1
|
McAuley N, Cymer I, McAvera R, Hopkins AM, Glavey SV. Chromosome 1 Alterations in Multiple Myeloma: Considerations for Precision Therapy. Eur J Haematol 2025; 114:400-410. [PMID: 39632279 PMCID: PMC11798765 DOI: 10.1111/ejh.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Multiple myeloma (MM) is an incurable blood malignancy characterized by the clonal expansion of plasma cells and the secretion of monoclonal immunoglobulins. High-risk MM, defined by specific cytogenetic abnormalities, poses significant therapeutic challenges and is associated with inferior survival outcomes compared to standard-risk disease. Although molecularly targeted therapies have shown efficacy in other hematologic malignancies, currently venetoclax is the only targeted therapy approved for MM (t(11;14)). However, chromosome 1q gains, amplifications, and 1p deletions are frequently observed in MM, and have been linked to drug resistance and poor patient prognosis. Accordingly, this review focuses on emerging MM precision therapies capable of targeting dysregulated genes within these regions. It addresses gene therapies, small molecule inhibitors and monoclonal antibodies currently under investigation to antagonize oncogenic drivers including MCL-1, BCL9, F11R, and CKS1B, all of which are implicated in cell survival, proliferation or drug resistance. In conclusion, the link between chromosome 1 abnormalities and high-risk disease in MM patients offers a compelling rationale to identify and explore therapeutic targeting of chromosome 1 gene products as a novel precision medicine approach for a poorly served patient population.
Collapse
Affiliation(s)
- Niamh McAuley
- Department of PathologyRCSI University of Medicine and Health SciencesDublinIreland
- Department of SurgeryRCSI University of Medicine and Health SciencesDublinIreland
| | - Izabela Cymer
- Department of PathologyRCSI University of Medicine and Health SciencesDublinIreland
- Department of SurgeryRCSI University of Medicine and Health SciencesDublinIreland
| | - Roisin McAvera
- Department of PathologyRCSI University of Medicine and Health SciencesDublinIreland
- Department of SurgeryRCSI University of Medicine and Health SciencesDublinIreland
| | - Ann M. Hopkins
- Department of SurgeryRCSI University of Medicine and Health SciencesDublinIreland
| | - Siobhan V. Glavey
- Department of PathologyRCSI University of Medicine and Health SciencesDublinIreland
- Department of HaematologyBeaumont RCSI Cancer CentreDublinIreland
| |
Collapse
|
2
|
Lu K, Wang W, Liu Y, Xie C, Liu J, Xing L. Advancements in microenvironment-based therapies: transforming the landscape of multiple myeloma treatment. Front Oncol 2024; 14:1413494. [PMID: 39087026 PMCID: PMC11288838 DOI: 10.3389/fonc.2024.1413494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
Multiple myeloma (MM) is the most prevalent malignant monoclonal disease of plasma cells. There is mounting evidence that interactions with the bone marrow (BM) niche are essential for the differentiation, proliferation, survival, migration, and treatment resistance of myeloma cells. For this reason, gaining a deeper comprehension of how BM microenvironment compartments interact with myeloma cells may inspire new therapeutic ideas that enhance patient outcomes. This review will concentrate on the most recent findings regarding the mechanisms of interaction between microenvironment and MM and highlight research on treatment targeting the BM niche.
Collapse
Affiliation(s)
- Ke Lu
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wen Wang
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuntong Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Chao Xie
- Department of Respiratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiye Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Lijie Xing
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, Shandong, China
| |
Collapse
|
3
|
Gupta R, Jevremovic D, Mathew SJ, Kumar S. Multiparametric Flow Cytometry in the Evaluation of Plasma Cell Proliferative Disorders: Current Paradigms for Clinical Practice. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:e88-e95. [PMID: 38142203 DOI: 10.1016/j.clml.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/25/2023]
Abstract
Diagnosis of plasma cell proliferative disorders (PCPDs) is primarily based on the demonstration of monoclonal protein (M-Protein) in blood and/ or urine which often precedes clinical manifestations of the disease. The basic pathophysiology behind the M-protein presence is the proliferation of clonal plasma cells (PCs) in bone marrow or extramedullary sites and is assessed using cytomorphology and immunophenotyping. The role of multiparametric flow cytometry (MFC) for PC identification is technically the most valuable tool in this context as it characterizes as well as quantifies the clonal PCs based on differential expression of various immunophenotypic (IPT) markers. From a diagnostic perspective, MFC is critical in the definite identification of the clonal PCs and delineates benign and borderline entities at one end of the spectrum (MGUS, SMM) with lower clonal PC% and, malignant diseases at the other end (MM and PCL) with higher clonal PC fraction. The role of MFC in assessment of measurable residual disease (MRD) and monitoring of progression in MM and various PCPDs has been validated in multiple clinical studies and is probably one of the most promising tools for predicting treatment outcomes. Furthermore, MFC also plays a crucial role in disease prognostication based on specific IPT profiles. An additional role of MFC in the current clinical scenario is the evaluation of tumor microenvironment based on immune cell repertoire, which is reflecting encouraging results across. Thus, in the current review we concisely describe the role of MFC as a reliable and essential modality in PCPDs, from diagnosis to prediction of treatment outcome and disease monitoring.
