R signaling transduction pathways, PI3K/AKT and RAS/MEK/ERK. However, as far as we could review at this time, each type of cancer cell undergoes EMT through tumor-specific routes. Here, we review the tumor-specific molecular signatures of IGF-1-mediated EMT in breast, lung, and gastric cancers.
Collapse
Affiliation(s)
- Armando Cevenini
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Via S. Pansini 5, 80131 Napoli, Italy.
- CEINGE-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
| | - Stefania Orrù
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Via Medina 40, 80133 Napoli, Italy.
- IRCCS SDN, Via Francesco Crispi 8, 80121 Napoli, Italy.
| | - Annamaria Mancini
- CEINGE-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Via Medina 40, 80133 Napoli, Italy.
| | - Andreina Alfieri
- CEINGE-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Via Medina 40, 80133 Napoli, Italy.
| | - Pasqualina Buono
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Via Medina 40, 80133 Napoli, Italy.
- IRCCS SDN, Via Francesco Crispi 8, 80121 Napoli, Italy.
| | | |
Collapse
|
6
|
Ren JG, Seth P, Ye H, Guo K, Hanai JI, Husain Z, Sukhatme VP. Citrate Suppresses Tumor Growth in Multiple Models through Inhibition of Glycolysis, the Tricarboxylic Acid Cycle and the IGF-1R Pathway. Sci Rep 2017; 7:4537. [PMID: 28674429 PMCID: PMC5495754 DOI: 10.1038/s41598-017-04626-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
In this study we have tested the efficacy of citrate therapy in various cancer models. We found that citrate administration inhibited A549 lung cancer growth and additional benefit accrued in combination with cisplatin. Interestingly, citrate regressed Ras-driven lung tumors. Further studies indicated that citrate induced tumor cell differentiation. Additionally, citrate treated tumor samples showed significantly higher infiltrating T-cells and increased blood levels of numerous cytokines. Moreover, we found that citrate inhibited IGF-1R phosphorylation. In vitro studies suggested that citrate treatment inhibited AKT phosphorylation, activated PTEN and increased expression of p-eIF2a. We also found that p-eIF2a was decreased when PTEN was depleted. These data suggest that citrate acts on the IGF-1R-AKT-PTEN-eIF2a pathway. Additionally, metabolic profiling suggested that both glycolysis and the tricarboxylic acid cycle were suppressed in a similar manner in vitro in tumor cells and in vivo but only in tumor tissue. We reproduced many of these observations in an inducible Her2/Neu-driven breast cancer model and in syngeneic pancreatic tumor (Pan02) xenografts. Our data suggests that citrate can inhibit tumor growth in diverse tumor types and via multiple mechanisms. Dietary supplementation with citrate may be beneficial as a cancer therapy.
Collapse
Affiliation(s)
- Jian-Guo Ren
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Pankaj Seth
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Huihui Ye
- Department of Pathology, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Kun Guo
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.,Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun-Ichi Hanai
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Zaheed Husain
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Vikas P Sukhatme
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
7
|
Humar M, Kern I, Vlacic G, Hadzic V, Cufer T. Insulin-like Growth Factor 1 Receptor Expression in Advanced Non-small-cell Lung Cancer and its Impact on Overall Survival. Radiol Oncol 2017; 51:195-202. [PMID: 28740455 PMCID: PMC5514660 DOI: 10.1515/raon-2017-0020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/08/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The insulin-like growth factor 1 receptor (IGF1R) expression has been addressed as a potential prognostic marker in non-small-cell lung cancer (NSCLC) in various studies; however, the associations between IGF1R expression and prognosis of advanced NSCLC patients is still controversial. The aim of our observational, cohort study was to evaluate the expression of IGF1R in advanced NSCLC and its prognostic role. A subgroup analysis was performed to address the influence of pre-existing type 2 diabetes mellitus (T2DM) status on IGF1R expression and overall survival (OS). PATIENTS AND METHODS IGF1R expression was evaluated in 167 consecutive advanced NSCLC patients (stage IIIB and IV), diagnosed and treated at one university institution, between 2005 and 2010. All patients received at least one line of standard cytotoxic therapy and 18 of them had pre-existing T2DM. IGF1R expression was determined by immunohistochemical (IHC) staining, with score ≥ 1+ considered as positive. Information on baseline characteristics, as well as patients' follow-up data, were obtained from the hospital registry. Associations of IGF1R expression with clinical characteristics and overall survival were compared. RESULTS IGF1R expression was positive in 79.6% of patients, significantly more often in squamous-cell carcinoma (SCC) compared to non-squamous-cell (NSCC) histology (88.7% vs. 74.3%; P = 0.03). IGF1R positivity did not correlate with T2DM status or with other clinical features (sex, smoking status, performance status). Median OS was similar between IGF1R positive and IGF1R negative group (10.2 vs. 8.5 months, P = 0.168) and between patients with or without T2DM (8.7 vs. 9.8 months, P = 0.575). Neither IGF1R expression nor T2DM were significant predictors of OS. CONCLUSIONS IGF1R or T2DM status were not significantly prognostic in described above collective of advanced NSCLC treated with at least one line of chemotherapy. In addition, no association between T2DM status and IGF1R expression was found. Further studies on IGF1R expression and its prognostic as well as therapeutic consequences in a larger collective of advanced NSCLC patients, with or without T2DM, are needed.
