1
|
Kasmirski JA, Roy R, Wu C, Wheeler L, Kerrick Akinola K, Chen H, Bart Rose J, Cheng C, Bhatia S, Gillis A. Unraveling the clinical impact of differential DNA methylation in PDAC: A systematic review. Eur J Cancer 2025; 220:115384. [PMID: 40154213 DOI: 10.1016/j.ejca.2025.115384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/03/2025] [Accepted: 03/16/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION Despite significant efforts to improve clinical outcomes, pancreatic ductal adenocarcinoma (PDAC) has a high mortality rate. The poor prognosis associated with this disease is multifactorial and associated with a highly variable genetic profile associated with its pathogenesis. Epigenetic modifications including DNA methylation further affect the expression of genetic material. However, there is no comprehensive understanding of the clinical impact of DNA methylation in PDAC. METHODS A systematic literature review was registered on the International Prospective Register of Systematic Reviews database (CRD42023451955) and followed Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. An electronic search was conducted using the following databases: CINAHL Plus, Cochrane Library, Embase, Web of Science, Ovid Medline, and Google Scholar. Inclusion criteria included studies of patients with a PDAC diagnosis and information regarding genes or CpG sites that potentially affect diagnosis, prognosis, or survival of PDAC. RESULTS The initial search retrieved 2402 articles, and 423 duplicates were excluded. After exclusion criteria was applied, 19 studies were included. The most common genes recorded as affecting tumor pathogenesis were SFRP1 (n = 3/19, 15.7 %) and NPTX2 (n = 2/19, 10,5 %). Studies indicated that hypermethylation of SFRP1 and NPTX2 were associated with poor prognosis. CONCLUSIONS PDAC is associated with a range of epigenetic modifications. Methylation of specific genes related to PDAC may influence survival and prognosis and be a therapeutic target. Individual patient epigenetic analysis may be a future direction in directing PDAC treatment and prognosis.
Collapse
Affiliation(s)
| | - Raj Roy
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christopher Wu
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lauren Wheeler
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - K Kerrick Akinola
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Bart Rose
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Changde Cheng
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Smita Bhatia
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrea Gillis
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Fanijavadi S, Thomassen M, Jensen LH. Targeting Triple NK Cell Suppression Mechanisms: A Comprehensive Review of Biomarkers in Pancreatic Cancer Therapy. Int J Mol Sci 2025; 26:515. [PMID: 39859231 PMCID: PMC11765000 DOI: 10.3390/ijms26020515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor outcomes due to frequent recurrence, metastasis, and resistance to treatment. A major contributor to this resistance is the tumor's ability to suppress natural killer (NK) cells, which are key players in the immune system's fight against cancer. In PDAC, the tumor microenvironment (TME) creates conditions that impair NK cell function, including reduced proliferation, weakened cytotoxicity, and limited tumor infiltration. This review examines how interactions between tumor-derived factors, NK cells, and the TME contribute to tumor progression and treatment resistance. To address these challenges, we propose a new "Triple NK Cell Biomarker Approach". This strategy focuses on identifying biomarkers from three critical areas: tumor characteristics, TME factors, and NK cell suppression mechanisms. This approach could guide personalized treatments to enhance NK cell activity. Additionally, we highlight the potential of combining NK cell-based therapies with conventional treatments and repurposed drugs to improve outcomes for PDAC patients. While progress has been made, more research is needed to better understand NK cell dysfunction and develop effective therapies to overcome these barriers.
Collapse
Affiliation(s)
- Sara Fanijavadi
- Cancer Polyclinic, Levanger Hospital, 7601 Levanger, Norway
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark;
- Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Lars Henrik Jensen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Department of Oncology, Institute of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
| |
Collapse
|
3
|
Munnings R, Gibbs P, Lee B. Evolution of Liquid Biopsies for Detecting Pancreatic Cancer. Cancers (Basel) 2024; 16:3335. [PMID: 39409954 PMCID: PMC11475855 DOI: 10.3390/cancers16193335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy characterised by late diagnosis and poor prognosis. Despite advancements, current diagnostic and prognostic strategies remain limited. Liquid biopsy techniques, including circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), circulating tumour exosomes, and proteomics, offer potential solutions to improve PDAC diagnosis, prognostication, and management. A systematic search of Ovid MEDLINE identified studies published between 2019 and 2024, focusing on liquid biopsy biomarkers for PDAC. A total of 49 articles were included. ctDNA research shows some promise in diagnosing and prognosticating PDAC, especially through detecting mutant KRAS in minimal residual disease assays. CTC analyses had low sensitivity for early-stage PDAC and inconsistent prognostic results across subpopulations. Exosomal studies revealed diverse biomarkers with some diagnostic and prognostic potential. Proteomics, although relatively novel, has demonstrated superior accuracy in PDAC diagnosis, including early detection, and notable prognostic capacity. Proteomics combined with CA19-9 analysis has shown the most promising results to date. An update on multi-cancer early detection testing, given its significance for population screening, is also briefly discussed. Liquid biopsy techniques offer promising avenues for improving PDAC diagnosis, prognostication, and management. In particular, proteomics shows considerable potential, yet further research is needed to validate existing findings and comprehensively explore the proteome using an unbiased approach.
Collapse
Affiliation(s)
- Ryan Munnings
- Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Medical Education, Melbourne Medical School, Parkville, VIC 3052, Australia
| | - Peter Gibbs
- Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
- Western Health, Footscray, VIC 3011, Australia
| | - Belinda Lee
- Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
- Peter MacCallum Cancer Centre, Parkville, VIC 3052, Australia
- Northern Health, Epping, VIC 3076, Australia
| |
Collapse
|
4
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
5
|
Shah Y, Dahiya DS, Tiwari A, Kumar H, Gangwani MK, Ali H, Hayat U, Alsakarneh S, Singh S, Malik S, Sohail AH, Chandan S, Ali MA, Inamdar S. Advancements in Early Detection and Screening Strategies for Pancreatic Cancer: From Genetic Susceptibility to Novel Biomarkers. J Clin Med 2024; 13:4706. [PMID: 39200847 PMCID: PMC11355237 DOI: 10.3390/jcm13164706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Pancreatic cancer is a rare but lethal cancer due to its biologically aggressive nature, advanced stage at the time of diagnosis, and poor response to oncologic therapies. The risk of pancreatic cancer is significantly higher to 5% in certain high-risk individuals with inherited genetic susceptibility. Screening for pancreatic cancer in these individuals from high-risk groups can help with the early detection of pancreatic cancer as well as the detection of precursor lesions leading to early surgical resection and improved overall outcomes. The advancements in radiological imaging as well as advanced endoscopic procedures has made a significant impact on the early diagnosis, surveillance, and staging of pancreatic cancer. There is also a significant advancement in the development of biomarkers for the early detection of pancreatic cancer, which has also led to the development of liquid biopsy, allowing for microRNA detection in serum and circulating tumor cells. Various societies and organizations have provided guidelines for pancreatic cancer screening and surveillance in high-risk individuals. In this review, we aim to discuss the hereditary risk factors for developing pancreatic cancer, summarize the screening recommendations by different societies, and discuss the development of novel biomarkers and areas for future research in pancreatic cancer screening for high-risk individuals.
Collapse
Affiliation(s)
- Yash Shah
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, MI 48341, USA
| | - Dushyant Singh Dahiya
- Division of Gastroenterology, Hepatology & Motility, The University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Angad Tiwari
- Department of Internal Medicine, Maharani Laxmi Bai Medical College, Jhansi 284001, Uttar Pradesh, India
| | - Harendra Kumar
- Department of Internal Medicine, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Manesh Kumar Gangwani
- Department of Gastroenterology and Hepatology, University of Arkansas For Medical Sciences, Little Rock, AR 72205, USA
| | - Hassam Ali
- Division of Gastroenterology, Hepatology & Nutrition, East Carolina University/Brody School of Medicine, Greenville, NC 27834, USA
| | - Umar Hayat
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes Barre, PA 18711, USA
| | - Saqr Alsakarneh
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Sahib Singh
- Department of Internal Medicine, Sinai Hospital, Baltimore, MD 21215, USA
| | - Sheza Malik
- Department of Internal Medicine, Rochester General Hospital, Rochester, NY 14621, USA
| | - Amir H. Sohail
- Department of Surgery, University of New Mexico, Albuquerque, NM 87131, USA
| | - Saurabh Chandan
- Center for Interventional Endoscopy (CIE), Advent Health, Orlando, FL 32803, USA
| | - Meer A. Ali
- Department of Gastroenterology and Hepatology, University of Arkansas For Medical Sciences, Little Rock, AR 72205, USA
| | - Sumant Inamdar
- Department of Gastroenterology and Hepatology, University of Arkansas For Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
6
|
Reshkin SJ, Cardone RA, Koltai T. Genetic Signature of Human Pancreatic Cancer and Personalized Targeting. Cells 2024; 13:602. [PMID: 38607041 PMCID: PMC11011857 DOI: 10.3390/cells13070602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Pancreatic cancer is a highly lethal disease with a 5-year survival rate of around 11-12%. Surgery, being the treatment of choice, is only possible in 20% of symptomatic patients. The main reason is that when it becomes symptomatic, IT IS the tumor is usually locally advanced and/or has metastasized to distant organs; thus, early diagnosis is infrequent. The lack of specific early symptoms is an important cause of late diagnosis. Unfortunately, diagnostic tumor markers become positive at a late stage, and there is a lack of early-stage markers. Surgical and non-surgical cases are treated with neoadjuvant and/or adjuvant chemotherapy, and the results are usually poor. However, personalized targeted therapy directed against tumor drivers may improve this situation. Until recently, many pancreatic tumor driver genes/proteins were considered untargetable. Chemical and physical characteristics of mutated KRAS are a formidable challenge to overcome. This situation is slowly changing. For the first time, there are candidate drugs that can target the main driver gene of pancreatic cancer: KRAS. Indeed, KRAS inhibition has been clinically achieved in lung cancer and, at the pre-clinical level, in pancreatic cancer as well. This will probably change the very poor outlook for this disease. This paper reviews the genetic characteristics of sporadic and hereditary predisposition to pancreatic cancer and the possibilities of a personalized treatment according to the genetic signature.
