1
|
Wu D, Liu J, Guo Z, Wang L, Yao Z, Wu Q, Lu Y, Lv W. Natural bioactive compounds reprogram bile acid metabolism in MAFLD: Multi-target mechanisms and therapeutic implications. Int Immunopharmacol 2025; 157:114708. [PMID: 40306110 DOI: 10.1016/j.intimp.2025.114708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/20/2025] [Accepted: 04/20/2025] [Indexed: 05/02/2025]
Abstract
Metabolic-associated fatty liver disease (MAFLD) has become an increasingly prevalent liver disorder worldwide, being closely associated with obesity, metabolic syndrome, and insulin resistance. Bile acids (BAs), beyond their traditional role in lipid digestion, play a pivotal part in regulating lipid and glucose metabolism as well as inflammatory responses. Recent investigations have recognized BAs as key factors in the onset and progression of MAFLD, mainly via their interactions with nuclear receptors such as the farnesoid X receptor (FXR) and the G protein-coupled bile acid receptor (TGR5). Additionally, active compounds derived from traditional Chinese medicine (TCM) have shown promising potential in the treatment of MAFLD. This study systematically reviews and analyzes the molecular mechanisms and recent progress in the application of TCM active ingredients for MAFLD treatment, with a focus on their regulation of BAs. These active ingredients, including saponins, flavonoids, polysaccharides, and sterols, exert therapeutic effects through diverse mechanisms, such as modulating BA synthesis and mediating receptor-signaling pathways, and are expected to restore metabolic homeostasis.
Collapse
Affiliation(s)
- Dongjie Wu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jing Liu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ziwei Guo
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Liang Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Ziang Yao
- Department of Traditional Chinese Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Qingjuan Wu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yanping Lu
- Department of Hepatology, Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Shenzhen 518100, China.
| | - Wenliang Lv
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
2
|
Fan S, Zhao K, Lei J, Ge Y. Preoperative total bile acid can be used as a prognostic biomarker in patients with operable biliary tract cancers. Discov Oncol 2025; 16:696. [PMID: 40338467 PMCID: PMC12061807 DOI: 10.1007/s12672-025-02527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/28/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Biliary tract cancers (BTCs) are highly invasive malignancies with poor prognoses. However, reliable biomarkers for survival prediction remain lacking. Notably, abnormal lipid metabolism has elicited increasing interest in digestive tract tumors, with the liver playing an important role in lipid metabolism. OBJECTIVE To explore the relationship between hepatic lipid metabolism-related indicators, assessed through routine clinical biochemical testing and survival prognosis in patients with BTCs. METHODS Overall, 109 patients with a pathological diagnosis of BTC from 2017 to 2023 were included in this study. Univariate and multivariate Cox regression analyses were performed using R Studio software, and survival curves were plotted. RESULTS Univariate analysis revealed that tumor location and preoperative total bile acid (TBA), carcinoembryonic antigen, cancer antigen (CA)125, and CA19-9 levels were correlated with patient survival (P < 0.05). Multivariate Cox regression analysis identified increased TBA level [hazard ratio (HR) = 0.445, P = 0.004] as an independent prognostic factor for longer survival. Conversely, tumor location [intrahepatic cholangiocarcinoma (iCCA) and/or extrahepatic cholangiocarcinoma (eCCA)] (HR = 2.463, P = 0.036) and increased CA125 and CA19-9 levels (HR = 2.549, P = 0.008 and HR = 2.100, P = 0.019) were independent prognostic factors for shorter survival. Additionally, Kaplan‒Meier survival curves revealed significantly longer survival in patients with increased TBA levels than those in the normal group (P = 0.012). Conversely, patients with iCCA and/or eCCA tumor location and increased CA125 and CA19-9 levels had significantly shorter median survival (P = 0.044, P = 0.013, and P = 0.012, respectively). CONCLUSION TBA may be a biomarker for predicting survival in patients with operable BTC, highlighting its clinical significance and application potential.
