1
|
Hartung J, Müller C, Calkhoven CF. The dual role of the TSC complex in cancer. Trends Mol Med 2025; 31:452-465. [PMID: 39488444 DOI: 10.1016/j.molmed.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024]
Abstract
The tuberous sclerosis complex (TSC1/TSC2/TBC1D7) primarily functions to inhibit the mechanistic target of rapamycin complex 1 (mTORC1), a crucial regulator of cell growth. Mutations in TSC1 or TSC2 cause tuberous sclerosis complex (TSC), a rare autosomal dominant genetic disorder marked by benign tumors in multiple organs that rarely progress to malignancy. Traditionally, TSC proteins are considered tumor suppressive due to their inhibition of mTORC1 and other mechanisms. However, more recent studies have shown that TSC proteins can also promote tumorigenesis in certain cancer types. In this review, we explore the composition and function of the TSC protein complex, the roles of its individual components in cancer biology, and potential future therapeutic targeting strategies.
Collapse
Affiliation(s)
- Josephine Hartung
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Christine Müller
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Cornelis F Calkhoven
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands.
| |
Collapse
|
2
|
Zhang J, Tian H, Mao L, Si L. Treatment of acral and mucosal melanoma: Current and emerging targeted therapies. Crit Rev Oncol Hematol 2024; 193:104221. [PMID: 38036156 DOI: 10.1016/j.critrevonc.2023.104221] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/14/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
Targeted therapies revolutionized the management of patients with advanced and metastatic cutaneous melanoma. However, despite recent advances in the understanding of the molecular drivers of melanoma and its treatment with targeted therapies, patients with rare and aggressive melanoma subtypes, including acral melanoma (AM) and mucosal melanomas (MM), show limited long-term clinical benefit from current targeted therapies. While patients with AM or MM and BRAF or KIT mutations may benefit from targeted therapies, the frequency of these mutations is relatively low, and there are no genotype-specific treatments for most patients with AM or MM who lack common driver mutations. The poor prognosis of AM and MM can also be attributed to the lack of understanding of their unique molecular landscapes and clinical characteristics, due to being under-represented in preclinical and clinical studies. We review current knowledge of the molecular landscapes of AM and MM, focusing on actionable therapeutic targets and pathways for molecular targeted therapies, to guide the development of more effective targeted therapies for these cancers. Current and emerging strategies for the treatment of these melanoma subtypes using targeted therapies are also summarized.
Collapse
Affiliation(s)
- Jiaran Zhang
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Huichun Tian
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lili Mao
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| | - Lu Si
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
3
|
Țăpoi DA, Gheorghișan-Gălățeanu AA, Dumitru AV, Ciongariu AM, Furtunescu AR, Marin A, Costache M. Primary Undifferentiated/Dedifferentiated Cutaneous Melanomas-A Review on Histological, Immunohistochemical, and Molecular Features with Emphasis on Prognosis and Treatment. Int J Mol Sci 2023; 24:9985. [PMID: 37373134 DOI: 10.3390/ijms24129985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Diagnosing cutaneous melanoma is usually straightforward based on these malignancies' histopathological and immunohistochemical features. Nevertheless, melanomas can imitate various other neoplasms, sometimes lacking the expression of conventional melanocytic markers and expressing non-melanocytic ones. Furthermore, divergent differentiation is more often encountered in metastatic melanomas and is still poorly described in primary cutaneous melanomas, and little is known about these patients' prognosis and therapeutic approach. Therefore, we reviewed the literature on undifferentiated/dedifferentiated cutaneous melanomas, and we discuss the histological, immunohistochemical, and molecular profiles of undifferentiated/dedifferentiated cutaneous melanomas to understand these peculiar lesions better and improve their diagnostic algorithm. In addition to this, we also discuss how different genetic mutations may influence prognosis and become potential therapeutic targets.