Collapse
Affiliation(s)
- Stephan J. Reshkin
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Tomas Koltai
- Oncomed, Via Pier Capponi 6, 50132 Florence, Italy
| |
Collapse
|
7
|
Xin W, Tu S, Yi S, Xiong Y, Fang K, Sun G, Xiao W. Clinical significance of tumor suppressor genes methylation in circulating tumor DNA of patients with pancreatic cancer. Gene 2024; 897:148078. [PMID: 38097094 DOI: 10.1016/j.gene.2023.148078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) has emerged as a potential diagnostic and prognostic biomarker in various tumors. However, the role of tumor suppressor genes (TSGs) methylation in ctDNA of patients with pancreatic cancer (PC) remains largely unclear. METHODS Patients with PC (n = 43), pancreatic benign diseases (n = 39), and healthy controls (n = 20) were enrolled in the study. Quantitative analysis of methylation pattern of five candidate TSGs including NPTX2, RASSF1A, EYA2, p16, and ppENK in ctDNA was performed by next generation sequencing (NGS). The diagnostic performances of these 5-TSGs methylation were assessed by the operating characteristic (ROC) curve and clinicopathological features correlation analysis. Meanwhile, the changes in methylation levels of these 5-TSGs on the 7th postoperative day were evaluated in 23 PC patients who underwent radical resection. RESULTS The methylation levels of RASSF1A, EYA2, ppENK and p16 genes in patients with PC were significantly higher than those in healthy controls. EYA2, p16 and ppENK genes showed significantly hypermethylation in PC than those in pancreatic benign diseases. NPTX2, RASSF1A, EYA2, p16 and ppENK genes showed significantly hypermethylation in pancreatic benign diseases than those in healthy controls (P < 0.05). The methylation levels of these 5 candidate TSGs were not correlated with the tumor size, nerve invasion, lymph node metastasis and TNM stage of PC. The AUC of these biomarkers for diagnosis of PC ranged from 0.65 to 0.96. The AUC values of these methylated genes and CpG sites for differentiating malignant and benign pancreatic diseases were ranging from 0.68 to 0.92. Combined the hypermethylated genes improved the detective ability of PC than single gene. The methylation levels of NPTX2, EYA2 and ppENK genes were significantly decreased after radical resection of PC. CONCLUSION Quantitative analysis of methylation pattern of NPTX2, RASSF1A, EYA2, p16 and ppENK in ctDNA by NGS could be a valuable non-invasive tool for detection and monitoring of PC.
Collapse
Affiliation(s)
- WanPeng Xin
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Shuju Tu
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Siqing Yi
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Yuanpeng Xiong
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Kang Fang
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Gen Sun
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Weidong Xiao
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China; Institute of Digestive Surgery, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
8
|
Igder S, Zamani M, Fakher S, Siri M, Ashktorab H, Azarpira N, Mokarram P. Circulating Nucleic Acids in Colorectal Cancer: Diagnostic and Prognostic Value. DISEASE MARKERS 2024; 2024:9943412. [PMID: 38380073 PMCID: PMC10878755 DOI: 10.1155/2024/9943412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 02/22/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer in the world and the fourth leading cause of cancer-related mortality. DNA (cfDNA/ctDNA) and RNA (cfRNA/ctRNA) in the blood are promising noninvasive biomarkers for molecular profiling, screening, diagnosis, treatment management, and prognosis of CRC. Technological advancements that enable precise detection of both genetic and epigenetic abnormalities, even in minute quantities in circulation, can overcome some of these challenges. This review focuses on testing for circulating nucleic acids in the circulation as a noninvasive method for CRC detection, monitoring, detection of minimal residual disease, and patient management. In addition, the benefits and drawbacks of various diagnostic techniques and associated bioinformatics tools have been detailed.
Collapse
Affiliation(s)
- Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Fakher
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Ashktorab
- Department of Medicine, Gastroenterology Division and Cancer Center, Howard University College of Medicine, Washington, DC, USA
| | - Negar Azarpira
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Orlacchio A, Muzyka S, Gonda TA. Epigenetic therapeutic strategies in pancreatic cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 383:1-40. [PMID: 38359967 DOI: 10.1016/bs.ircmb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies, characterized by its aggressiveness and metastatic potential, with a 5-year survival rate of only 8-11%. Despite significant improvements in PDAC treatment and management, therapeutic alternatives are still limited. One of the main reasons is its high degree of intra- and inter-individual tumor heterogeneity which is established and maintained through a complex network of transcription factors and epigenetic regulators. Epigenetic drugs, have shown promising preclinical results in PDAC and are currently being evaluated in clinical trials both for their ability to sensitize cancer cells to cytotoxic drugs and to counteract the immunosuppressive characteristic of PDAC tumor microenvironment. In this review, we discuss the current status of epigenetic treatment strategies to overcome molecular and cellular PDAC heterogeneity in order to improve response to therapy.
Collapse
Affiliation(s)
- Arturo Orlacchio
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States
| | - Stephen Muzyka
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States
| | - Tamas A Gonda
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States.
| |
Collapse
|
10
|
Kumar V, Dhanjal JK, Sari AN, Khurana M, Kaul SC, Wadhwa R, Sundar D. Effect of Withaferin-A, Withanone, and Caffeic Acid Phenethyl Ester on DNA Methyltransferases: Potential in Epigenetic Cancer Therapy. Curr Top Med Chem 2024; 24:379-391. [PMID: 37496252 DOI: 10.2174/1568026623666230726105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND DNA methyltransferases (DNMTs) have been reported to be potential drug targets in various cancers. The major hurdle in inhibiting DNMTs is the lack of knowledge about different DNMTs and their role in the hypermethylation of gene promoters in cancer cells. Lack of information on specificity, stability, and higher toxicity of previously reported DNMT inhibitors is the major reason for inadequate epigenetic cancer therapy. DNMT1 and DNMT3A are the two DNMTs that are majorly overexpressed in cancers. OBJECTIVE In this study, we have presented computational and experimental analyses of the potential of some natural compounds, withaferin A (Wi-A), withanone (Wi-N), and caffeic acid phenethyl ester (CAPE), as DNMT inhibitors, in comparison to sinefungin (SFG), a known dual inhibitor of DNMT1 and DNMT3A. METHODS We used classical simulation methods, such as molecular docking and molecular dynamics simulations, to investigate the binding potential and properties of the test compounds with DNMT1 and DNMT3A. Cell culture-based assays were used to investigate the inactivation of DNMTs and the resulting hypomethylation of the p16INK4A promoter, a key tumour suppressor that is inactivated by hypermethylation in cancer cells, resulting in upregulation of its expression. RESULTS Among the three test compounds (Wi-A, Wi-N, and CAPE), Wi-A showed the highest binding affinity to both DNMT1 and DNMT3A; CAPE showed the highest affinity to DNMT3A, and Wi-N showed a moderate affinity interaction with both. The binding energies of Wi-A and CAPE were further compared with SFG. Expression analysis of DNMTs showed no difference between control and treated cells. Cell viability and p16INK4A expression analysis showed a dose-dependent decrease in viability, an increase in p16INK4A, and a stronger effect of Wi-A compared to Wi-N and CAPE. CONCLUSION The study demonstrated the differential binding ability of Wi-A, Wi-N, and CAPE to DNMT1 and DNMT3A, which was associated with their inactivation, leading to hypomethylation and desilencing of the p16INK4A tumour suppressor in cancer cells. The test compounds, particularly Wi-A, have the potential for cancer therapy.