Collapse
Affiliation(s)
- Shanshan Fan
- Department of Oncology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Kexin Zhao
- The Third Clinical School of Medicine, Capital Medical University, Beijing, China
| | - Jiabao Lei
- The Third Clinical School of Medicine, Capital Medical University, Beijing, China
| | - Yang Ge
- Department of Oncology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| |
Collapse
|
3
|
Wang QC, Cao JY, Wang GY, Wang H, Peng H, Wang Q, Yin ZX, Jie-Zhou, Chang PA, Zhang GH, Yao WT, Wu JC, Pei CS. Circulating bile acid profiles characteristics and the potential predictive role in clear cell renal cell carcinoma progression. BMC Nephrol 2025; 26:206. [PMID: 40269745 PMCID: PMC12020223 DOI: 10.1186/s12882-025-04142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/18/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND The incidence of clear cell renal cell carcinoma (ccRCC) has steadily increased over the past decade, and recent studies have linked bile acid (BA) metabolism to its development. However, the metabolic profile of BAs and their potential as biomarkers in ccRCC pathogenesis remain poorly characterized, making their evaluation crucial for advancing disease understanding and management. METHODS A total of 68 newly diagnosed ccRCC patients and 63 healthy controls were enrolled. Serum bile acid (BA) profiles were measured using Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). The Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) model analyzed differences in serum BA profiles between ccRCC patients and controls. Additionally, the relationship between BA profiles and tumor heterogeneity parameters was investigated. Receiver Operating Characteristic (ROC) analysis identified potential biomarkers for ccRCC pathogenesis. RESULTS The BA profile was altered in ccRCC patients and was not influenced by sex or age. Specifically, primary and secondary unconjugated BA fractions were significantly higher in the ccRCC population. Five BA metabolite candidates exhibited the most significant differences between ccRCC patients and controls. Deoxycholic acid (DCA) was associated with pathological pTNM stage classification and grade. Chenodeoxycholic acid (CDCA) and lithocholic acid (LCA), combined with testosterone, showed potential as biomarkers for the pathogenesis of ccRCC. CONCLUSION Alterations in the serum BA profile are observed in ccRCC. Deoxycholic acid (DCA) correlates with pathological pTNM stage classification and tumor grade. Additionally, CDCA combined with LCA show potential as biomarkers for ccRCC pathogenesis. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Qi-Chao Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Urology, Xuzhou Cancer Hospital, Affiliated Hospital of Jiangsu University, Xuzhou, China
| | - Jing-Yi Cao
- Department of Urology, Xuzhou Cancer Hospital, Affiliated Hospital of Jiangsu University, Xuzhou, China
| | - Guang-Yue Wang
- Department of Urology, Xuzhou Cancer Hospital, Affiliated Hospital of Jiangsu University, Xuzhou, China
| | - Heng Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Peng
- Department of Urology, Xuzhou Cancer Hospital, Affiliated Hospital of Jiangsu University, Xuzhou, China
| | - Qian Wang
- Department of Urology, Xuzhou Cancer Hospital, Affiliated Hospital of Jiangsu University, Xuzhou, China
| | - Zhi-Xiang Yin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie-Zhou
- Department of Urology, Xuzhou Cancer Hospital, Affiliated Hospital of Jiangsu University, Xuzhou, China
| | - Ping-An Chang
- Department of Urology, Dongtai People Hospital, Yancheng, China
| | - Gui-Hua Zhang
- Department of Hematology, Xuzhou Cancer Hospital, Affiliated Hospital of Jiangsu University, Xuzhou, China
| | - Wen-Tao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jia-Cheng Wu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chang-Song Pei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Xu J, Chen N, Li Z, Liu Y. Gut microbiome and liver diseases. FUNDAMENTAL RESEARCH 2025; 5:890-901. [PMID: 40242515 PMCID: PMC11997574 DOI: 10.1016/j.fmre.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 04/18/2025] Open
Abstract
Symbiotic microbiota plays a crucial role in the education, development, and maintenance of the host immune system, significantly contributing to overall health. Through the gut-liver axis, the gut microbiota and liver have a bidirectional relationship that is becoming increasingly evident as more research highlights the translocation of the gut microbiota and its metabolites. The focus of this narrative review is to examine and discuss the importance of the gut-liver axis and the enterohepatic barrier in maintaining overall health. Additionally, we emphasize the crucial role of the gut microbiome in liver diseases and explore potential therapeutic strategies for liver diseases by manipulating the microbiota.