Collapse
Affiliation(s)
- Dana Antonia Țăpoi
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Ancuța-Augustina Gheorghișan-Gălățeanu
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- C.I. Parhon National Institute of Endocrinology, 011863 Bucharest, Romania
| | - Adrian Vasile Dumitru
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Ana Maria Ciongariu
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Andreea Roxana Furtunescu
- Doctoral School, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Dermatology, Victor Babes Clinical Hospital, 030303 Bucharest, Romania
| | - Andrei Marin
- Department of Plastic Surgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mariana Costache
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| |
Collapse
|
4
|
Ma Y, Xia R, Ma X, Judson-Torres RL, Zeng H. Mucosal Melanoma: Pathological Evolution, Pathway Dependency and Targeted Therapy. Front Oncol 2021; 11:702287. [PMID: 34350118 PMCID: PMC8327265 DOI: 10.3389/fonc.2021.702287] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Mucosal melanoma (MM) is a rare melanoma subtype that originates from melanocytes within sun-protected mucous membranes. Compared with cutaneous melanoma (CM), MM has worse prognosis and lacks effective treatment options. Moreover, the endogenous or exogenous risk factors that influence mucosal melanocyte transformation, as well as the identity of MM precursor lesions, are ambiguous. Consequently, there remains a lack of molecular markers that can be used for early diagnosis, and therefore better management, of MM. In this review, we first summarize the main functions of mucosal melanocytes. Then, using oral mucosal melanoma (OMM) as a model, we discuss the distinct pathologic stages from benign mucosal melanocytes to metastatic MM, mapping the possible evolutionary trajectories that correspond to MM initiation and progression. We highlight key areas of ambiguity during the genetic evolution of MM from its benign lesions, and the resolution of which could aid in the discovery of new biomarkers for MM detection and diagnosis. We outline the key pathways that are altered in MM, including the MAPK pathway, the PI3K/AKT pathway, cell cycle regulation, telomere maintenance, and the RNA maturation process, and discuss targeted therapy strategies for MM currently in use or under investigation.
Collapse
Affiliation(s)
- Yanni Ma
- Department of Oncology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Ronghui Xia
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuhui Ma
- Department of Oral & Maxillofacial - Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Robert L Judson-Torres
- Department of Dermatology, University of Utah, Salt Lake City, UT, United States.,Huntsman Cancer Institute, Salt Lake City, UT, United States
| | - Hanlin Zeng
- Department of Oncology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| |
Collapse
|
5
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 319] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Mallela K, Kumar A. Role of TSC1 in physiology and diseases. Mol Cell Biochem 2021; 476:2269-2282. [PMID: 33575875 DOI: 10.1007/s11010-021-04088-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Since its initial discovery as the gene altered in Tuberous Sclerosis Complex (TSC), an autosomal dominant disorder, the interest in TSC1 (Tuberous Sclerosis Complex 1) has steadily risen. TSC1, an essential component of the pro-survival PI3K/AKT/MTOR signaling pathway, plays an important role in processes like development, cell growth and proliferation, survival, autophagy and cilia development by co-operating with a variety of regulatory molecules. Recent studies have emphasized the tumor suppressive role of TSC1 in several human cancers including liver, lung, bladder, breast, ovarian, and pancreatic cancers. TSC1 perceives inputs from various signaling pathways, including TNF-α/IKK-β, TGF-β-Smad2/3, AKT/Foxo/Bim, Wnt/β-catenin/Notch, and MTOR/Mdm2/p53 axis, thereby regulating cancer cell proliferation, metabolism, migration, invasion, and immune regulation. This review provides a first comprehensive evaluation of TSC1 and illuminates its diverse functions apart from its involvement in TSC genetic disorder. Further, we have summarized the physiological functions of TSC1 in various cellular events and conditions whose dysregulation may lead to several pathological manifestations including cancer.
Collapse
Affiliation(s)
- Karthik Mallela
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
7
|
Du M, Wang Y, Gu D, Guo L. Identification of vital genes and pathways associated with mucosal melanoma in Chinese. Ann Diagn Pathol 2021; 50:151648. [PMID: 33189033 DOI: 10.1016/j.anndiagpath.2020.151648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/01/2022]
Abstract
Mucosal melanoma is a rare malignant melanoma with more aggressive and poorer outcomes. The incidence of mucosal melanoma varies greatly among different ethnic groups. We herein sought to characterize the vital genes and pathways of Chinese mucosal melanoma patients. By whole-exome sequencing in six patients with mucosal melanoma, we detected a total of 21,733 CNVs and 2372 SNPs. The CNV/SNP burden varies greatly between individuals, including recurrent CNV targeting PIK3 family, KRAS, APC and BRCA1. Significantly mutated genes were NUDT5, ZBTB18, NEURL4, ZNF430, RBM44, GAK, PCDHA13, STK38 and UBR5. Besides, FAT1 gene was identified frequently mutated in anorectal melanoma patients (3/3, 100%). Moreover, our result showed that HPV infection may be associated with mucosal melanoma. In conclusion, this study indicated that mucosal melanomas have a low SNPs burden and a high number of CNVs and expand the spectrum of mucosal melanoma variants, also provided an insight for the pathological mechanism of mucosal melanoma.
Collapse
Affiliation(s)
- Mingzhan Du
- Department of Pathology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou city, Jiangsu Province 215006, China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou city, Jiangsu Province 215006, China
| | - Dongmei Gu
- Department of Pathology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou city, Jiangsu Province 215006, China.