Collapse
Affiliation(s)
- Vipul Kumar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, Okhla Industrial Estate, Phase III, New Delhi, 110020, India
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Anissa Nofita Sari
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Mallika Khurana
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Sunil C Kaul
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Renu Wadhwa
- Department of Cellular and Molecular Biotechnology, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, 3058565, Japan
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
11
|
Zhang Y, Wang JW, Su X, Li JE, Wei XF, Yang JR, Gao S, Fan YC, Wang K. F-box protein 43 promoter methylation as a novel biomarker for hepatitis B virus-associated hepatocellular carcinoma. Front Microbiol 2023; 14:1267844. [PMID: 38029156 PMCID: PMC10652413 DOI: 10.3389/fmicb.2023.1267844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has a high prevalence and poor prognosis worldwide. Therefore, it is urgent to find effective and timely diagnostic markers. The objective of this study was to evaluate the diagnostic value of F-box protein 43 promoter methylation in peripheral blood mononuclear cells (PBMCs) for HCC. METHOD A total of 247 participants were included in this study, comprising individuals with 123 hepatitis B virus-associated HCC, 79 chronic hepatitis B, and 45 healthy controls. F-box protein 43 methylation and mRNA levels in PBMCs were detected by MethyLight and quantitative real-time PCR. RESULT F-box protein 43 promoter methylation levels were significantly lower in HCC PBMCs than the chronic hepatitis B (P < 0.001) and healthy control PBMCs (P < 0.001). Relative mRNA expression levels of F-box protein 43 in HCC PBMCs were significantly higher than those in chronic hepatitis B (P < 0.001) and healthy control PBMCs (P < 0.001). Receiver operating characteristic analysis of F-box protein 43 promoter methylation levels yielded an area under curve (AUC) of 0.793 with 76.42% sensitivity and 68.35% specificity when differentiating HCC from chronic hepatitis. These values for the F-box protein 43 promoter methylation level were superior to those of the alpha-fetoprotein serum (AFP) level (AUC: 0.780, sensitivity: 47.97%, and specificity: 96.20%), with increments in values for the combination of F-box protein 43 promoter methylation AFP levels (AUC: 0.888, sensitivity: 76.42%, and specificity: 86.08%). CONCLUSION Hypomethylation of the F-box protein 43 promoter in PBMCs is a promising biochemical marker for HBV-associated HCC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing-Wei Wang
- Department of Hepatology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Xing Su
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jin-E Li
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Xue-Fei Wei
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie-Ru Yang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Hepatology Institute of Shandong University, Shandong University, Jinan, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Hepatology Institute of Shandong University, Shandong University, Jinan, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Department of Hepatology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
- Hepatology Institute of Shandong University, Shandong University, Jinan, China
| |
Collapse
|
12
|
García-Ortiz MV, Cano-Ramírez P, Toledano-Fonseca M, Aranda E, Rodríguez-Ariza A. Diagnosing and monitoring pancreatic cancer through cell-free DNA methylation: progress and prospects. Biomark Res 2023; 11:88. [PMID: 37798621 PMCID: PMC10552233 DOI: 10.1186/s40364-023-00528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
Pancreatic cancer is one of the most challenging cancers due to its high mortality rates. Considering the late diagnosis and the limited survival benefit with current treatment options, it becomes imperative to optimize early detection, prognosis and prediction of treatment response. To address these challenges, significant research efforts have been undertaken in recent years to develop liquid-biopsy-based biomarkers for pancreatic cancer. In particular, an increasing number of studies point to cell-free DNA (cfDNA) methylation analysis as a promising non-invasive approach for the discovery and validation of epigenetic biomarkers with diagnostic or prognostic potential. In this review we provide an update on recent advancements in the field of cfDNA methylation analysis in pancreatic cancer. We discuss the relevance of DNA methylation in the context of pancreatic cancer, recent cfDNA methylation research, its clinical utility, and future directions for integrating cfDNA methylation analysis into routine clinical practice.
Collapse
Affiliation(s)
- María Victoria García-Ortiz
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Sevilla, Spain.
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain.
| | - Pablo Cano-Ramírez
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Sevilla, Spain
| | - Marta Toledano-Fonseca
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Sevilla, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
| | - Enrique Aranda
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Sevilla, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
- Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain
- Department of Medicine, Faculty of Medicine, University of Córdoba, Córdoba, Spain
| | - Antonio Rodríguez-Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Sevilla, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
- Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain
| |
Collapse
|
13
|
Koltai T. Earlier Diagnosis of Pancreatic Cancer: Is It Possible? Cancers (Basel) 2023; 15:4430. [PMID: 37760400 PMCID: PMC10526520 DOI: 10.3390/cancers15184430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/06/2023] [Indexed: 09/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma has a very high mortality rate which has been only minimally improved in the last 30 years. This high mortality is closely related to late diagnosis, which is usually made when the tumor is large and has extensively infiltrated neighboring tissues or distant metastases are already present. This is a paradoxical situation for a tumor that requires nearly 15 years to develop since the first founding mutation. Response to chemotherapy under such late circumstances is poor, resistance is frequent, and prolongation of survival is almost negligible. Early surgery has been, and still is, the only approach with a slightly better outcome. Unfortunately, the relapse percentage after surgery is still very high. In fact, early surgery clearly requires early diagnosis. Despite all the advances in diagnostic methods, the available tools for improving these results are scarce. Serum tumor markers permit a late diagnosis, but their contribution to an improved therapeutic result is very limited. On the other hand, effective screening methods for high-risk populations have not been fully developed as yet. This paper discusses the difficulties of early diagnosis, evaluates whether the available diagnostic tools are adequate, and proposes some simple and not-so-simple measures to improve it.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires C1094, Argentina
| |
Collapse
|
14
|
García-Ortiz MV, Cano-Ramírez P, Toledano-Fonseca M, Cano MT, Inga-Saavedra E, Rodríguez-Alonso RM, Guil-Luna S, Gómez-España MA, Rodríguez-Ariza A, Aranda E. Circulating NPTX2 methylation as a non-invasive biomarker for prognosis and monitoring of metastatic pancreatic cancer. Clin Epigenetics 2023; 15:118. [PMID: 37481552 PMCID: PMC10362605 DOI: 10.1186/s13148-023-01535-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Pancreatic cancer is the most lethal cancer with a dismal prognosis mainly due to diagnosis at advanced stage and ineffective treatments. CA19-9 levels and computed tomography (CT) imaging are the main standard criteria for evaluating disease progression and treatment response. In this study we explored liquid biopsy-based epigenetic biomarkers for prognosis and monitoring disease in patients with metastatic pancreatic ductal adenocarcinoma (mPDAC). METHODS Plasma samples were collected from 44 mPDAC patients at the time of diagnosis, and in 15 of them, additional samples were obtained during follow-up of the disease. After cell-free DNA (cfDNA), isolation circulating levels of methylated NPTX2, SPARC, BMP3, SFRP1 and TFPI2 genes were measured using digital droplet PCR (ddPCR). BEAMing technique was performed for quantitation of RAS mutations in cfDNA, and CA19-9 was measured using standard techniques. RESULTS NPTX2 was the most highly and frequently methylated gene in cfDNA samples from mPDAC patients. Higher circulating NPTX2 methylation levels at diagnosis were associated with poor prognosis and efficiently stratified patients for prediction of overall survival (6.06% cut-off, p = 0.0067). Dynamics of circulating NPTX2 methylation levels correlated with disease progression and response to therapy and predicted better than CA19-9 the evolution of disease in mPDAC patients. Remarkably, in many cases the disease progression detected by CT scan was anticipated by an increase in circulating NPTX2 methylation levels. CONCLUSIONS Our study supports circulating NPTX2 methylation levels as a promising liquid biopsy-based clinical tool for non-invasive prognosis, monitoring disease evolution and response to treatment in mPDAC patients.
Collapse
Affiliation(s)
- María Victoria García-Ortiz
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Seville, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
| | - Pablo Cano-Ramírez
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Seville, Spain
| | - Marta Toledano-Fonseca
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Seville, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
| | - María Teresa Cano
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Seville, Spain
- Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain
| | - Elizabeth Inga-Saavedra
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Seville, Spain
- Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain
| | | | - Silvia Guil-Luna
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Seville, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
- Department of Anatomy and Comparative Pathology, University of Córdoba, Córdoba, Spain
| | - María Auxiliadora Gómez-España
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Seville, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
- Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain
| | - Antonio Rodríguez-Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Seville, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
- Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain
| | - Enrique Aranda
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Seville, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
- Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain
- Department of Medicine, Faculty of Medicine, University of Córdoba, Córdoba, Spain
| |
Collapse
|
15
|
Blood-based DNA methylation signatures in cancer: A systematic review. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166583. [PMID: 36270476 DOI: 10.1016/j.bbadis.2022.166583] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
DNA methylation profiles are in dynamic equilibrium via the initiation of methylation, maintenance of methylation and demethylation, which control gene expression and chromosome stability. Changes in DNA methylation patterns play important roles in carcinogenesis and primarily manifests as hypomethylation of the entire genome and the hypermethylation of individual loci. These changes may be reflected in blood-based DNA, which provides a non-invasive means for cancer monitoring. Previous blood-based DNA detection objects primarily included circulating tumor DNA/cell-free DNA (ctDNA/cfDNA), circulating tumor cells (CTCs) and exosomes. Researchers gradually found that methylation changes in peripheral blood mononuclear cells (PBMCs) also reflected the presence of tumors. Blood-based DNA methylation is widely used in early diagnosis, prognosis prediction, dynamic monitoring after treatment and other fields of clinical research on cancer. The reversible methylation of genes also makes them important therapeutic targets. The present paper summarizes the changes in DNA methylation in cancer based on existing research and focuses on the characteristics of the detection objects of blood-based DNA, including ctDNA/cfDNA, CTCs, exosomes and PBMCs, and their application in clinical research.