Collapse
Affiliation(s)
- Jun Xu
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Ning Chen
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Zhou Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
5
|
Li Z, Deng L, Cheng M, Ye X, Yang N, Fan Z, Sun L. Emerging role of bile acids in colorectal liver metastasis: From molecular mechanism to clinical significance (Review). Int J Oncol 2025; 66:24. [PMID: 39981904 PMCID: PMC11844338 DOI: 10.3892/ijo.2025.5730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Liver metastasis is the leading cause of colorectal cancer (CRC)‑related mortality. Microbiota dysbiosis serves a role in the pathogenesis of colorectal liver metastases. Bile acids (BAs), cholesterol metabolites synthesized by intestinal bacteria, contribute to the metastatic cascade of CRC, encompassing colorectal invasion, migration, angiogenesis, anoikis resistance and the establishment of a hepatic pre‑metastatic niche. BAs impact inflammation and modulate the immune landscape within the tumor microenvironment by activating signaling pathways, which are used by tumor cells to facilitate metastasis. Given the widespread distribution of BA‑activated receptors in both tumor and immune cells, strategies aimed at restoring BA homeostasis and blocking metastasis‑associated signaling are of importance in cancer therapy. The present study summarizes the specific role of BAs in each step of colorectal liver metastasis, elucidating the association between BA and CRC progression to highlight the potential of BAs as predictive biomarkers for colorectal liver metastasis and their therapeutic potential in developing novel treatment strategies.
Collapse
Affiliation(s)
- Zhaoyu Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, P.R. China
| | - Lingjun Deng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China
| | - Mengting Cheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China
| | - Xiandong Ye
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China
| | - Nanyan Yang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China
| | - Zaiwen Fan
- Department of Oncology, Air Force Medical Center of People's Liberation Army, Air Force Medical University, Beijing 100010, P.R. China
| | - Li Sun
- Department of Oncology, Air Force Medical Center of People's Liberation Army, Air Force Medical University, Beijing 100010, P.R. China
| |
Collapse
|
6
|
Yu KL, Shen S. Could intratumoural microbiota be key to unlocking treatment responses in hepatocellular carcinoma? Eur J Cancer 2025; 216:115195. [PMID: 39729679 DOI: 10.1016/j.ejca.2024.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Hepatocellular carcinoma (HCC) is the third cause of cancer-related mortality worldwide. Current treatments include surgery and immunotherapy with variable response. Despite aggressive treatment, disease progression remains the biggest contributor to mortality. Thus, there is an urgent unmet need to improve current treatments through a better understanding of HCC tumourigenesis. The gut microbiota has been intensively examined in the context of HCC, with evidence showing gut modulation has the potential to modulate tumourigenesis and prognosis. In addition, recent literature suggests the presence of an intratumoural microbiota that may exert significant impacts on the development of solid tumours including HCC. By drawing parallels between the gut and hepatic/tumoural microbiota, we explore in the present review how the hepatic microbiota is established, its impact on tumourigenesis, and how modulation of the gut and hepatic microbiota may be key to improving current treatments of HCC. In particular, we highlight key bacteria that have been discovered in HCC tumours, and how they may affect the tumour immune microenvironment and HCC tumourigenesis. We then explore current therapies that target the intratumoural microbiota. With a deeper understanding of how the intratumoural microbiota is established, how different bacteria may be involved in HCC tumourigenesis, and how they can be targeted, we hope to spark future research in validating intratumoural microbiota as an avenue for improving treatment responses in HCC.