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou city, Jiangsu Province 215006, China.
| |
Collapse
|
8
|
Phatak P, Noe M, Asrani K, Chesnick IE, Greenwald BD, Donahue JM. MicroRNA-141-3p regulates cellular proliferation, migration, and invasion in esophageal cancer by targeting tuberous sclerosis complex 1. Mol Carcinog 2020; 60:125-137. [PMID: 33382472 DOI: 10.1002/mc.23274] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022]
Abstract
MicroRNA (miR)-141-3p, which functions as an oncogene in multiple malignancies, has been shown to be highly overexpressed in esophageal cancer cells in our previous work. miR-141-3p is predicted to bind the messenger RNA (mRNA) of tuberous sclerosis complex 1 (TSC1), a tumor suppressor, with high affinity. In this study, we investigated the expression and functional interaction between miR-141-3p and TSC1 in esophageal cancer cells. Experiments were conducted in four esophageal cancer lines and in tumor cells isolated from human esophageal cancer specimens by laser capture microdissection. miR-141-3p expression was measured by real time and droplet digital PCR. Biotinylated RNA pull-down and luciferase reporter assays were used to assess binding. miR-141-3p function was tested by assessing proliferation, migration, invasion, and induction of autophagy following its silencing. We found that miR-141-3p levels were increased in TE7, OE33, and TE10 esophageal cancer cells compared to FLO-1 cells, with similar heterogeneity observed in human esophageal cancer specimens. Silencing of miR-141-3p led to increased TSC1 protein expression in these cells and was associated with increased TSC1 translation. Binding studies reveal that miR-141-3p binds to each of the predicted binding sites in the 3'-untranslated region of TSC1 mRNA. Following miR-141-3p silencing, TE7, OE33, and TE10 cells exhibited decreased proliferation, migration, and invasion, as well as enhanced autophagy. Importantly, these phenotypic effects were replicated by overexpression of TSC1 alone in these cells. Our results indicate that miR-141-3p functions in an oncogenic capacity in a subset of esophageal cancer cells, in part by suppressing TSC1 expression.
Collapse
Affiliation(s)
- Pornima Phatak
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA.,Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Michael Noe
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kaushal Asrani
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | - Bruce D Greenwald
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - James M Donahue
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA.,Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Holman BN, Van Gulick RJ, Amato CM, MacBeth ML, Davies KD, Aisner DL, Robinson WA, Couts KL. Clinical and molecular features of subungual melanomas are site-specific and distinct from acral melanomas. Melanoma Res 2020; 30:562-573. [PMID: 33156595 DOI: 10.1097/cmr.0000000000000688] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Subungual melanomas (SUM) arise beneath the nails of the hands and feet, and account for 0.7-3.5% of all malignant melanomas. Most studies include SUM in the category of acral melanoma, but understanding the specific features of SUM is critical for improving patient care. In this study, we performed a site-specific comparison of the clinical and molecular features between 54 cases of SUM and 78 cases of nonsubungual acral melanoma. Compared to patients with acral melanoma, patients with SUM were younger at diagnosis, had a higher prevalence of primary melanomas on the hand, and had more frequent reports of previous trauma at the tumor site. SUM was deeper than acral melanoma at diagnosis, which correlated with an increased frequency of metastases. Analysis of common melanoma driver genes revealed KIT and KRAS mutations were predominantly found in SUM, whereas BRAF and NRAS mutations occurred almost exclusively in acral melanoma. We also discovered molecular differences in the cell cycle pathway, where CDK4/CCND1 amplifications were more frequent in SUM and CDKN2A/B loss occurred mostly in acral melanoma, and in the PI3K/mTOR pathway, where RICTOR amplification and TSC1 K587R mutations were exclusively in SUM and PTEN loss and AKT1 mutations were exclusively in acral melanoma. Comparison of hand versus foot tumors revealed more frequent ulceration of SUM foot tumors, which correlated with more distal metastases and poorer overall survival. In summary, we find SUM are both clinically and molecularly distinct from acral melanoma, and our data suggest KIT, CDK4/6, and mTOR inhibitors may be particularly relevant and effective treatments for patients with SUM.