Collapse
Affiliation(s)
- Ritu Gupta
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, India; Department of Hematology, Mayo Clinic, Rochester, MN.
| | - Dragan Jevremovic
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN
| | | | - Shaji Kumar
- Department of Hematology, Mayo Clinic, Rochester, MN
| |
Collapse
|
4
|
Zhang CW, Wang YN, Ge XL. Lenalidomide use in multiple myeloma (Review). Mol Clin Oncol 2024; 20:7. [PMID: 38125742 PMCID: PMC10729307 DOI: 10.3892/mco.2023.2705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Lenalidomide is a second-generation new immunomodulatory medication used to treat multiple myeloma (MM). Its mechanism of action involves affecting the expression of vascular endothelial growth factor, interleukin-6, cytochrome c, caspase-8, as well as other factors including immunological modulation and the direct killing of cells, among others, rendering it a fundamental medication, useful for the treatment of MM. Combining lenalidomide with other medications such dexamethasone, bortezomib, ixazomib, carfilzomib and daratumumab can markedly alleviate MM. When autologous-hematopoietic stem cell transplantation (ASCT) cannot be utilized to treat newly diagnosed individuals with MM (NDMM), monotherapy maintenance following lenalidomide and dexamethasone may be employed. Following ASCT, single-agent maintenance with lenalidomide can be performed as an additional treatment. The combination of bortezomib and lenalidomide has been demonstrated to be associated with favorable response rates, tolerable toxicity, and therapeutic benefits although caution is warranted to prevent the onset of peripheral neuropathy with its use. A new-generation oral drug with an excellent safety profile, ixazomib, is more practical and therapeutically applicable in relapsed refractory MM. However, the frequent occurrence of cardiovascular events, hematocrit, and infections with it require flexible adjustment in its clinical application. Carfilzomib produces a rapid and profound response in patients with NDMM eligible for transplantation, but its cardiovascular side effects need to be closely monitored. The primary aim of the present review was to examine the pharmacological properties and pharmacokinetics of lenalidomide, as well as the efficacy and safety of lenalidomide-based treatments with reference to data from clinical trials and real-world studies.
Collapse
Affiliation(s)
- Chao-Wei Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Ya-Nan Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xue-Ling Ge
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
5
|
Calderon JJ, Prieto K, Lasso P, Fiorentino S, Barreto A. Modulation of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment by Natural Products. Arch Immunol Ther Exp (Warsz) 2023; 71:17. [PMID: 37410164 DOI: 10.1007/s00005-023-00681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023]
Abstract
During carcinogenesis, the microenvironment plays a fundamental role in tumor progression and resistance. This tumor microenvironment (TME) is characterized by being highly immunosuppressive in most cases, which makes it an important target for the development of new therapies. One of the most important groups of cells that orchestrate immunosuppression in TME is myeloid-derived suppressor cells (MDSCs), which have multiple mechanisms to suppress the immune response mediated by T lymphocytes and thus protect the tumor. In this review, we will discuss the importance of modulating MDSCs as a therapeutic target and how the use of natural products, due to their multiple mechanisms of action, can be a key alternative for modulating these cells and thus improve response to therapy in cancer patients.
Collapse
Affiliation(s)
- Jhon Jairo Calderon
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Karol Prieto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
- Departamento de Microbiología, Pontificia Universidad Javeriana, Carrera 7 # 43-82. Edificio 50 Laboratorio 101, Bogotá, Colombia.
| |
Collapse
|
6
|
Bhardwaj V, Ansell SM. Modulation of T-cell function by myeloid-derived suppressor cells in hematological malignancies. Front Cell Dev Biol 2023; 11:1129343. [PMID: 37091970 PMCID: PMC10113446 DOI: 10.3389/fcell.2023.1129343] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are pathologically activated neutrophils and monocytes that negatively regulate the immune response to cancer and chronic infections. Abnormal myelopoiesis and pathological activation of myeloid cells generate this heterogeneous population of myeloid-derived suppressor cells. They are characterized by their distinct transcription, phenotypic, biochemical, and functional features. In the tumor microenvironment (TME), myeloid-derived suppressor cells represent an important class of immunosuppressive cells that correlate with tumor burden, stage, and a poor prognosis. Myeloid-derived suppressor cells exert a strong immunosuppressive effect on T-cells (and a broad range of other immune cells), by blocking lymphocyte homing, increasing production of reactive oxygen and nitrogen species, promoting secretion of various cytokines, chemokines, and immune regulatory molecules, stimulation of other immunosuppressive cells, depletion of various metabolites, and upregulation of immune checkpoint molecules. Additionally, the heterogeneity of myeloid-derived suppressor cells in cancer makes their identification challenging. Overall, they serve as a major obstacle for many cancer immunotherapies and targeting them could be a favorable strategy to improve the effectiveness of immunotherapeutic interventions. However, in hematological malignancies, particularly B-cell malignancies, the clinical outcomes of targeting these myeloid-derived suppressor cells is a field that is still to be explored. This review summarizes the complex biology of myeloid-derived suppressor cells with an emphasis on the immunosuppressive pathways used by myeloid-derived suppressor cells to modulate T-cell function in hematological malignancies. In addition, we describe the challenges, therapeutic strategies, and clinical relevance of targeting myeloid-derived suppressor cells in these diseases.
Collapse
|
7
|
Giannotta C, Autino F, Massaia M. The immune suppressive tumor microenvironment in multiple myeloma: The contribution of myeloid-derived suppressor cells. Front Immunol 2023; 13:1102471. [PMID: 36726975 PMCID: PMC9885853 DOI: 10.3389/fimmu.2022.1102471] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Myeloid derived suppressors cells (MDSC) play major roles in regulating immune homeostasis and immune responses in many conditions, including cancer. MDSC interact with cancer cells within the tumor microenvironment (TME) with direct and indirect mechanisms: production of soluble factors and cytokines, expression of surface inhibitory molecules, metabolic rewiring and exosome release. The two-way relationship between MDSC and tumor cells results in immune evasion and cancer outgrowth. In multiple myeloma (MM), MDSC play a major role in creating protumoral TME conditions. In this minireview, we will discuss the interplay between MDSC and MM TME and the possible strategies to target MDSC.