Collapse
Affiliation(s)
- Kin Lam Yu
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Sj Shen
- Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Kogarah, NSW, Australia.
| |
Collapse
|
7
|
Wang J, Wang X, Zhuo E, Chen B, Chan S. Gut‑liver axis in liver disease: From basic science to clinical treatment (Review). Mol Med Rep 2025; 31:10. [PMID: 39450549 PMCID: PMC11541166 DOI: 10.3892/mmr.2024.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/14/2024] [Indexed: 10/26/2024] Open
Abstract
Incidence of a number of liver diseases has increased. Gut microbiota serves a role in the pathogenesis of hepatitis, cirrhosis and liver cancer. Gut microbiota is considered 'a new virtual metabolic organ'. The interaction between the gut microbiota and liver is termed the gut‑liver axis. The gut‑liver axis provides a novel research direction for mechanism of liver disease development. The present review discusses the role of the gut‑liver axis and how this can be targeted by novel treatments for common liver diseases.
Collapse
Affiliation(s)
- Jianpeng Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of Clinical Medicine, The First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Enba Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shixin Chan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
8
|
Jin S, Lu W, Zhang J, Zhang L, Tao F, Zhang Y, Hu X, Liu Q. The mechanisms, hallmarks, and therapies for brain aging and age-related dementia. Sci Bull (Beijing) 2024; 69:3756-3776. [PMID: 39332926 DOI: 10.1016/j.scib.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024]
Abstract
Age-related cognitive decline and dementia are significant manifestations of brain aging. As the elderly population grows rapidly, the health and socio-economic impacts of cognitive dysfunction have become increasingly significant. Although clinical treatment of dementia has faced considerable challenges over the past few decades, with limited breakthroughs in slowing its progression, there has been substantial progress in understanding the molecular mechanisms and hallmarks of age-related dementia (ARD). This progress brings new hope for the intervention and treatment of this disease. In this review, we categorize the latest findings in ARD biomarkers into four stages based on disease progression: Healthy brain, pre-clinical, mild cognitive impairment, and dementia. We then systematically summarize the most promising therapeutic approaches to prevent or slow ARD at four levels: Genome and epigenome, organelle, cell, and organ and organism. We emphasize the importance of early prevention and detection, along with the implementation of combined treatments as multimodal intervention strategies, to address brain aging and ARD in the future.
Collapse
Affiliation(s)
- Shiyun Jin
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230027, China; Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, China
| | - Wenping Lu
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230027, China; Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230027, China
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fangbiao Tao
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei 230032, China.
| | - Ye Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, China.
| | - Xianwen Hu
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230027, China; Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
9
|
Zhang J, Guan X, Zhong X. Immunosenescence in digestive system cancers: Mechanisms, research advances, and therapeutic strategies. Semin Cancer Biol 2024; 106-107:234-250. [PMID: 39510149 DOI: 10.1016/j.semcancer.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Increasing lifespans and external environmental factors have contributed to the increase of age-related diseases, particularly cancer. A decrease in immune surveillance and clearance of cancer cells is the result of immunosenescence, which involves the remodeling of immune organs, the changes and functional decline of immune cell subsets, in association with systemic low-grade chronic inflammation. Stem cells aging in bone marrow and thymic involution are the most important causes of immunosenescence. Senescent cancer cells promote the differentiation, recruitment, and functional upregulation of immune-suppressive cell subsets e.g. regulatory T cells (Tregs), myeloid-derived suppressor cell (MDSC), tumor-associated macrophages (TAMS) through senescence-associated secretory phenotype (SASP) further exacerbating the immunosuppressive microenvironment. For digestive system cancers, age-related damage to the intestinal mucosal barrier, the aging of gut-associated lymphoid tissue (GALT), exposure to xenobiotic stimuli throughout life, and dysbiosis make the local immune microenvironment more vulnerable. This article systematically reviews the research progress of immunosenescence and immune microenvironment in digestive system cancers, as well as the exploration of related therapy strategies, hoping to point out new directions for research in the digestive system cancers.