Collapse
|
16
|
Ukey S, Jain A, Dwivedi S, Vishnoi JR, Chugh A, Purohit P, Pareek P, Elhence P, Misra S, Sharma P. Global and promoter specific hypermethylation of tumor suppressor genes P16, SOCS1, and SHP1 in oral squamous cell carcinoma and oral submucous fibrosis. J Cancer Res Ther 2023; 19:S551-S559. [PMID: 38384018 DOI: 10.4103/jcrt.jcrt_689_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/04/2022] [Indexed: 02/23/2024]
Abstract
Aberrant methylation pattern leads to altered gene expression, that is, involved in the transformation of various cancers, including oral squamous cell carcinoma (OSCC). In the present study, an attempt has been made to examine the association of global and promoter-specific methylation of tumor suppressor genes in patients with OSCC and oral submucous fibrosis (OSMF). Promoter-specific methylation of tumor suppressor genes P16, SOCS1, and SHP1 had been studied earlier for their aberrant methylation patterns in other cancers; however, these studies were mainly conducted in-vitro or in animal models, and as such, only a few studies are available on human samples. In the present study evaluation of promoter-specific methylation of genes P16, SOCS1, and SHP1 in 76 patients' blood and tissue samples was done and compared with methylation of 35 healthy control samples using qPCR. Further, these samples were analyzed for global methylation patterns using ELISA. The results have shown a significant decreasing trend of promoter methylation (OSCC > OSMF > Controls); the methylation indices (MI) were significantly higher in OSCC than in the controls. The median MI of three genes for OSCC were P16MI (0.96), SHP1MI (0.79), and SOCS1 (0.80). Similarly, median MIs for OSMF were P16MI (0.18), SHP1 MI (0.19), and SOCS1 MI (0.5) against controls with MI (0) for each of the three genes. The global methylation %mC values were 1.9, 0.5, and 0.1, respectively. The values of MI and %mC were found to correlate with various risk factors such as tobacco, smoking, and alcohol consumption, which are positively involved in OSMF pathogenesis followed by oral cancer progression. Further, the methylation trend in tissue was reflected in blood samples, proving a window for methylation load to be used as a lesser invasive biomarker. The sensitivity and specificity of methylation load were also found reasonable. Therefore, the current study suggests that there may be a role of global and promoter-specific methylation load in the transition of OSMF to OSCC.
Collapse
Affiliation(s)
- Shweta Ukey
- All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Ankit Jain
- All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Shailendra Dwivedi
- All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| | | | - Ankita Chugh
- All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Purvi Purohit
- All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Puneet Pareek
- All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Poonam Elhence
- All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sanjeev Misra
- All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Praveen Sharma
- All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
17
|
Elrakaybi A, Ruess DA, Lübbert M, Quante M, Becker H. Epigenetics in Pancreatic Ductal Adenocarcinoma: Impact on Biology and Utilization in Diagnostics and Treatment. Cancers (Basel) 2022; 14:cancers14235926. [PMID: 36497404 PMCID: PMC9738647 DOI: 10.3390/cancers14235926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with high potential of metastases and therapeutic resistance. Although genetic mutations drive PDAC initiation, they alone do not explain its aggressive nature. Epigenetic mechanisms, including aberrant DNA methylation and histone modifications, significantly contribute to inter- and intratumoral heterogeneity, disease progression and metastasis. Thus, increased understanding of the epigenetic landscape in PDAC could offer new potential biomarkers and tailored therapeutic approaches. In this review, we shed light on the role of epigenetic modifications in PDAC biology and on the potential clinical applications of epigenetic biomarkers in liquid biopsy. In addition, we provide an overview of clinical trials assessing epigenetically targeted treatments alone or in combination with other anticancer therapies to improve outcomes of patients with PDAC.
Collapse
Affiliation(s)
- Asmaa Elrakaybi
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Clinical Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Dietrich A. Ruess
- Department of General and Visceral Surgery, Center of Surgery, Medical Center University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Michael Quante
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
- Department of Gastroenterology and Hepatology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Heiko Becker
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-270-36000
| |
Collapse
|
18
|
Systematic review and meta-analysis: Diagnostic performance of DNA alterations in pancreatic juice for the detection of pancreatic cancer. Pancreatology 2022; 22:973-986. [PMID: 35864067 DOI: 10.1016/j.pan.2022.06.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Pancreatic cancer has a dismal prognosis. So far, imaging has been proven incapable of establishing an early enough diagnosis. Thus, biomarkers are urgently needed for early detection and improved survival. Our aim was to evaluate the pooled diagnostic performance of DNA alterations in pancreatic juice. METHODS A systematic literature search was performed in EMBASE, MEDLINE Ovid, Cochrane CENTRAL and Web of Science for studies concerning the diagnostic performance of DNA alterations in pancreatic juice to differentiate patients with high-grade dysplasia or pancreatic cancer from controls. Study quality was assessed using QUADAS-2. The pooled prevalence, sensitivity, specificity and diagnostic odds ratio were calculated. RESULTS Studies mostly concerned cell-free DNA mutations (32 studies: 939 cases, 1678 controls) and methylation patterns (14 studies: 579 cases, 467 controls). KRAS, TP53, CDKN2A, GNAS and SMAD4 mutations were evaluated most. Of these, TP53 had the highest diagnostic performance with a pooled sensitivity of 42% (95% CI: 31-54%), specificity of 98% (95%-CI: 92%-100%) and diagnostic odds ratio of 36 (95% CI: 9-133). Of DNA methylation patterns, hypermethylation of CDKN2A, NPTX2 and ppENK were studied most. Hypermethylation of NPTX2 performed best with a sensitivity of 39-70% and specificity of 94-100% for distinguishing pancreatic cancer from controls. CONCLUSIONS This meta-analysis shows that, in pancreatic juice, the presence of distinct DNA mutations (TP53, SMAD4 or CDKN2A) and NPTX2 hypermethylation have a high specificity (close to 100%) for the presence of high-grade dysplasia or pancreatic cancer. However, the sensitivity of these DNA alterations is poor to moderate, yet may increase if they are combined in a panel.
Collapse
|
19
|
Pancreatic Incidentaloma. J Clin Med 2022; 11:jcm11164648. [PMID: 36012893 PMCID: PMC9409921 DOI: 10.3390/jcm11164648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic incidentalomas (PIs) represent a clinical entity increasingly recognized due to advances in and easier access to imaging techniques. By definition, PIs should be detected during abdominal imaging performed for indications other than a pancreatic disease. They range from small cysts to invasive cancer. The incidental diagnosis of pancreatic cancer can contribute to early diagnosis and treatment. On the other hand, inadequate management of PIs may result in overtreatment and unneeded morbidity. Therefore, there is a strong need to evaluate the nature and clinical features of individual PIs. In this review, we summarize the major characteristics related to PIs and present suggestions for their management.
Collapse
|
20
|
Xie T, Tan M, Gao Y, Yang H. CRABP2 accelerates epithelial mesenchymal transition in serous ovarian cancer cells by promoting TRIM16 methylation via upregulating EZH2 expression. ENVIRONMENTAL TOXICOLOGY 2022; 37:1957-1967. [PMID: 35442568 DOI: 10.1002/tox.23542] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 05/28/2023]
Abstract
Recently, it was covered that cellular retinoic acid-binding protein 2 (CRABP2) is upregulated in ovarian cancer and participates in tumor progression, however, the specific mechanism remains to be explored. The pcDNA-CRABP2 or si-CRABP2 was transfected into SKOV3 and OVCAR3 ovarian cancer cells, respectively, and we observed that overexpression of CRABP2 inhibited cell apoptosis, promoted cell invasion and expression of epithelial mesenchymal transition (EMT) marker proteins, and transfection of si-CRABP2 had the opposite effect. Furthermore, we predicted that EZH2 interacted with CRABP2, and overexpression of CRABP2 promoted EZH2 expression, knockdown of CRABP2 inhibited EZH2 expression, and co-immunoprecipitation assay confirmed their binding relationship. The SKOV3 and OVCAR3 cells were then incubated with pcDNA-CRABP2 alone together with si-EZH2, and we found that si-EZH2 reversed the effect of pcDNA-CRABP2 on promotion of EZH2 expression, cell invasion and EMT maker protein levels. Next, we found that EZH2 could bind to DNMT1, and overexpression of EZH2 inhibited TRIM16 expression and knockdown of EZH2 promoted TRIM16 expression. Moreover, the promoter of TRIM16 contains the CpG island, and ChIP assay observed enriched DNMT1 on the promoter of TRIM16, and overexpression of EZH2 increased the promoter methylation level of TRIM16 and knockdown of EZH2 suppressed the methylation. The SKOV3 cells were incubated with si-EZH2 alone or combined with si-TRIM16, and we found that si-TRIM16 reversed the effect of si-EZH2. In vivo studies showed that knockdown of CRABP2 inhibited tumor volume and weight, suppressed the expression of EZH2 and EMT related proteins vimentin and snail, and increased the expression of TRIM16 and E-cadherin.