Collapse
Affiliation(s)
- Claudia Giannotta
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Torino, Italy
| | - Federica Autino
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Torino, Italy
| | - Massimo Massaia
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Biotecnologie Molecolari “Guido Tarone”, Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Università degli Studi di Torino, Torino, Italy,SC Ematologia, AO S.Croce e Carle, Cuneo, Italy,*Correspondence: Massimo Massaia,
| |
Collapse
|
8
|
Fan R, De Beule N, Maes A, De Bruyne E, Menu E, Vanderkerken K, Maes K, Breckpot K, De Veirman K. The prognostic value and therapeutic targeting of myeloid-derived suppressor cells in hematological cancers. Front Immunol 2022; 13:1016059. [PMID: 36304465 PMCID: PMC9592826 DOI: 10.3389/fimmu.2022.1016059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
The success of immunotherapeutic approaches in hematological cancers is partially hampered by the presence of an immunosuppressive microenvironment. Myeloid-derived suppressor cells (MDSC) are key components of this suppressive environment and are frequently associated with tumor cell survival and drug resistance. Based on their morphology and phenotype, MDSC are commonly subdivided into polymorphonuclear MDSC (PMN-MDSC or G-MDSC) and monocytic MDSC (M-MDSC), both characterized by their immunosuppressive function. The phenotype, function and prognostic value of MDSC in hematological cancers has been intensively studied; however, the therapeutic targeting of this cell population remains challenging and needs further investigation. In this review, we will summarize the prognostic value of MDSC and the different attempts to target MDSC (or subtypes of MDSC) in hematological cancers. We will discuss the benefits, challenges and opportunities of using MDSC-targeting approaches, aiming to enhance anti-tumor immune responses of currently used cellular and non-cellular immunotherapies.
Collapse
Affiliation(s)
- Rong Fan
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nathan De Beule
- Department of Clinical Hematology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Anke Maes
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ken Maes
- Center for Medical Genetics, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- *Correspondence: Kim De Veirman,
| |
Collapse
|
9
|
Targeting tumour-reprogrammed myeloid cells: the new battleground in cancer immunotherapy. Semin Immunopathol 2022; 45:163-186. [PMID: 36161514 PMCID: PMC9513014 DOI: 10.1007/s00281-022-00965-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 11/08/2022]
Abstract
Tumour microenvironment is a complex ecosystem in which myeloid cells are the most abundant immune elements. This cell compartment is composed by different cell types, including neutrophils, macrophages, dendritic cells, and monocytes but also unexpected cell populations with immunosuppressive and pro-tumour roles. Indeed, the release of tumour-derived factors influences physiological haematopoiesis producing unconventional cells with immunosuppressive and tolerogenic functions such as myeloid-derived suppressor cells. These pro-tumour myeloid cell populations not only support immune escape directly but also assist tumour invasion trough non-immunological activities. It is therefore not surprising that these cell subsets considerably impact in tumour progression and cancer therapy resistance, including immunotherapy, and are being investigated as potential targets for developing a new era of cancer therapy. In this review, we discuss emerging strategies able to modulate the functional activity of these tumour-supporting myeloid cells subverting their accumulation, recruitment, survival, and functions. These innovative approaches will help develop innovative, or improve existing, cancer treatments.
Collapse
|
10
|
Muylaert C, Van Hemelrijck LA, Maes A, De Veirman K, Menu E, Vanderkerken K, De Bruyne E. Aberrant DNA methylation in multiple myeloma: A major obstacle or an opportunity? Front Oncol 2022; 12:979569. [PMID: 36059621 PMCID: PMC9434119 DOI: 10.3389/fonc.2022.979569] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
Drug resistance (DR) of cancer cells leading to relapse is a huge problem nowadays to achieve long-lasting cures for cancer patients. This also holds true for the incurable hematological malignancy multiple myeloma (MM), which is characterized by the accumulation of malignant plasma cells in the bone marrow (BM). Although new treatment approaches combining immunomodulatory drugs, corticosteroids, proteasome inhibitors, alkylating agents, and monoclonal antibodies have significantly improved median life expectancy, MM remains incurable due to the development of DR, with the underlying mechanisms remaining largely ill-defined. It is well-known that MM is a heterogeneous disease, encompassing both genetic and epigenetic aberrations. In normal circumstances, epigenetic modifications, including DNA methylation and posttranslational histone modifications, play an important role in proper chromatin structure and transcriptional regulation. However, in MM, numerous epigenetic defects or so-called ‘epimutations’ have been observed and this especially at the level of DNA methylation. These include genome-wide DNA hypomethylation, locus specific hypermethylation and somatic mutations, copy number variations and/or deregulated expression patterns in DNA methylation modifiers and regulators. The aberrant DNA methylation patterns lead to reduced gene expression of tumor suppressor genes, genomic instability, DR, disease progression, and high-risk disease. In addition, the frequency of somatic mutations in the DNA methylation modifiers seems increased in relapsed patients, again suggesting a role in DR and relapse. In this review, we discuss the recent advances in understanding the involvement of aberrant DNA methylation patterns and/or DNA methylation modifiers in MM development, progression, and relapse. In addition, we discuss their involvement in MM cell plasticity, driving myeloma cells to a cancer stem cell state characterized by a more immature and drug-resistant phenotype. Finally, we briefly touch upon the potential of DNA methyltransferase inhibitors to prevent relapse after treatment with the current standard of care agents and/or new, promising (immuno) therapies.