Collapse
Affiliation(s)
- Junyan Zhang
- Department of Surgical Oncology and General Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaojiao Guan
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang, China.
| | - Xinwen Zhong
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
10
|
Daniel N, Genua F, Jenab M, Mayén AL, Chrysovalantou Chatziioannou A, Keski-Rahkonen P, Hughes DJ. The role of the gut microbiome in the development of hepatobiliary cancers. Hepatology 2024; 80:1252-1269. [PMID: 37055022 PMCID: PMC11487028 DOI: 10.1097/hep.0000000000000406] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Hepatobiliary cancers, including hepatocellular carcinoma and cancers of the biliary tract, share high mortality and rising incidence rates. They may also share several risk factors related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and rates of obesity. Recent data also suggest a role for the gut microbiome in the development of hepatobiliary cancer and other liver pathologies. The gut microbiome and the liver interact bidirectionally through the "gut-liver axis," which describes the interactive relationship between the gut, its microbiota, and the liver. Here, we review the gut-liver interactions within the context of hepatobiliary carcinogenesis by outlining the experimental and observational evidence for the roles of gut microbiome dysbiosis, reduced gut barrier function, and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to hepatobiliary cancer development. We also outline the latest findings regarding the impact of dietary and lifestyle factors on liver pathologies as mediated by the gut microbiome. Finally, we highlight some emerging gut microbiome editing techniques currently being investigated in the context of hepatobiliary diseases. Although much work remains to be done in determining the relationships between the gut microbiome and hepatobiliary cancers, emerging mechanistic insights are informing treatments, such as potential microbiota manipulation strategies and guiding public health advice on dietary/lifestyle patterns for the prevention of these lethal tumors.
Collapse
Affiliation(s)
- Neil Daniel
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Flavia Genua
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | | | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David J. Hughes
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Amengual J, Alay A, Vaquero J, Gonzalez-Sanchez E, Bertran E, Sánchez A, Herrera B, Meyer K, Maus M, Serrano M, Martínez-Chantar ML, Fabregat I. Iron chelation as a new therapeutic approach to prevent senescence and liver fibrosis progression. Cell Death Dis 2024; 15:680. [PMID: 39289337 PMCID: PMC11408630 DOI: 10.1038/s41419-024-07063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Iron overload and cellular senescence have been implicated in liver fibrosis, but their possible mechanistic connection has not been explored. To address this, we have delved into the role of iron and senescence in an experimental model of chronic liver injury, analyzing whether an iron chelator would prevent liver fibrosis by decreasing hepatocyte senescence. The model of carbon tetrachloride (CCl4) in mice was used as an experimental model of liver fibrosis. Results demonstrated that during the progression of liver fibrosis, accumulation of iron occurs, concomitant with the appearance of fibrotic areas and cells undergoing senescence. Isolated parenchymal hepatocytes from CCl4-treated mice present a gene transcriptomic signature compatible with iron accumulation and senescence, which correlates with induction of Reactive Oxygen Species (ROS)-related genes, activation of the Transforming Growth Factor-beta (TGF-β) pathway and inhibition of oxidative metabolism. Analysis of the iron-related gene signature in a published single-cell RNA-seq dataset from CCl4-treated livers showed iron accumulation correlating with senescence in other non-parenchymal liver cells. Treatment with deferiprone, an iron chelator, attenuated iron accumulation, fibrosis and senescence, concomitant with relevant changes in the senescent-associated secretome (SASP), which switched toward a more anti-inflammatory profile of cytokines. In vitro experiments in human hepatocyte HH4 cells demonstrated that iron accumulates in response to a senescence-inducing reagent, doxorubicin, being deferiprone able to prevent senescence and SASP, attenuating growth arrest and cell death. However, deferiprone did not significantly affect senescence induced by two different agents (doxorubicin and deoxycholic acid) or activation markers in human hepatic stellate LX-2 cells. Transcriptomic data from patients with different etiologies demonstrated the relevance of iron accumulation in the progression of liver chronic damage and fibrosis, correlating with a SASP-related gene signature and pivotal hallmarks of fibrotic changes. Altogether, our study establishes iron accumulation as a clinically exploitable driver to attenuate pathological senescence in hepatocytes.