Collapse
Affiliation(s)
- Blair N Holman
- Division of Medical Oncology, Department of Medicine
- Center for Rare Melanomas
| | - Robert J Van Gulick
- Division of Medical Oncology, Department of Medicine
- Center for Rare Melanomas
| | - Carol M Amato
- Division of Medical Oncology, Department of Medicine
- Center for Rare Melanomas
| | - Morgan L MacBeth
- Division of Medical Oncology, Department of Medicine
- Center for Rare Melanomas
| | - Kurtis D Davies
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dara L Aisner
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - William A Robinson
- Division of Medical Oncology, Department of Medicine
- Center for Rare Melanomas
| | - Kasey L Couts
- Division of Medical Oncology, Department of Medicine
- Center for Rare Melanomas
| |
Collapse
|
10
|
Bennett JA, Oliva E. Perivascular epithelioid cell tumors (PEComa) of the gynecologic tract. Genes Chromosomes Cancer 2020; 60:168-179. [PMID: 33099813 DOI: 10.1002/gcc.22908] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
PEComas of the female genital tract are rare mesenchymal neoplasms that are most common in the uterus, but also may occur in other gynecologic locations. As they morphologically and immunohistochemically resemble smooth muscle tumors, distinction between the two entities is often challenging, and may be aided by molecular analysis. Thus far, two distinct molecular groups-classic PEComas with TSC mutations and TFE3-translocation associated PEComas with TFE3 fusions have been described. Recognition of the first group is imperative as these patients may benefit from targeted therapy with mTOR inhibitors, if malignant. This review will focus on recognition of the morphologic and immunophenotypic features of PEComas, as well as the role of molecular testing in their diagnosis and treatment, analysis of the different algorithms to predict behavior, and differential diagnosis.
Collapse
Affiliation(s)
- Jennifer A Bennett
- Department of Pathology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Esther Oliva
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Mikkelsen LH. Molecular biology in conjunctival melanoma and the relationship to mucosal melanoma. Acta Ophthalmol 2020; 98 Suppl 115:1-27. [PMID: 32749776 DOI: 10.1111/aos.14536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lauge Hjorth Mikkelsen
- Eye Pathology Section; Departments of Pathology and Ophthalmology, Rigshospitalet; Copenhagen University Hospital; Copenhagen Denmark
| |
Collapse
|
12
|
Primary malignant melanoma of esophagus: clinicopathologic characterization of 20 cases including molecular genetic profiling of 15 tumors. Mod Pathol 2019; 32:957-966. [PMID: 30760858 PMCID: PMC8210848 DOI: 10.1038/s41379-018-0163-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 02/08/2023]
Abstract
Primary malignant melanoma of esophagus is very rare, and its clinicopathologic and genetic features have not been extensively investigated. In this study, 20 tumors from 14 male and 6 female patients (40-79 years old) were evaluated. Dysphagia, chest pain, and weight loss were frequent symptoms. Thirteen melanomas, including two with multiple lesions, involved the distal third of esophagus. The median tumor diameter was 6 cm. Epithelioid morphology, moderate atypia, and pigmentation were typical findings. None of the patients had melanoma elsewhere, and all tumors exhibited a junctional peri-epithelial component consistent with a primary lesion. The median mitotic activity was 11 per 10 high-power fields (range, 0-31). Nine patients died of tumor within 4-22 months, however, two showed long-term (96 and 104 months) survival. In 15 cases, tissue for further immunohistochemical and molecular studies were available. BRAF, KIT, and NRAS mutation status was assessed by Sanger sequencing in all 15 tumors. The next-generation sequencing of 50 or 409 genes was performed in five and three cases, respectively. IGF1R expression indicating activation of the IGF axis was seen in 82% (9/11) of tumors. However, no BRAF mutations were identified. In 33% (5/15) of tumors, NRAS mutations were detected. KIT expression was seen in 50% (7/14) of melanomas including single KIT mutant. Two of three tumors evaluated with 409 genes panel revealed multiple driver mutations indicating sub-clonal expansion, whereas a single mutation (TSC1 p.H371Q) was the sole change in the third case. SF3B1 p.K666T and p.R625C mutations were detected in two cases. However, no co-occurrence of SF3B1 and GNAQ or GNA11 mutations, seen in uveal melanoma, was detected. FBXW7 p.R465C and p.R479G mutations, linked to cancer progression, were found in two of eight tumors. In summary, esophageal melanoma mutation profile indicates complexity of molecular mechanisms underlying its pathogenesis.
Collapse
|
13
|
Current Coverage of the mTOR Pathway by Next-Generation Sequencing Oncology Panels. Int J Mol Sci 2019; 20:ijms20030690. [PMID: 30764584 PMCID: PMC6387057 DOI: 10.3390/ijms20030690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
The mTOR pathway is in the process of establishing itself as a key access-point of novel oncological drugs and targeted therapies. This is also reflected by the growing number of mTOR pathway genes included in commercially available next-generation sequencing (NGS) oncology panels. This review summarizes the portfolio of medium sized diagnostic, as well as research destined NGS panels and their coverage of the mTOR pathway, including 16 DNA-based panels and the current gene list of Foundation One as a major reference entity. In addition, we give an overview of interesting, mTOR-associated somatic mutations that are not yet incorporated. Especially eukaryotic translation initiation factors (eIFs), a group of mTOR downstream proteins, are on the rise as far as diagnostics and drug targeting in precision medicine are concerned. This review aims to raise awareness for the true coverage of NGS panels, which should be valuable in selecting the ideal platform for diagnostics and research.
Collapse
|