Collapse
|
11
|
Yu S, Ren X, Li L. Myeloid-derived suppressor cells in hematologic malignancies: two sides of the same coin. Exp Hematol Oncol 2022; 11:43. [PMID: 35854339 PMCID: PMC9295421 DOI: 10.1186/s40164-022-00296-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of bone marrow cells originating from immature myeloid cells. They exert potent immunosuppressive activity and are closely associated with the development of various diseases such as malignancies, infections, and inflammation. In malignant tumors, MDSCs, one of the most dominant cellular components comprising the tumor microenvironment, play a crucial role in tumor growth, drug resistance, recurrence, and immune escape. Although the role of MDSCs in solid tumors is currently being extensively studied, little is known about their role in hematologic malignancies. In this review, we comprehensively summarized and reviewed the different roles of MDSCs in hematologic malignancies and hematopoietic stem cell transplantation, and finally discussed current targeted therapeutic strategies.Affiliation: Kindly check and confirm the processed affiliations are correct. Amend if any.correct
Collapse
Affiliation(s)
- Shunjie Yu
- Department of Hematology, Tianjin Medical University General Hospital, Heping district 154 Anshan Road, Tianjin, China
| | - Xiaotong Ren
- Department of Hematology, Tianjin Medical University General Hospital, Heping district 154 Anshan Road, Tianjin, China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Heping district 154 Anshan Road, Tianjin, China.
| |
Collapse
|
12
|
Siemińska I, Baran J. Myeloid-Derived Suppressor Cells as Key Players and Promising Therapy Targets in Prostate Cancer. Front Oncol 2022; 12:862416. [PMID: 35860573 PMCID: PMC9289201 DOI: 10.3389/fonc.2022.862416] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/06/2022] [Indexed: 12/27/2022] Open
Abstract
Prostate cancer (PC) is the second most often diagnosed malignancy in men and one of the major causes of cancer death worldwide. Despite genetic predispositions, environmental factors, including a high-fat diet, obesity, a sedentary lifestyle, infections of the prostate, and exposure to chemicals or ionizing radiation, play a crucial role in PC development. Moreover, due to a lack of, or insufficient T-cell infiltration and its immunosuppressive microenvironment, PC is frequently classified as a “cold” tumor. This is related to the absence of tumor-associated antigens, the lack of T-cell activation and their homing into the tumor bed, and the presence of immunological cells with regulatory functions, including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Treg), and tumor-associated macrophages (TAMs). All of them, by a variety of means, hamper anti-tumor immune response in the tumor microenvironment (TME), stimulating tumor growth and the formation of metastases. Therefore, they emerge as potential anti-cancer therapy targets. This article is focused on the function and role of MDSCs in the initiation and progression of PC. Clinical trials directly targeting this cell population or affecting its biological functions, thus limiting its pro-tumorigenic activity, are also presented.
Collapse
Affiliation(s)
- Izabela Siemińska
- Department of Clinical Immunology, Jagiellonian University Medical College, Cracow, Poland
- University Centre of Veterinary Medicine, Jagiellonian University - University of Agriculture, Cracow, Poland
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, Cracow, Poland
- *Correspondence: Jarek Baran,
| |
Collapse
|
13
|
Logie E, Van Puyvelde B, Cuypers B, Schepers A, Berghmans H, Verdonck J, Laukens K, Godderis L, Dhaenens M, Deforce D, Vanden Berghe W. Ferroptosis Induction in Multiple Myeloma Cells Triggers DNA Methylation and Histone Modification Changes Associated with Cellular Senescence. Int J Mol Sci 2021; 22:12234. [PMID: 34830117 PMCID: PMC8618106 DOI: 10.3390/ijms222212234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Disease relapse and therapy resistance remain key challenges in treating multiple myeloma. Underlying (epi-)mutational events can promote myelomagenesis and contribute to multi-drug and apoptosis resistance. Therefore, compounds inducing ferroptosis, a form of iron and lipid peroxidation-regulated cell death, are appealing alternative treatment strategies for multiple myeloma and other malignancies. Both ferroptosis and the epigenetic machinery are heavily influenced by oxidative stress and iron metabolism changes. Yet, only a limited number of epigenetic enzymes and modifications have been identified as ferroptosis regulators. In this study, we found that MM1 multiple myeloma cells are sensitive to ferroptosis induction and epigenetic reprogramming by RSL3, irrespective of their glucocorticoid-sensitivity status. LC-MS/MS analysis revealed the formation of non-heme iron-histone complexes and altered expression of histone modifications associated with DNA repair and cellular senescence. In line with this observation, EPIC BeadChip measurements of significant DNA methylation changes in ferroptotic myeloma cells demonstrated an enrichment of CpG probes located in genes associated with cell cycle progression and senescence, such as Nuclear Receptor Subfamily 4 Group A member 2 (NR4A2). Overall, our data show that ferroptotic cell death is associated with an epigenomic stress response that might advance the therapeutic applicability of ferroptotic compounds.
Collapse
Affiliation(s)
- Emilie Logie
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (E.L.); (H.B.)
| | - Bart Van Puyvelde
- Laboratory of Pharmaceutical Biotechnology, Proteomics and Mass Spectrometry Department, Ghent University, 9000 Ghent, Belgium; (B.V.P.); (M.D.); (D.D.)
| | - Bart Cuypers
- Biomedical Informatics Network Antwerp (Biomina), Department of Computer Science, University of Antwerp, 2610 Antwerp, Belgium; (B.C.); (K.L.)
| | - Anne Schepers
- Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, 2650 Edegem, Belgium;
| | - Herald Berghmans
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (E.L.); (H.B.)
| | - Jelle Verdonck
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (J.V.); (L.G.)
| | - Kris Laukens
- Biomedical Informatics Network Antwerp (Biomina), Department of Computer Science, University of Antwerp, 2610 Antwerp, Belgium; (B.C.); (K.L.)
| | - Lode Godderis
- Center for Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium; (J.V.); (L.G.)
- IDEWE, External Service for Prevention and Protection at Work, 3001 Heverlee, Belgium
| | - Maarten Dhaenens
- Laboratory of Pharmaceutical Biotechnology, Proteomics and Mass Spectrometry Department, Ghent University, 9000 Ghent, Belgium; (B.V.P.); (M.D.); (D.D.)