Collapse
Affiliation(s)
- Josep Amengual
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Ania Alay
- Unit of Bioinformatics for Precision Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
- Preclinical and Experimental Research in Thoracic Tumors (PReTT), Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Vaquero
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- HepatoBiliary Tumours Lab, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, 37007, Spain
| | - Ester Gonzalez-Sanchez
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- HepatoBiliary Tumours Lab, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, 37007, Spain
- Department of Physiology and Pharmacology, University of Salamanca, 37007, Salamanca, Spain
| | - Esther Bertran
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the "Hospital Clínico San Carlos" (IdISSC), Madrid, Spain
| | - Blanca Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the "Hospital Clínico San Carlos" (IdISSC), Madrid, Spain
| | - Kathleen Meyer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Altos Labs, Cambridge Institute of Science, Cambridge, United Kingdom
| | - Mate Maus
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Altos Labs, Cambridge Institute of Science, Cambridge, United Kingdom
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - María Luz Martínez-Chantar
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Liver Disease and Liver Metabolism Laboratory, CIC bioGUNE-BRTA (Basque Research & Technology Alliance), Derio, Bizkaia, Spain
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| |
Collapse
|
12
|
Xu Y, Le J, Qin J, Zhang Y, Yang J, Chen Z, Li C, Qian X, Zhang A. Decoding the microbiota metabolome in hepatobiliary and pancreatic cancers: Pathways to precision diagnostics and targeted therapeutics. Pharmacol Res 2024; 208:107364. [PMID: 39181345 DOI: 10.1016/j.phrs.2024.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/31/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
We delve into the critical role of the gut microbiota and its metabolites in the pathogenesis and progression of hepatobiliary and pancreatic (HBP) cancers, illuminating an urgent need for breakthroughs in diagnostic and therapeutic strategies. Given the high mortality rates associated with HBP cancers, which are attributed to aggressive recurrence, metastasis, and poor responses to chemotherapy, exploring microbiome research presents a promising frontier. This research highlights how microbial metabolites, including secondary bile acids, short-chain fatty acids, and lipopolysaccharides, crucially influence cancer cell behaviors such as proliferation, apoptosis, and immune evasion, significantly contributing to the oncogenesis and progression of HBP cancers. By integrating the latest findings, we discuss the association of microbial alterations with HBP cancers, key metabolites, and their implications, and how metabolomics and microbiomics can enhance diagnostic precision. Furthermore, the paper explores strategies for targeted therapies through microbiome metabolomics, including the direct therapeutic effects of microbiome metabolites and potential synergistic effects on conventional therapies. We also recognize that the field of microbial metabolites for the diagnosis and treatment of tumors still has a lot of problems to be solved. The aim of this study is to pioneer microbial metabolite research and provide a reference for HBP cancer diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Yuemiao Xu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiahan Le
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiangjiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuhua Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Jiaying Yang
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhuo Chen
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Changyu Li
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiang Qian
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China.
| | - Aiqin Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China.