Collapse
Affiliation(s)
- Tingting Xie
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Minghua Tan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Yang Gao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| |
Collapse
|
21
|
Sheel A, Addison S, Nuguru SP, Manne A. Is Cell-Free DNA Testing in Pancreatic Ductal Adenocarcinoma Ready for Prime Time? Cancers (Basel) 2022; 14:3453. [PMID: 35884515 PMCID: PMC9322623 DOI: 10.3390/cancers14143453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/03/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cell-free DNA (cfDNA) testing currently does not have a significant role in PDA management: it is insufficient to diagnose PDA, and its use is primarily restricted to identifying targetable mutations (if tissue is insufficient or unavailable). cfDNA testing has the potential to address critical needs in PDA management, such as pre-operative risk stratification (POR), prognostication, and predicting (and monitoring) treatment response. Prior studies have focused primarily on somatic mutations, specifically KRAS variants, and have shown limited success in addressing prognosis and POR. Recent studies have demonstrated the importance of other less prevalent mutations (ERBB2 and TP53), but no studies have provided reliable mutation panels for clinical use. Methylation aberrations in cfDNA (epigenetic markers) in PDA have been relatively less explored. However, early evidence has suggested they offer diagnostic and, to some extent, prognostic value. The inclusion of epigenetic markers of cfDNA adds another dimension to genomic testing and may open new therapeutic avenues beyond addressing critical areas of need in PDA treatment. For cfDNA to substantially influence PDA management, concerted efforts are required to include less frequent mutations and epigenetic markers. Furthermore, relying on KRAS mutations for PDA management will always be inadequate.
Collapse
Affiliation(s)
- Ankur Sheel
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 432120, USA;
| | - Sarah Addison
- School of Medicine, The Ohio State University, Columbus, OH 432120, USA;
| | - Surya Pratik Nuguru
- Department of Internal Medicine, Kamineni Academy of Medical Sciences and Research Center, Hyderabad 500012, India;
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Pietrasz D, Sereni E, Lancelotti F, Pea A, Luchini C, Innamorati G, Salvia R, Bassi C. Circulating tumour DNA: a challenging innovation to develop "precision onco-surgery" in pancreatic adenocarcinoma. Br J Cancer 2022; 126:1676-1683. [PMID: 35197581 PMCID: PMC9174156 DOI: 10.1038/s41416-022-01745-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is predicted to become the third leading cause of cancer-related mortality within the next decade. Management of PDAC remains challenging with limited effective treatment options and a dismal long-term prognosis. Liquid biopsy and circulating biomarkers seem to be promising to improve the multidisciplinary approach in PDAC treatment. Circulating tumour DNA (ctDNA) is the most studied blood liquid biopsy analyte and can provide insight into the molecular profile and individual characteristics of the tumour in real-time and in advance of standard imaging modalities. This could pave the way for identifying new therapeutic targets and markers of tumour response to supplement diagnostic and provide enhanced stratified treatment. Although its specificity seems excellent, the current sensitivity of ctDNA remains a limitation for clinical use, especially in patients with a low tumour burden. Increasing evidence suggests that ctDNA is a pertinent candidate biomarker to assess minimal residual disease after surgery but also a strong independent prognostic biomarker. This review explores the current knowledge and recent developments in ctDNA as a screening, diagnostic, prognostic and predictive biomarker in the management of resectable PDAC but also technical and analytical challenges that must be overcome to move toward "precision onco-surgery."
Collapse
Affiliation(s)
- Daniel Pietrasz
- APHP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Université Paris-Saclay, 94800, Villejuif, France.
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy.
| | - Elisabetta Sereni
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Francesco Lancelotti
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Antonio Pea
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Giulio Innamorati
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Roberto Salvia
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Claudio Bassi
- Unit of General and Pancreatic Surgery, Department of Surgery and Oncology, University of Verona Hospital Trust, Verona, Italy
| |
Collapse
|
23
|
Ganji C, Farran B. Current clinical trials for epigenetic targets and therapeutic inhibitors for pancreatic cancer therapy. Drug Discov Today 2022; 27:1404-1410. [PMID: 34952224 DOI: 10.1016/j.drudis.2021.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC) is an aggressive disease characterized by high mortality. Diagnosis at advanced stage, resistance, and recurrence are major hurdles for PC therapy and contribute to poor survival rate. Mutations in tumor-promoting kinases and epigenetic dysregulation in tumor suppressor genes are hallmarks of PC and can be used for diagnosis and therapy. In this review, we highlight dysregulated genes associated with epigenetic mechanisms, including DNA methylation and histone acetylation, involved in PC progression and resistance. We also explore epigenetic drugs currently in clinical trials. Combining epigenetic drugs and targeted therapies might represent a promising approach for PC.
Collapse
Affiliation(s)
| | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
24
|
Takikawa T, Kikuta K, Hamada S, Kume K, Miura S, Yoshida N, Tanaka Y, Matsumoto R, Ikeda M, Kataoka F, Sasaki A, Nakagawa K, Unno M, Masamune A. Clinical features and prognostic impact of asymptomatic pancreatic cancer. Sci Rep 2022; 12:4262. [PMID: 35277545 PMCID: PMC8917162 DOI: 10.1038/s41598-022-08083-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/01/2022] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly lethal, and early diagnosis is challenging. Because patients who present with symptoms generally have advanced-stage diseases, analysis of asymptomatic PDAC provides invaluable information for developing strategies for early diagnosis. Here, we reviewed 577 patients with PDAC (372 diagnosed with symptoms [symptomatic group] and 205 without symptoms [asymptomatic group]) diagnosed at our institute. Among the 205 asymptomatic PDAC patients, 109 were detected during follow-up/work-up for other diseases, 61 because of new-onset or exacerbation of diabetes mellitus, and 35 in a medical check-up. Asymptomatic PDAC is characterized by smaller tumor size, earlier disease stage, and higher resectability than those of symptomatic PDAC. In 22.7% of asymptomatic cases, indirect findings, e.g., dilatation of the main pancreatic duct, triggered PDAC detection. Although pancreatic tumors were less frequently detected, overall abnormality detection rates on imaging studies were nearly 100% in asymptomatic PDAC. Asymptomatic PDAC had a better prognosis (median survival time, 881 days) than symptomatic PDAC (342 days, P < 0.001). In conclusion, diagnosis of PDAC in the asymptomatic stage is associated with early diagnosis and a better prognosis. Incidental detection of abnormal findings during the follow-up/work-up for other diseases provides important opportunities for early diagnosis of asymptomatic PDAC.
Collapse
Affiliation(s)
- Tetsuya Takikawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Kazuhiro Kikuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Kiyoshi Kume
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Shin Miura
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Naoki Yoshida
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Yu Tanaka
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Ryotaro Matsumoto
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Mio Ikeda
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Fumiya Kataoka
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Akira Sasaki
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Kei Nakagawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan.
| |
Collapse
|
25
|
Kim HS, Shi J. Epigenetics in precision medicine of pancreatic cancer. EPIGENETICS IN PRECISION MEDICINE 2022:257-279. [DOI: 10.1016/b978-0-12-823008-4.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
26
|
Zhou S, Wang X, Ding J, Yang H, Xie Y. Increased ATG5 Expression Predicts Poor Prognosis and Promotes EMT in Cervical Carcinoma. Front Cell Dev Biol 2021; 9:757184. [PMID: 34901004 PMCID: PMC8655861 DOI: 10.3389/fcell.2021.757184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/22/2021] [Indexed: 01/06/2023] Open
Abstract
Cervical cancer has the second-highest incidence and mortality of female malignancy. The major causes of mortality in patients with cervical cancer are invasion and metastasis. The epithelial–mesenchymal transition (EMT) process plays a major role in the acquisition of metastatic potential and motility. Autophagy-related genes (ARGs) are implicated in the EMT process, and autophagy exerts a dual function in EMT management at different phases of tumor progression. However, the role of specific ARGs during the EMT process has not yet been reported in cervical cancer. Based on the data from the Cancer Genome Atlas (TCGA) cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) sequencing database, we performed the prognosis analysis for those ARGs obtained from the Human Autophagy database. ATG5 was identified as the only important harmful marker influencing survival of cervical cancer patients by univariate Cox regression (HR 1.7; 95% CI: 1.0–2.8, p = 0.047), and the 5-years survival rate for the high- and low-ATG5 expression groups was 0.486 (0.375–0.631) and 0.782 (0.708–0.863), respectively. TCGA CESC methylation data showed that eight methylation sites of ATG5 could also be significantly associated with the overall survival (OS) of cervical cancer patients. Single-sample gene-set enrichment and gene functional enrichment results showed that ATG5 was correlated with some cancer-related pathways, such as phagocytosis-related genes, endocytosis-related genes, immune-related genes, EMT score, and some EMT signature-related genes. Next, cell migration and invasion assay and Western blot were applied to detect the function of ATG5 in EMT of cervical cancer. In cervical cancer cells, ATG5 knockdown resulted in attenuation of migration and invasion. The functional study showed that knockdown of ATG5 could reverse EMT process by P-ERK, P-NFκBp65, P-mTOR pathways, and so on. In conclusion, the present study implies that ATG5 was a major contributor to EMT regulation and poor prognosis in cervical cancer.