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Proteomics and Mass Spectrometry Department, Ghent University, 9000 Ghent, Belgium; (B.V.P.); (M.D.); (D.D.)
| | - Wim Vanden Berghe
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (E.L.); (H.B.)
| |
Collapse
|
14
|
Zhao G, Wang Q, Li S, Wang X. Resistance to Hypomethylating Agents in Myelodysplastic Syndrome and Acute Myeloid Leukemia From Clinical Data and Molecular Mechanism. Front Oncol 2021; 11:706030. [PMID: 34650913 PMCID: PMC8505973 DOI: 10.3389/fonc.2021.706030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
The nucleoside analogs decitabine (5-AZA-dC) and azacitidine (5-AZA) have been developed as targeted therapies to reverse DNA methylation in different cancer types, and they significantly improve the survival of patients who are not suitable for traditional intensive chemotherapies or other treatment regimens. However, approximately 50% of patients have a response to hypomethylating agents (HMAs), and many patients have no response originally or in the process of treatment. Even though new combination regimens have been tested to overcome the resistance to 5-AZA-dC or 5-AZA, only a small proportion of patients benefited from these strategies, and the outcome was very poor. However, the mechanisms of the resistance remain unknown. Some studies only partially described management after failure and the mechanisms of resistance. Herein, we will review the clinical and molecular signatures of the HMA response, alternative treatment after failure, and the causes of resistance in hematological malignancies.
Collapse
Affiliation(s)
| | | | | | - Xiaoqin Wang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Zhaoyun L, Rong F. Predictive Role of Immune Profiling for Survival of Multiple Myeloma Patients. Front Immunol 2021; 12:663748. [PMID: 34290698 PMCID: PMC8287504 DOI: 10.3389/fimmu.2021.663748] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/23/2021] [Indexed: 01/10/2023] Open
Abstract
Despite new efficacy drugs and cell therapy have been used for multiple myeloma (MM) patients, some patients will relapse over time. We wonder the immune system play a vital role as well as MM cell during the development of disease. It is clear that the characteristic of myeloma cell is associated with the survival of MM patients. However, the link between the immune profiling and the prognosis of the disease is still not entirely clear. As more study focus on the role of immunity on multiple myeloma pathogenesis. There are plenty of study about the predictive role of immunity on the survival of multiple myeloma patients. Up to mow, the majority reviews published have focused on the immunotherapy and immune pathogenesis. It is indispensable to overlook the predictive role of immunity on multiple myeloma patients. Here, we give a review of vital previous works and recent progress related to the predictive role of immune profiling on multiple myeloma, such as absolute lymphocyte count, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, lymphocytes and cytokines.
Collapse
Affiliation(s)
- Liu Zhaoyun
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fu Rong
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
16
|
Olivares-Hernández A, Figuero-Pérez L, Terán-Brage E, López-Gutiérrez Á, Velasco ÁT, Sarmiento RG, Cruz-Hernández JJ, Miramontes-González JP. Resistance to Immune Checkpoint Inhibitors Secondary to Myeloid-Derived Suppressor Cells: A New Therapeutic Targeting of Haematological Malignancies. J Clin Med 2021; 10:jcm10091919. [PMID: 33925214 PMCID: PMC8124332 DOI: 10.3390/jcm10091919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 01/11/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a set of immature myeloid lineage cells that include macrophages, granulocytes, and dendritic cell precursors. This subpopulation has been described in relation to the tumour processes at different levels, including resistance to immunotherapy, such as immune checkpoint inhibitors (ICIs). Currently, multiple studies at the preclinical and clinical levels seek to use this cell population for the treatment of different haematological neoplasms, together with ICIs. This review addresses the different points in ongoing studies of MDSCs and ICIs in haematological malignancies and their future significance in routine clinical practice.
Collapse
Affiliation(s)
- Alejandro Olivares-Hernández
- Department of Medical Oncology, University Hospital of Salamanca, 37007 Salamanca, Spain; (L.F.-P.); (E.T.-B.); (Á.L.-G.); (J.J.C.-H.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Correspondence: (A.O.-H.); (J.P.M.-G.); Tel.: +34-923-29-11-00 (A.O.-H.); +34-983-42-04-00 (J.P.M.-G.); Fax: +34-923-29-13-25 (A.O.-H.); +34-983-21-53-65 (J.P.M.-G.)
| | - Luis Figuero-Pérez
- Department of Medical Oncology, University Hospital of Salamanca, 37007 Salamanca, Spain; (L.F.-P.); (E.T.-B.); (Á.L.-G.); (J.J.C.-H.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Eduardo Terán-Brage
- Department of Medical Oncology, University Hospital of Salamanca, 37007 Salamanca, Spain; (L.F.-P.); (E.T.-B.); (Á.L.-G.); (J.J.C.-H.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Álvaro López-Gutiérrez
- Department of Medical Oncology, University Hospital of Salamanca, 37007 Salamanca, Spain; (L.F.-P.); (E.T.-B.); (Á.L.-G.); (J.J.C.-H.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Álvaro Tamayo Velasco
- Department of Haematology, University Hospital of Valladolid, 47003 Valladolid, Spain;
| | - Rogelio González Sarmiento
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Juan Jesús Cruz-Hernández
- Department of Medical Oncology, University Hospital of Salamanca, 37007 Salamanca, Spain; (L.F.-P.); (E.T.-B.); (Á.L.-G.); (J.J.C.-H.)
- Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - José Pablo Miramontes-González
- Department of Internal Medicine, University Hospital Rio Hortega, 47012 Valladolid, Spain
- Department of Medicine, University of Valladolid, 45005 Valladolid, Spain
- Correspondence: (A.O.-H.); (J.P.M.-G.); Tel.: +34-923-29-11-00 (A.O.-H.); +34-983-42-04-00 (J.P.M.-G.); Fax: +34-923-29-13-25 (A.O.-H.); +34-983-21-53-65 (J.P.M.-G.)
| |
Collapse
|
17
|
Maes K, Mondino A, Lasarte JJ, Agirre X, Vanderkerken K, Prosper F, Breckpot K. Epigenetic Modifiers: Anti-Neoplastic Drugs With Immunomodulating Potential. Front Immunol 2021; 12:652160. [PMID: 33859645 PMCID: PMC8042276 DOI: 10.3389/fimmu.2021.652160] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer cells are under the surveillance of the host immune system. Nevertheless, a number of immunosuppressive mechanisms allow tumors to escape protective responses and impose immune tolerance. Epigenetic alterations are central to cancer cell biology and cancer immune evasion. Accordingly, epigenetic modulating agents (EMAs) are being exploited as anti-neoplastic and immunomodulatory agents to restore immunological fitness. By simultaneously acting on cancer cells, e.g. by changing expression of tumor antigens, immune checkpoints, chemokines or innate defense pathways, and on immune cells, e.g. by remodeling the tumor stroma or enhancing effector cell functionality, EMAs can indeed overcome peripheral tolerance to transformed cells. Therefore, combinations of EMAs with chemo- or immunotherapy have become interesting strategies to fight cancer. Here we review several examples of epigenetic changes critical for immune cell functions and tumor-immune evasion and of the use of EMAs in promoting anti-tumor immunity. Finally, we provide our perspective on how EMAs could represent a game changer for combinatorial therapies and the clinical management of cancer.
Collapse
Affiliation(s)
- Ken Maes
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, Vrije Universiteit Brussel (VUB), Universiteit Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Xabier Agirre
- Laboratory of Cancer Epigenetics, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Pamplona, Spain.,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Karin Vanderkerken
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Felipe Prosper
- Laboratory of Cancer Epigenetics, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Pamplona, Spain.,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain.,Hematology and Cell Therapy Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
18
|
Wong KK, Hassan R, Yaacob NS. Hypomethylating Agents and Immunotherapy: Therapeutic Synergism in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Front Oncol 2021; 11:624742. [PMID: 33718188 PMCID: PMC7947882 DOI: 10.3389/fonc.2021.624742] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Decitabine and guadecitabine are hypomethylating agents (HMAs) that exert inhibitory effects against cancer cells. This includes stimulation of anti-tumor immunity in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) patients. Treatment of AML and MDS patients with the HMAs confers upregulation of cancer/testis antigens (CTAs) expression including the highly immunogenic CTA NY-ESO-1. This leads to activation of CD4+ and CD8+ T cells for elimination of cancer cells, and it establishes the feasibility to combine cancer vaccine with HMAs to enhance vaccine immunogenicity. Moreover, decitabine and guadecitabine induce the expression of immune checkpoint molecules in AML cells. In this review, the accumulating knowledge on the immunopotentiating properties of decitabine and guadecitabine in AML and MDS patients are presented and discussed. In summary, combination of decitabine or guadecitabine with NY-ESO-1 vaccine enhances vaccine immunogenicity in AML patients. T cells from AML patients stimulated with dendritic cell (DC)/AML fusion vaccine and guadecitabine display increased capacity to lyse AML cells. Moreover, decitabine enhances NK cell-mediated cytotoxicity or CD123-specific chimeric antigen receptor-engineered T cells antileukemic activities against AML. Furthermore, combination of either HMAs with immune checkpoint blockade (ICB) therapy may circumvent their resistance. Finally, clinical trials of either HMAs combined with cancer vaccines, NK cell infusion or ICB therapy in relapsed/refractory AML and high-risk MDS patients are currently underway, highlighting the promising efficacy of HMAs and immunotherapy synergy against these malignancies.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
19
|
The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers (Basel) 2021; 13:cancers13020217. [PMID: 33435306 PMCID: PMC7827690 DOI: 10.3390/cancers13020217] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Multiple Myeloma (MM) is a hematologic malignancy caused by aberrant plasma cell proliferation in the bone marrow (BM) and constitutes the second most common hematological disease after non-Hodgkin lymphoma. The disease progression is drastically regulated by the immunosuppressive tumor microenvironment (TME) generated by soluble factors and different cells that naturally reside in the BM. This microenvironment does not remain unchanged and alterations favor cancer dissemination. Despite therapeutic advances over the past 15 years, MM remains incurable and therefore understanding the elements that control the TME in MM would allow better-targeted therapies to cure this disease. In this review, we discuss the main events and changes that occur in the BM milieu during MM development. Abstract Multiple myeloma (MM) is a hematologic cancer characterized by clonal proliferation of plasma cells in the bone marrow (BM). The progression, from the early stages of the disease as monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) to MM and occasionally extramedullary disease, is drastically affected by the tumor microenvironment (TME). Soluble factors and direct cell–cell interactions regulate MM plasma cell trafficking and homing to the BM niche. Mesenchymal stromal cells, osteoclasts, osteoblasts, myeloid and lymphoid cells present in the BM create a unique milieu that favors MM plasma cell immune evasion and promotes disease progression. Moreover, TME is implicated in malignant cell protection against anti-tumor therapy. This review describes the main cellular and non-cellular components located in the BM, which condition the immunosuppressive environment and lead the MM establishment and progression.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW This article focuses on the immunosuppressive impact of myeloid-derived suppressor cells (MDSCs) and the potential clinical implications in hematological malignancies. RECENT FINDINGS MDSCs play a critical role in the regulation of the immune response in cancer. They inhibit activation of adaptive immune response and as a result foster the growth of the malignancy. Recent studies have shown that MDSCs serve as prognostic biomarkers and as targets for cancer immunotherapy. Preclinical and clinical studies have identified new approaches to deplete MDSC populations and inhibit MDSC function with combination immunomodulatory therapies including chemotherapeutic agents with immune checkpoint-directed treatment. SUMMARY A broad spectrum of publications indicate that direct targeting of MDSCs may abrogate their protumorigenic impact within the tumor microenvironment through activation of the adaptive immune response.