| |
Collapse
|
13
|
Li XJ, Fang C, Zhao RH, Zou L, Miao H, Zhao YY. Bile acid metabolism in health and ageing-related diseases. Biochem Pharmacol 2024; 225:116313. [PMID: 38788963 DOI: 10.1016/j.bcp.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Bile acids (BAs) have surpassed their traditional roles as lipid solubilizers and regulators of BA homeostasis to emerge as important signalling molecules. Recent research has revealed a connection between microbial dysbiosis and metabolism disruption of BAs, which in turn impacts ageing-related diseases. The human BAs pool is primarily composed of primary BAs and their conjugates, with a smaller proportion consisting of secondary BAs. These different BAs exert complex effects on health and ageing-related diseases through several key nuclear receptors, such as farnesoid X receptor and Takeda G protein-coupled receptor 5. However, the underlying molecular mechanisms of these effects are still debated. Therefore, the modulation of signalling pathways by regulating synthesis and composition of BAs represents an interesting and novel direction for potential therapies of ageing-related diseases. This review provides an overview of synthesis and transportion of BAs in the healthy body, emphasizing its dependence on microbial community metabolic capacity. Additionally, the review also explores how ageing and ageing-related diseases affect metabolism and composition of BAs. Understanding BA metabolism network and the impact of their nuclear receptors, such as farnesoid X receptor and G protein-coupled receptor 5 agonists, paves the way for developing therapeutic agents for targeting BA metabolism in various ageing-related diseases, such as metabolic disorder, hepatic injury, cardiovascular disease, renal damage and neurodegenerative disease.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No.13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong 510315, China
| | - Chu Fang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Rui-Hua Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, Sichuan 610106, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; National Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
14
|
Marroncini G, Naldi L, Martinelli S, Amedei A. Gut-Liver-Pancreas Axis Crosstalk in Health and Disease: From the Role of Microbial Metabolites to Innovative Microbiota Manipulating Strategies. Biomedicines 2024; 12:1398. [PMID: 39061972 PMCID: PMC11273695 DOI: 10.3390/biomedicines12071398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The functions of the gut are closely related to those of many other organs in the human body. Indeed, the gut microbiota (GM) metabolize several nutrients and compounds that, once released in the bloodstream, can reach distant organs, thus influencing the metabolic and inflammatory tone of the host. The main microbiota-derived metabolites responsible for the modulation of endocrine responses are short-chain fatty acids (SCFAs), bile acids and glucagon-like peptide 1 (GLP-1). These molecules can (i) regulate the pancreatic hormones (insulin and glucagon), (ii) increase glycogen synthesis in the liver, and (iii) boost energy expenditure, especially in skeletal muscles and brown adipose tissue. In other words, they are critical in maintaining glucose and lipid homeostasis. In GM dysbiosis, the imbalance of microbiota-related products can affect the proper endocrine and metabolic functions, including those related to the gut-liver-pancreas axis (GLPA). In addition, the dysbiosis can contribute to the onset of some diseases such as non-alcoholic steatohepatitis (NASH)/non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and type 2 diabetes (T2D). In this review, we explored the roles of the gut microbiota-derived metabolites and their involvement in onset and progression of these diseases. In addition, we detailed the main microbiota-modulating strategies that could improve the diseases' development by restoring the healthy balance of the GLPA.