Collapse
Affiliation(s)
- Suna Zhou
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China
| | - Xuequan Wang
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China
| | - Jiapei Ding
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China
| | - Haihua Yang
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China
| | - Youyou Xie
- Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou, China
| |
Collapse
|
27
|
Xu G, Fan L, Zhao S, OuYang C. Neuronal pentraxin II (NPTX2) hypermethylation promotes cell proliferation but inhibits cell cycle arrest and apoptosis in gastric cancer cells by suppressing the p53 signaling pathway. Bioengineered 2021; 12:1311-1323. [PMID: 33896384 PMCID: PMC8806217 DOI: 10.1080/21655979.2021.1915658] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is a considerable health burden worldwide. DNA methylation, a major epigenetic phenomenon, is closely related to the pathogenesis of cancer. Neuronal pentraxin II (NPTX2) has been found to be hypermethylated in several cancers such as glioblastoma and pancreatic cancer. However, the roles of NPTX2 in gastric cancer have not been reported. To explore this issue, NPTX2 expression in gastric cancer cells was assessed by western blot and quantitative real-time polymerase chain reaction (qRT-PCR). The methylation analysis of NPTX2 was performed by qRT-PCR as well as methylation-specific PCR (MS-PCR). The effects of NPTX2 on gastric cancer cell proliferation, apoptosis and cell cycle were detected by colony formation, CCK-8 and flow cytometry assays, respectively. The interaction of NPTX2 with the p53 signaling pathway was evaluated by western blot. Our study found the down-regulated expression of NPTX2 in gastric cancer cells compared with human gastric mucosal cells. In addition, the hypermethylation of NPTX2 was observed in gastric cancer cells, which was correlated with the low expression of NPTX2. Moreover, NPTX2 inhibited gastric cancer cell proliferation, inhibited apoptosis and induced cell cycle arrest. Furthermore, NPTX2 enhanced the protein expression of p53, p21 and PTEN to activate the p53 signaling pathway. Therefore, NPTX2 hypermethylation caused the downregulation of NPTX2 expression, which could promote cell proliferation, inhibit apoptosis and cause cell cycle arrest in gastric cancer cells by suppressing the p53 signaling pathway. Therefore, NPTX2 may be crucial for the progression of gastric cancer.
Collapse
Affiliation(s)
- Guofeng Xu
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Linfeng Fan
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Shufeng Zhao
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Canhui OuYang
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, China
| |
Collapse
|
28
|
Lambrou GI, Poulou M, Giannikou K, Themistocleous M, Zaravinos A, Braoudaki M. Differential and Common Signatures of miRNA Expression and Methylation in Childhood Central Nervous System Malignancies: An Experimental and Computational Approach. Cancers (Basel) 2021; 13:5491. [PMID: 34771655 PMCID: PMC8583574 DOI: 10.3390/cancers13215491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Epigenetic modifications are considered of utmost significance for tumor ontogenesis and progression. Especially, it has been found that miRNA expression, as well as DNA methylation plays a significant role in central nervous system tumors during childhood. A total of 49 resected brain tumors from children were used for further analysis. DNA methylation was identified with methylation-specific MLPA and, in particular, for the tumor suppressor genes CASP8, RASSF1, MGMT, MSH6, GATA5, ATM1, TP53, and CADM1. miRNAs were identified with microarray screening, as well as selected samples, were tested for their mRNA expression levels. CASP8, RASSF1 were the most frequently methylated genes in all tumor samples. Simultaneous methylation of genes manifested significant results with respect to tumor staging, tumor type, and the differentiation of tumor and control samples. There was no significant dependence observed with the methylation of one gene promoter, rather with the simultaneous presence of all detected methylated genes' promoters. miRNA expression was found to be correlated to gene methylation. Epigenetic regulation appears to be of major importance in tumor progression and pathophysiology, making it an imperative field of study.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Myrto Poulou
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Krinio Giannikou
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Marios Themistocleous
- Department of Neurosurgery, “Aghia Sofia” Children’s Hospital, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Cancer Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Group, European University Cyprus, Nicosia 1516, Cyprus
| | - Maria Braoudaki
- Department of Life and Environmental Sciences, School of Life and Health Sciences, University of Hertfordshire, Hertfordshire AL10 9AB, UK
| |
Collapse
|
29
|
Epigenetic Alterations in Pancreatic Cancer Metastasis. Biomolecules 2021; 11:biom11081082. [PMID: 34439749 PMCID: PMC8394313 DOI: 10.3390/biom11081082] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is the third leading cause of cancer-related deaths in the United States. Pancreatic ductal adenocarcinoma (PDA) is the most common (90%) and aggressive type of pancreatic cancer. Genomic analyses of PDA specimens have identified the recurrent genetic mutations that drive PDA initiation and progression. However, the underlying mechanisms that further drive PDA metastasis remain elusive. Despite many attempts, no recurrent genetic mutation driving PDA metastasis has been found, suggesting that PDA metastasis is driven by epigenetic fluctuations rather than genetic factors. Therefore, establishing epigenetic mechanisms of PDA metastasis would facilitate the development of successful therapeutic interventions. In this review, we provide a comprehensive overview on the role of epigenetic mechanisms in PDA as a critical contributor on PDA progression and metastasis. In particular, we explore the recent advancements elucidating the role of nucleosome remodeling, histone modification, and DNA methylation in the process of cancer metastasis.
Collapse
|
30
|
Milin-Lazovic J, Madzarevic P, Rajovic N, Djordjevic V, Milic N, Pavlovic S, Veljkovic N, Milic NM, Radenkovic D. Meta-Analysis of Circulating Cell-Free DNA's Role in the Prognosis of Pancreatic Cancer. Cancers (Basel) 2021; 13:3378. [PMID: 34298594 PMCID: PMC8303288 DOI: 10.3390/cancers13143378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION The analysis of cell-free DNA (cfDNA) for genetic abnormalities is a promising new approach for the diagnosis and prognosis of pancreatic cancer patients. Insights into the molecular characteristics of pancreatic cancer may provide valuable information, leading to its earlier detection and the development of targeted therapies. MATERIAL AND METHODS We conducted a systematic review and a meta-analysis of studies that reported cfDNA in pancreatic ductal adenocarcinoma (PDAC). The studies were considered eligible if they included patients with PDAC, if they had blood tests for cfDNA/ctDNA, and if they analyzed the prognostic value of cfDNA/ctDNA for patients' survival. The studies published before 22 October 2020 were identified through the PubMED, EMBASE, Web of Science and Cochrane Library databases. The assessed outcomes were the overall (OS) and progression-free survival (PFS), expressed as the log hazard ratio (HR) and standard error (SE). The summary of the HR effect size was estimated by pooling the individual trial results using the Review Manager, version 5.3, Cochrane Collaboration. The heterogeneity was assessed using the Cochran Q test and I2 statistic. RESULTS In total, 48 studies were included in the qualitative review, while 44 were assessed in the quantitative synthesis, with the total number of patients included being 3524. Overall negative impacts of cfDNA and KRAS mutations on OS and PFS in PDAC (HR = 2.42, 95% CI: 1.95-2.99 and HR = 2.46, 95% CI: 2.01-3.00, respectively) were found. The subgroup analysis of the locally advanced and metastatic disease presented similar results (HR = 2.51, 95% CI: 1.90-3.31). In the studies assessing the pre-treatment presence of KRAS, there was a moderate to high degree of heterogeneity (I2 = 87% and I2 = 48%, for OS and PFS, respectively), which was remarkably decreased in the analysis of the studies measuring post-treatment KRAS (I2 = 24% and I2 = 0%, for OS and PFS, respectively). The patients who were KRAS positive before but KRAS negative after treatment had a better prognosis than the persistently KRAS-positive patients (HR = 5.30, 95% CI: 1.02-27.63). CONCLUSION The assessment of KRAS mutation by liquid biopsy can be considered as an additional tool for the estimation of the disease course and outcome in PDAC patients.
Collapse
Affiliation(s)
- Jelena Milin-Lazovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.M.-L.); (P.M.); (N.R.); (N.M.M.)
| | - Petar Madzarevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.M.-L.); (P.M.); (N.R.); (N.M.M.)
| | - Nina Rajovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.M.-L.); (P.M.); (N.R.); (N.M.M.)
| | - Vladimir Djordjevic
- Department of Surgery, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nikola Milic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nevena Veljkovic
- Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
- Heliant Ltd., 11000 Belgrade, Serbia
| | - Natasa M. Milic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.M.-L.); (P.M.); (N.R.); (N.M.M.)