Collapse
|
21
|
Characteristics of a Novel Target Antigen Against Myeloma Cells for Immunotherapy. Vaccines (Basel) 2020; 8:vaccines8040579. [PMID: 33023190 PMCID: PMC7712752 DOI: 10.3390/vaccines8040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022] Open
Abstract
Despite the availability of therapeutic treatments, multiple myeloma is an incurable haematological disorder. In this study, we aimed to clarify the role of CXorf48 as a therapeutic target in multiple myeloma. Based on a previously identified HLA-A*24:02-restiricted epitope from this novel cancer/testis antigen, we characterized the activities of cytotoxic T lymphocytes (CTLs) specific to this antigen against myeloma cells and evaluated the effects of demethylating agents in increasing antigen expression and enhancing the cytotoxic activity of CTLs. CXorf48 expression was examined by reverse transcription polymerase chain reaction (RT-PCR) using nine myeloma cell lines. Cell lines with low CXorf48 expression were treated by demethylating agents (DMAs), 5-azacytidine (5-aza), and 5-aza-2’-deoxycytidine (DAC) to evaluate gene expression using quantitative RT-PCR. Furthermore, CXorf48-specific CTLs were induced from peripheral blood mononuclear cells of HLA-A*24:02-positive healthy donors to evaluate antigen recognition using ELISpot and 51Cr cytotoxicity assays. CXorf48 was widely expressed in myeloma cells, and gene expression was significantly increased by DMAs. Furthermore, CXorf48-specific CTLs recognized DMA-treated myeloma cells. These findings suggest that CXorf48 is a useful target for immunotherapy, such as vaccination, in combination with demethylating agents for the treatment of patients with myeloma.
Collapse
|
22
|
Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist Updat 2020; 53:100715. [PMID: 32679188 DOI: 10.1016/j.drup.2020.100715] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 12/11/2022]
Abstract
It is well established that multifactorial drug resistance hinders successful cancer treatment. Tumor cell interactions with the tumor microenvironment (TME) are crucial in epithelial-mesenchymal transition (EMT) and multidrug resistance (MDR). TME-induced factors secreted by cancer cells and cancer-associated fibroblasts (CAFs) create an inflammatory microenvironment by recruiting immune cells. CD11b+/Gr-1+ myeloid-derived suppressor cells (MDSCs) and inflammatory tumor associated macrophages (TAMs) are main immune cell types which further enhance chronic inflammation. Chronic inflammation nurtures tumor-initiating/cancer stem-like cells (CSCs), induces both EMT and MDR leading to tumor relapses. Pro-thrombotic microenvironment created by inflammatory cytokines and chemokines from TAMs, MDSCs and CAFs is also involved in EMT and MDR. MDSCs are the most common mediators of immunosuppression and are also involved in resistance to targeted therapies, e.g. BRAF inhibitors and oncolytic viruses-based therapies. Expansion of both cancer and stroma cells causes hypoxia by hypoxia-inducible transcription factors (e.g. HIF-1α) resulting in drug resistance. TME factors induce the expression of transcriptional EMT factors, MDR and metabolic adaptation of cancer cells. Promoters of several ATP-binding cassette (ABC) transporter genes contain binding sites for canonical EMT transcription factors, e.g. ZEB, TWIST and SNAIL. Changes in glycolysis, oxidative phosphorylation and autophagy during EMT also promote MDR. Conclusively, EMT signaling simultaneously increases MDR. Owing to the multifactorial nature of MDR, targeting one mechanism seems to be non-sufficient to overcome resistance. Targeting inflammatory processes by immune modulatory compounds such as mTOR inhibitors, demethylating agents, low-dosed histone deacetylase inhibitors may decrease MDR. Targeting EMT and metabolic adaptation by small molecular inhibitors might also reverse MDR. In this review, we summarize evidence for TME components as causative factors of EMT and anticancer drug resistance.
Collapse
|
23
|
Li N, Liu L, Xiang P, Liang L, Wang J, Wang Y, Luo S, Song Y, Fang B. Addition of low‐dose decitabine to bortezomib and dexamethasone as second‐line therapy in multiple myeloma. Br J Haematol 2020; 189:e258-e262. [PMID: 32346851 DOI: 10.1111/bjh.16686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ning Li
- Department of Oncology Henan Cancer Hospital Henan Cancer Hospital Affiliated to Zhengzhou University Zhengzhou University Zhengzhou China
| | - Lina Liu
- Department of Hematology Henan Institute of Haematology Henan Cancer Hospital Henan Cancer Hospital Affiliated to Zhengzhou University Zhengzhou University Zhengzhou China
| | - Pu Xiang
- Department of Hematology Henan Institute of Haematology Henan Cancer Hospital Henan Cancer Hospital Affiliated to Zhengzhou University Zhengzhou University Zhengzhou China
| | - Lijie Liang
- Department of Hematology Henan Institute of Haematology Henan Cancer Hospital Henan Cancer Hospital Affiliated to Zhengzhou University Zhengzhou University Zhengzhou China
| | - Juan Wang
- Department of Hematology Henan Institute of Haematology Henan Cancer Hospital Henan Cancer Hospital Affiliated to Zhengzhou University Zhengzhou University Zhengzhou China
| | - Yaomei Wang
- Department of Hematology Henan Institute of Haematology Henan Cancer Hospital Henan Cancer Hospital Affiliated to Zhengzhou University Zhengzhou University Zhengzhou China
| | - Suxia Luo
- Department of Oncology Henan Cancer Hospital Henan Cancer Hospital Affiliated to Zhengzhou University Zhengzhou University Zhengzhou China
| | - Yongping Song
- Department of Hematology Henan Institute of Haematology Henan Cancer Hospital Henan Cancer Hospital Affiliated to Zhengzhou University Zhengzhou University Zhengzhou China
| | - Baijun Fang
- Department of Hematology Henan Institute of Haematology Henan Cancer Hospital Henan Cancer Hospital Affiliated to Zhengzhou University Zhengzhou University Zhengzhou China
| |
Collapse
|
24
|