Collapse
Affiliation(s)
- Mojca Humar
- General hospital of Nova Gorica, Ulica padlih borcev 13a, 5290 Šempeter Pri Gorici, Slovenia
| | | | | | - Vedran Hadzic
- Faculty of Sport, University of Ljubljana, Slovenia, Ljubljana, Slovenia
| | | |
Collapse
|
8
|
Li H, Batth IS, Qu X, Xu L, Song N, Wang R, Liu Y. IGF-IR signaling in epithelial to mesenchymal transition and targeting IGF-IR therapy: overview and new insights. Mol Cancer 2017; 16:6. [PMID: 28137302 PMCID: PMC5282886 DOI: 10.1186/s12943-016-0576-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023] Open
Abstract
The insulin-like growth factor-I (IGF-I) signaling induces epithelial to mesenchymal transition (EMT) program and contributes to metastasis and drug resistance in several subtypes of tumors. In preclinical studies, targeting of the insulin-like growth factor-I receptor (IGF-IR) showed promising anti-tumor effects. Unfortunately, high expectations for anti-IGF-IR therapy encountered challenge and disappointment in numerous clinical trials. This review summarizes the regulation of EMT by IGF-I/IGF-IR signaling pathway and drug resistance mechanisms of targeting IGF-IR therapy. Most importantly, we address several factors in the regulation of IGF-I/IGF-IR-associated EMT progression that may be potential predictive biomarkers in targeted therapy.
Collapse
Affiliation(s)
- Heming Li
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China.,Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Izhar Singh Batth
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Ling Xu
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Na Song
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Ruoyu Wang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China.
| | - Yunpeng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China.
| |
Collapse
|
9
|
Suman S, Kumar S, Fornace AJ, Datta K. Space radiation exposure persistently increased leptin and IGF1 in serum and activated leptin-IGF1 signaling axis in mouse intestine. Sci Rep 2016; 6:31853. [PMID: 27558773 PMCID: PMC4997262 DOI: 10.1038/srep31853] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/28/2016] [Indexed: 12/21/2022] Open
Abstract
Travel into outer space is fraught with risk of exposure to energetic heavy ion radiation such as 56Fe ions, which due to its high linear energy transfer (high-LET) characteristics deposits higher energy per unit volume of tissue traversed and thus more damaging to cells relative to low-LET radiation such as γ rays. However, estimates of human health risk from energetic heavy ion exposure are hampered due to lack of tissue specific in vivo molecular data. We investigated long-term effects of 56Fe radiation on adipokines and insulin-like growth factor 1 (IGF1) signaling axis in mouse intestine and colon. Six- to eight-week-old C57BL/6J mice were exposed to 1.6 Gy of 56Fe ions. Serum and tissues were collected up to twelve months post-irradiation. Serum was analyzed for leptin, adiponectin, IGF1, and IGF binding protein 3. Receptor expressions and downstream signaling pathway alterations were studied in tissues. Irradiation increased leptin and IGF1 levels in serum, and IGF1R and leptin receptor expression in tissues. When considered along with upregulated Jak2/Stat3 pathways and cell proliferation, our data supports the notion that space radiation exposure is a risk to endocrine alterations with implications for chronic pathophysiologic changes in gastrointestinal tract.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Biochemistry and Molecular &Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Santosh Kumar
- Department of Biochemistry and Molecular &Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular &Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.,Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kamal Datta
- Department of Biochemistry and Molecular &Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
10
|
Yu X, Zhao W, Yang X, Wang Z, Hao M. miR-375 Affects the Proliferation, Invasion, and Apoptosis of HPV16-Positive Human Cervical Cancer Cells by Targeting IGF-1R. Int J Gynecol Cancer 2016; 26:851-8. [PMID: 27206217 DOI: 10.1097/igc.0000000000000711] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The aim of this study was to examine the relationship between miR-375 expression and the proliferation, apoptosis, and migration of cervical cancer cells. To further explore the potential target gene of miR-375, insulin-like growth factor 1 receptor (IGF-1R) was detected in miR-375 overexpressed and inhibited cervical cancer cells, which clarified the potential mechanism of miR-375 in the growth and development of cervical cancer. METHODS In a cervical cancer cell line (Caski), miR-375 overexpression and knockdown were achieved by transfection with a synthetic miR-375 mimic or miR-375-targeting inhibitor oligonucleotides, respectively, using siRNA-Mate transfection reagents. Real-time Polymerase Chain Reaction was performed to detect the expression level of miR-375. The functional effects of miR-375 on cell proliferation, migration, and apoptosis were evaluated using a Cell Counting Kit (CCK-8) and through scratch wound tests and apoptosis assays, respectively. Western blotting was performed to detect the expression level of the IGF-1R protein. RESULT Transfection with the miR-375 mimic significantly upregulated the expression of miR-375 by approximately 7.76-fold (P < 0.05), reduced cell proliferation and migration (P < 0.05), increased apoptosis (P < 0.05), and decreased the expression of the IGF-1R protein by 24.73% (P < 0.05) compared with the negative control. In contrast, transfection of the miR-375 inhibitor decreased the expression of miR-375 by 14.39% (P < 0.05), significantly increased cell proliferation and migration (P < 0.05), significantly reduced the cell apoptosis (P < 0.05), and upregulated the expression of the IGF-1R protein by 2.29-fold (P < 0.05). The cells transfected with the negative control showed no significant changes compared with the blank control for each parameter (P > 0.05). CONCLUSIONS miR-375 plays an important role in the tumorigenesis and development of cervical cancer. IGF-1R might represent a target gene of miR-375 in cervical cancer.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | | | | | | | | |
Collapse
|