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55902, USA
| | - Dejan Radenkovic
- Department of Surgery, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
31
|
Heredia-Soto V, Rodríguez-Salas N, Feliu J. Liquid Biopsy in Pancreatic Cancer: Are We Ready to Apply It in the Clinical Practice? Cancers (Basel) 2021; 13:1986. [PMID: 33924143 PMCID: PMC8074327 DOI: 10.3390/cancers13081986] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) exhibits the poorest prognosis of all solid tumors, with a 5-year survival of less than 10%. To improve the prognosis, it is necessary to advance in the development of tools that help us in the early diagnosis, treatment selection, disease monitoring, evaluation of the response and prognosis. Liquid biopsy (LB), in its different modalities, represents a particularly interesting tool for these purposes, since it is a minimally invasive and risk-free procedure that can detect both the presence of genetic material from the tumor and circulating tumor cells (CTCs) in the blood and therefore distantly reflect the global status of the disease. In this work we review the current status of the main LB modalities (ctDNA, exosomes, CTCs and cfRNAs) for detecting and monitoring PDAC.
Collapse
Affiliation(s)
- Victoria Heredia-Soto
- Translational Oncology Research Laboratory, Biomedical Research Institute, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; (V.H.-S.); (N.R.-S.)
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain
| | - Nuria Rodríguez-Salas
- Translational Oncology Research Laboratory, Biomedical Research Institute, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; (V.H.-S.); (N.R.-S.)
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain
- Cátedra UAM-AMGEN, Medical Oncology Department, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Jaime Feliu
- Translational Oncology Research Laboratory, Biomedical Research Institute, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; (V.H.-S.); (N.R.-S.)
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain
- Cátedra UAM-AMGEN, Medical Oncology Department, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| |
Collapse
|
32
|
Henriksen SD, Thorlacius-Ussing O. Cell-Free DNA Methylation as Blood-Based Biomarkers for Pancreatic Adenocarcinoma—A Literature Update. EPIGENOMES 2021; 5:epigenomes5020008. [PMID: 34968295 PMCID: PMC8594668 DOI: 10.3390/epigenomes5020008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic adenocarcinoma has a horrible prognosis, which is partly due to difficulties in diagnosing the disease in an early stage. Additional blood-born biomarkers for pancreatic adenocarcinoma are needed. Epigenetic modifications, as changes in DNA methylation, is a fundamental part of carcinogenesis. The aim of this paper is to do an update on cell-free DNA methylation as blood-based biomarkers for pancreatic adenocarcinoma. The current literature including our studies clearly indicates that cell-free DNA methylation has the potential as blood-based diagnostic and prognostic biomarkers for pancreatic adenocarcinoma. However, still no clinical applicable biomarker for pancreatic adenocarcinoma based on DNA methylation do exist. Further well-designed validation studies are needed.
Collapse
Affiliation(s)
- Stine Dam Henriksen
- Department of Gastrointestinal Surgery, Aalborg University Hospital, 9000 Aalborg, Denmark;
- Clinical Cancer Research Center, Aalborg University Hospital, 9000 Aalborg, Denmark
- Correspondence:
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg University Hospital, 9000 Aalborg, Denmark;
- Clinical Cancer Research Center, Aalborg University Hospital, 9000 Aalborg, Denmark
| |
Collapse
|
33
|
Zhao Z, Li M, Tan X, Xu D, Liu R. Methylation patterns partition pancreatic cancer into distinct prognostic subtypes. Future Oncol 2021; 17:2027-2039. [PMID: 33784823 DOI: 10.2217/fon-2020-0804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the initiation and progression of pancreatic cancer, DNA methylation plays a critical role. The present study attempts to explore specific prognosis subtypes based on DNA methylation data and develop an epigenetic signature to predict the overall survival (OS) of patients with pancreatic cancer.147 samples were included in the training cohort, whereas the validation cohort included 226 samples. The 298 OS-related methylation sites in the training cohort were selected for consensus clustering, and the authors identified three subtypes with a significant difference in prognosis. Cluster1 was associated with poor OS, low-grade disease and high lymph node involvement. In addition, we identified 33 specific methylation sites in Cluster1. Subsequently, we developed a robust qualitative signature consisting of 14 methylation sites to individually predict OS in the training cohort, and the predictive accuracy of this model was confirmed in the validation cohort. Functional enrichment analysis showed that the selected genes in the model were mainly enriched in known cancer-related pathways. Patients were divided into high- and low-risk groups by the model, and a significant difference in OS was observed between these groups. Classification based on the modeling of a specific DNA methylation site can reveal the heterogeneity of pancreatic cancer and provide guidance for clinicians in predicting the prognosis of pancreatic cancer and providing personalized treatment.
Collapse
Affiliation(s)
- Zhiming Zhao
- Department of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Mengyang Li
- Department of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xianglong Tan
- Department of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Dabin Xu
- Department of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Rong Liu
- Department of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| |
Collapse
|
34
|
Han X, Lu Y, Li X, Xia L, Wen H, Feng Z, Ju X, Chen X, Wu X. Overexpression of NPTX2 Promotes Malignant Phenotype of Epithelial Ovarian Carcinoma via IL6-JAK2/STAT3 Signaling Pathway Under Hypoxia. Front Oncol 2021; 11:643986. [PMID: 33768003 PMCID: PMC7985451 DOI: 10.3389/fonc.2021.643986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/25/2021] [Indexed: 01/14/2023] Open
Abstract
Background Epithelial ovarian cancer (EOC) is the main subtype of ovarian cancer and shows an aggressive phenotype and poor prognosis. Neuronal pentraxin II (NPTX2) is a member of the neuronal pentraxin family and plays a contradictory role in different tumors. However, there has been no report about the possible role and effect of NPTX2 in EOC. Methods Bioinformatics analysis, qPCR, western blotting and immunohistochemistry were used to detect the expression of NPTX2 in EOC. Lentivirus-based transfection for NPTX2 overexpression or knockdown was performed on the EOC cell lines A2780, HEY, SKOV3 and OVCAR-3. The effect of NPTX2 on the malignant phenotype of EOC was examined through methods of MTS assay, Edu assay, transwell assay, western blotting analysis, qPCR analysis, luciferase reporter assay and xenograft experiment. Results EOC tissues showed higher NPTX2 expression than the normal tissues with poor prognosis. NPTX2 overexpression can promote the proliferation, invasion, migration and tumorigenesis of EOC via IL6-JAK2/STAT3 signaling pathway. Moreover, hypoxia-inducible factor-1(HIF-1) can promote the transcription and expression of NPTX2 under the hypoxic environment. NPTX2 knockdown abolished the hypoxia-induced malignant phenotypes in ECO. Conclusions The above results suggest that NPTX2 may play a novel role in ovarian cancer's malignant phenotype and act as a promising treatment target for EOC molecular therapy.
Collapse
Affiliation(s)
- Xiaotian Han
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yechen Lu
- Wound Repair Center, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoqi Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingfang Xia
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Wen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zheng Feng
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xingzhu Ju
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaojun Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Sivapalan L, Kocher H, Ross-Adams H, Chelala C. Molecular profiling of ctDNA in pancreatic cancer: Opportunities and challenges for clinical application. Pancreatology 2021; 21:363-378. [PMID: 33451936 PMCID: PMC7994018 DOI: 10.1016/j.pan.2020.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 01/10/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is predicted to become the second leading cause of cancer-related mortality within the next decade, with limited effective treatment options and a dismal long-term prognosis for patients. Genomic profiling has not yet manifested clinical benefits for diagnosis, treatment or prognosis in PDAC, due to the lack of available tissues for sequencing and the confounding effects of low tumour cellularity in many biopsy specimens. Increasing focus is now turning to the use of minimally invasive liquid biopsies to enhance the characterisation of actionable PDAC tumour genomes. Circulating tumour DNA (ctDNA) is the most comprehensively studied liquid biopsy analyte in blood and can provide insight into the molecular profile and biological characteristics of individual PDAC tumours, in real-time and in advance of traditional imaging modalities. This can pave the way for identification of new therapeutic targets, novel risk variants and markers of tumour response, to supplement diagnostic screening and provide enhanced scrutiny in treatment stratification. In the roadmap towards the application of precision medicine for clinical management in PDAC, ctDNA analyses may serve a leading role in streamlining candidate biomarkers for clinical integration. In this review, we highlight recent developments in the use of ctDNA-based liquid biopsies for PDAC and provide new insights into the technical, analytical and biological challenges that must be overcome for this potential to be realised.