Myeloid-driven mechanisms as barriers to antitumor CD8 + T cell activity. Mol Immunol 2019; 118:165-173. [PMID: 31884388 DOI: 10.1016/j.molimm.2019.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
Abstract
The adaptive immune system is essential for host defense against pathogenic challenges, and a major constituent is the CD8+ cytotoxic T cell. Ordinarily, CD8+ T cells are endowed with a unique ability to specifically recognize and destroy their targets. However, in cases where disease emerges, especially in cancer, the efficacy of the CD8+ T cell response is frequently counterbalanced in a 'tug-of-war' by networks of tumor-driven mechanisms of immune suppression. As a result, antitumor CD8+ T cell activity is hampered, which contributes to clinical manifestations of disease. It is now well-recognized that prominent elements of that network include myeloid-derived suppressor cells (MDSC) and macrophages which assume tumor-supportive phenotypes. Both myeloid populations are thought to arise as consequences of chronic inflammatory cues produced during the neoplastic process. Numerous preclinical studies have now shown that inhibiting the production, trafficking and/or function of these immune suppressive myeloid populations restore antitumor CD8+ T cell responses during both immune surveillance or in response to immune-targeted interventions. Correlative studies in cancer patients support these preclinical findings and, thus, have laid the foundation for ongoing clinical trials in patients receiving novel agents that target such myeloid elements alone or in combination with immunotherapy to potentially improve cancer patient outcomes. Accordingly, this review focuses on how and why it is important to study the myeloid-T cell interplay as an innovative strategy to boost or reinvigorate the CD8+ T cell response as a critical weapon in the battle against malignancy.
Collapse
|
25
|
Monocytic Myeloid Derived Suppressor Cells in Hematological Malignancies. Int J Mol Sci 2019; 20:ijms20215459. [PMID: 31683978 PMCID: PMC6862591 DOI: 10.3390/ijms20215459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/27/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
In the era of novel agents and immunotherapies in solid and liquid tumors, there is an emerging need to understand the cross-talk between the neoplastic cells, the host immune system, and the microenvironment to mitigate proliferation, survival, migration and resistance to drugs. In the microenvironment of hematological tumors there are cells belonging to the normal bone marrow, extracellular matrix proteins, adhesion molecules, cytokines, and growth factors produced by both stromal cells and neoplastic cells themselves. In this context, myeloid suppressor cells are an emerging sub-population of regulatory myeloid cells at different stages of differentiation involved in cancer progression and chronic inflammation. In this review, monocytic myeloid derived suppressor cells and their potential clinical implications are discussed to give a comprehensive vision of their contribution to lymphoproliferative and myeloid disorders.
Collapse
|
26
|
Palumbo GA, Parrinello NL, Giallongo C, D'Amico E, Zanghì A, Puglisi F, Conticello C, Chiarenza A, Tibullo D, Raimondo FD, Romano A. Monocytic Myeloid Derived Suppressor Cells in Hematological Malignancies. Int J Mol Sci 2019. [PMID: 31683978 DOI: 10.3390/ijms20215459.pmid:31683978;pmcid:pmc6862591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
In the era of novel agents and immunotherapies in solid and liquid tumors, there is an emerging need to understand the cross-talk between the neoplastic cells, the host immune system, and the microenvironment to mitigate proliferation, survival, migration and resistance to drugs. In the microenvironment of hematological tumors there are cells belonging to the normal bone marrow, extracellular matrix proteins, adhesion molecules, cytokines, and growth factors produced by both stromal cells and neoplastic cells themselves. In this context, myeloid suppressor cells are an emerging sub-population of regulatory myeloid cells at different stages of differentiation involved in cancer progression and chronic inflammation. In this review, monocytic myeloid derived suppressor cells and their potential clinical implications are discussed to give a comprehensive vision of their contribution to lymphoproliferative and myeloid disorders.
Collapse
Affiliation(s)
- Giuseppe Alberto Palumbo
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
- Department of Clinical and Molecular Biomedicine Ingrassia, University of Catania, 95125 Catania, Italy.
| | - Nunziatina Laura Parrinello
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
- Department of Clinical and Molecular Biomedicine Ingrassia, University of Catania, 95125 Catania, Italy.
| | - Cesarina Giallongo
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
| | - Emanuele D'Amico
- Department of Clinical and Molecular Biomedicine Ingrassia, University of Catania, 95125 Catania, Italy.
| | - Aurora Zanghì
- Department of Clinical and Molecular Biomedicine Ingrassia, University of Catania, 95125 Catania, Italy.
| | - Fabrizio Puglisi
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
- Dipartimento di Chirurgia generale e specialità medico-chirurgiche, CHIRMED, University of Catania, 95125 Catania, Italy.
| | - Concetta Conticello
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
| | - Annalisa Chiarenza
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
| | - Daniele Tibullo
- BIOMETEC, Dipartimento di Scienze Biomediche e Biotecnologiche, University of Catania, 95125 Catania, Italy.
| | - Francesco Di Raimondo
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
- Dipartimento di Chirurgia generale e specialità medico-chirurgiche, CHIRMED, University of Catania, 95125 Catania, Italy.
| | - Alessandra Romano
- Division of Hematology, AOU "Policlinico-Vittorio Emanuele", 95125 Catania, Italy.
- Dipartimento di Chirurgia generale e specialità medico-chirurgiche, CHIRMED, University of Catania, 95125 Catania, Italy.
| |
Collapse
|