Collapse
Affiliation(s)
- L. Sivapalan
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, UK
| | - H.M. Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, UK
| | - H. Ross-Adams
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, UK
| | - C. Chelala
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, UK,Corresponding author.
| |
Collapse
|
36
|
Zhu J, Zhou Y, Zhu S, Li F, Xu J, Zhang L, Shu H. circRNA circ_102049 Implicates in Pancreatic Ductal Adenocarcinoma Progression through Activating CD80 by Targeting miR-455-3p. Mediators Inflamm 2021; 2021:8819990. [PMID: 33505218 PMCID: PMC7811564 DOI: 10.1155/2021/8819990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/27/2020] [Accepted: 12/13/2020] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence has shown that circular RNAs (circRNAs) and DNA methylation play important roles in the causation and progression of cancers. However, the roles of circRNAs and abnormal methylation genes in the tumorigenesis of pancreatic ductal adenocarcinoma (PDAC) are still largely unknown. Expression profiles of circRNA, gene methylation, and mRNA were downloaded from the GEO database, and differentially expressed genes were obtained via GEO2R, and a ceRNA network was constructed based on circRNA-miRNA pairs and miRNA-mRNA pairs. Inflammation-associated genes were collected from the GeneCards database. Then, functional enrichment analysis and protein-protein interaction (PPI) networks of inflammation-associated methylated expressed genes were investigated using Metascape and STRING databases, respectively, and visualized in Cytoscape. Hub genes of PPI networks were identified using the NetworkAnalyzer plugin. Also, we analyzed the methylation, protein expression levels, and prognostic value of hub genes in PDAC patients through the UALCAN, Human Protein Atlas (HPA), and Kaplan-Meier plotter databases, respectively. The circRNA_102049/miR-455-3p/CD80 axis was identified by the ceRNA network and hub genes. In vitro and in vivo experiments were performed to evaluate the functions of circRNA_102049. The regulatory mechanisms of circRNA_102049 and miR-455-3p were explored by RT-PCR, western blot, and dual-luciferase assays. In the present study, twelve hub genes (STAT1, CCND1, KRAS, CD80, ICAM1, ESR1, RAF1, RPS6KA2, KDM6B, TNRC6A, FOSB, and DNM1) were determined from the PPI networks. Additionally, the circRNA_102049 was upregulated in PDAC cell lines. Functionally, the knockdown of circRNA_102049 by siRNAs inhibited cell growth, inflammatory factors, and migratory and invasive potential and promoted cell apoptosis. Mechanistically, circRNA_102049 functioned as a sponge of miR-455-3p and partially reversed the effect of miR-455-3p and consequently upregulated CD80 expression. Our findings showed that circRNA_102049 and methylated hub genes play an important role in the proliferation, apoptosis, migration, invasion, and inflammatory response of PDAC, which might be selected as a promising prognostic marker and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Jie Zhu
- Medical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Yong Zhou
- Medical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Shanshan Zhu
- Medical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Fei Li
- Medical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jiajia Xu
- Medical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Liming Zhang
- Medical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Hairong Shu
- Department of Medical Service, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
37
|
Kong L, Liu P, Fei X, Wu T, Wang Z, Zhang B, Li J, Tan X. A Prognostic Prediction Model Developed Based on Four CpG Sites and Weighted Correlation Network Analysis Identified DNAJB1 as a Novel Biomarker for Pancreatic Cancer. Front Oncol 2020; 10:1716. [PMID: 32984053 PMCID: PMC7477361 DOI: 10.3389/fonc.2020.01716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Background The prognosis of pancreatic cancer, which is among the solid tumors associated with high mortality, is poor. There is a need to improve the overall survival rate of patients with pancreatic cancer. Materials and Methods The Cancer Genome Atlas (TCGA) dataset with 153 samples and the International Cancer Genome Consortium (ICGC) dataset with 235 samples were used as the discovery and validation cohorts, respectively. The least absolute shrinkage and selection operator regression was used to construct the prognostic prediction model based on the DNA methylation markers. The predictive efficiency of the model was evaluated based on the calibration curve, concordance index, receiver operating characteristic curve, area under the curve, and decision curve. The xenograft model and cellular functional experiments were used to investigate the potential role of DNAJB1 in pancreatic cancer. Results A prognostic prediction model based on four CpG sites (cg00609645, cg13512069, cg23811464, and cg03502002) was developed using TCGA dataset. The model effectively predicted the overall survival rate of patients with pancreatic cancer, which was verified in the ICGC dataset. Next, a nomogram model based on the independent prognostic factors was constructed to predict the overall survival rate of patients with pancreatic cancer. The nomogram model had a higher predictive value than TCGA or ICGC datasets. The low-risk group with improved prognosis exhibited less mutational frequency and high immune infiltration. The brown module with 247 genes derived from the WGCNA analysis was significantly correlated with the prognostic prediction model, tumor grade, clinical stage, and T stage. The bioinformatic analysis indicated that DNAJB1 can serve as a novel biomarker for pancreatic cancer. DNAJB1 knockdown significantly inhibited the proliferation, migration, and invasion of pancreatic cancer cells in vivo and in vitro. Conclusion The prognostic prediction model based on four CpG sites is a new method for predicting the prognosis of patients with pancreatic cancer. The molecular characteristic analyses, including Gene Ontology, Gene Set Enrichment Analysis, mutation spectrum, and immune infiltration of the subgroups, stratified by the model provided novel insights into the initiation and development of pancreatic cancer. DNAJB1 may serve as diagnostic and prognostic biomarkers for pancreatic cancer.
Collapse
Affiliation(s)
- Lingming Kong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiang Fei
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianyu Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongpeng Wang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Baohui Zhang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Jiatong Li
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaodong Tan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
38
|
Tang L, Xu M, Zhang L, Qu L, Liu X. Role of αVβ3 in Prostate Cancer: Metastasis Initiator and Important Therapeutic Target. Onco Targets Ther 2020; 13:7411-7422. [PMID: 32801764 PMCID: PMC7395689 DOI: 10.2147/ott.s258252] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
In prostate cancer, distant organ metastasis is the leading cause of patient death. Although the mechanism of malignant tumor metastasis is unclear, studies have confirmed that integrin αVβ3 plays an important role in this process. In prostate cancer, αVβ3 mediates adhesion, invasion, immune escape and neovascularization through interactions with different ligands. Among these ligands and in addition to proteins that are directly related to tumor invasion, other proteins that contain the RGD structure could also bind to αVβ3 and cause a number of biological effects. In this article, we summarized the ligand and downstream proteins related to αVβ3-mediated prostate cancer metastasis as well as some diagnostic and therapeutic measures targeting αVβ3.
Collapse
Affiliation(s)
- Lin Tang
- College of Mathematics and Computer Science, Chifeng University, Chifeng, The Inner Mongol Autonomous Region 024005, People's Republic of China
| | - Meng Xu
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, People's Republic of China.,R&D Department, Seekgene Technology Co., Ltd, Beijing 100000, People's Republic of China
| | - Long Zhang
- Department of Hepatobiliary Surgery, Yidu Central Hospital, Weifang, Shandong 262500, People's Republic of China
| | - Lin Qu
- Department of Orthopaedic Surgery, Anshan Hospital of the First Hospital of China Medical University, Anshan, Liaoning 114000, People's Republic of China
| | - Xiaoyan Liu
- Department of Pathology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100000, People's Republic of China
| |
Collapse
|
39
|
Ciernikova S, Earl J, García Bermejo ML, Stevurkova V, Carrato A, Smolkova B. Epigenetic Landscape in Pancreatic Ductal Adenocarcinoma: On the Way to Overcoming Drug Resistance? Int J Mol Sci 2020; 21:ijms21114091. [PMID: 32521716 PMCID: PMC7311973 DOI: 10.3390/ijms21114091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid malignancies due to the rapid rate of metastasis and high resistance to currently applied cancer therapies. The complex mechanism underlying the development and progression of PDAC includes interactions between genomic, epigenomic, and signaling pathway alterations. In this review, we summarize the current research findings on the deregulation of epigenetic mechanisms in PDAC and the influence of the epigenome on the dynamics of the gene expression changes underlying epithelial–mesenchymal transition (EMT), which is responsible for the invasive phenotype of cancer cells and, therefore, their metastatic potential. More importantly, we provide an overview of the studies that uncover potentially actionable pathways. These studies provide a scientific basis to test epigenetic drug efficacy in synergy with other anticancer therapies in future clinical trials, in order to reverse acquired therapy resistance. Thus, epigenomics has the potential to generate relevant new knowledge of both a biological and clinical impact. Moreover, the potential, hurdles, and challenges of predictive biomarker discoveries will be discussed, with a special focus on the promise of liquid biopsies.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
- Correspondence: ; Tel.: +421-2-3229-5198
| | - Julie Earl
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; (J.E.); (A.C.)
| | - María Laura García Bermejo
- Biomarkers and Therapeutic Targets Group, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain;
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
| | - Alfredo Carrato
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; (J.E.); (A.C.)
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
| |
Collapse
|
40
|
Huang X, Zhao Q, Li D, Ren B, Yue L, Shi F, Wang X, Zheng C, Chen X, Zhang C, Zhang W. Association between gene promoter methylation of the one-carbon metabolism pathway and serum folate among patients with hyperhomocysteinemia. Eur J Clin Nutr 2020; 74:1677-1684. [DOI: 10.1038/s41430-020-0657-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/23/2022]
|