Collapse
Affiliation(s)
- Giada Marroncini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Laura Naldi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
15
|
Shi Y, Taherifard E, Saeed A, Saeed A. MASLD-Related HCC: A Comprehensive Review of the Trends, Pathophysiology, Tumor Microenvironment, Surveillance, and Treatment Options. Curr Issues Mol Biol 2024; 46:5965-5983. [PMID: 38921027 PMCID: PMC11202630 DOI: 10.3390/cimb46060356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a significant burden on global healthcare systems due to its considerable incidence and mortality rates. Recent trends indicate an increase in the worldwide incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) and a shift in the etiology of HCC, with MASLD replacing the hepatitis B virus as the primary contributor to new cases of HCC. MASLD-related HCC exhibits distinct characteristics compared to viral HCC, including unique immune cell profiles resulting in an overall more immunosuppressive or exhausted tumor microenvironment. Furthermore, MASLD-related HCC is frequently identified in older age groups and among individuals with cardiometabolic comorbidities. Additionally, a greater percentage of MASLD-related HCC cases occur in noncirrhotic patients compared to those with viral etiologies, hindering early detection. However, the current clinical practice guidelines lack specific recommendations for the screening of HCC in MASLD patients. The evolving landscape of HCC management offers a spectrum of therapeutic options, ranging from surgical interventions and locoregional therapies to systemic treatments, for patients across various stages of the disease. Despite ongoing debates, the current evidence does not support differences in optimal treatment modalities based on etiology. In this study, we aimed to provide a comprehensive overview of the current literature on the trends, characteristics, clinical implications, and treatment modalities for MASLD-related HCC.
Collapse
Affiliation(s)
- Yuming Shi
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (Y.S.); (E.T.)
| | - Erfan Taherifard
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (Y.S.); (E.T.)
| | - Ali Saeed
- Department of Medicine, Ochsner Lafayette General Medical Center, Lafayette, LA 70503, USA;
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; (Y.S.); (E.T.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
16
|
Du X, Hua R, He X, Hou W, Li S, Yang A, Yang G. Echinococcus granulosus ubiquitin-conjugating enzymes (E2D2 and E2N) promote the formation of liver fibrosis in TGFβ1-induced LX-2 cells. Parasit Vectors 2024; 17:190. [PMID: 38643149 PMCID: PMC11031992 DOI: 10.1186/s13071-024-06222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/29/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Cystic echinococcosis (CE) is a widespread zoonosis caused by the infection with Echinococcus granulosus sensu lato (E. granulosus s.l.). CE cysts mainly develop in the liver of intermediate hosts, characterized by the fibrotic tissue that separates host organ from parasite. However, precise mechanism underlying the formation of fibrotic tissue in CE remains unclear. METHODS To investigate the potential impact of ubiquitin-conjugating enzymes on liver fibrosis formation in CE, two members of ubiquitin-conjugating (UBC) enzyme of Echinococcus granulosus (EgE2D2 and EgE2N) were recombinantly expressed in Escherichia coli and analyzed for bioinformatics, immunogenicity, localization, and enzyme activity. In addition, the secretory pathway and their effects on the formation of liver fibrosis were also explored. RESULTS Both rEgE2D2 and rEgE2N possess intact UBC domains and active sites, exhibiting classical ubiquitin binding activity and strong immunoreactivity. Additionally, EgE2D2 and EgE2N were widely distributed in protoscoleces and germinal layer, with differences observed in their distribution in 25-day strobilated worms. Further, these two enzymes were secreted to the hydatid fluid and CE-infected sheep liver tissues via a non-classical secretory pathway. Notably, TGFβ1-induced LX-2 cells exposed to rEgE2D2 and rEgE2N resulted in increasing expression of fibrosis-related genes, enhancing cell proliferation, and facilitating cell migration. CONCLUSIONS Our findings suggest that EgE2D2 and EgE2N could secrete into the liver and may interact with hepatic stellate cells, thereby promoting the formation of liver fibrosis.
Collapse
Affiliation(s)
- Xiaodi Du
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Hou
- Sichuan Center for Animal Disease Control and Prevention, Chengdu, 610041, China
| | - Shengqiong Li
- Sichuan Center for Animal Disease Control and Prevention, Chengdu, 610041, China
| | - Aiguo Yang
- Sichuan Center for Animal Disease Control and Prevention, Chengdu, 610041, China.
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
17
|
Zhang Q, Lou Y, Fang H, Sun S, Jin R, Ji Y, Chen Z. Cancer‑associated fibroblasts under therapy‑induced senescence in the tumor microenvironment (Review). Exp Ther Med 2024; 27:150. [PMID: 38476922 PMCID: PMC10928991 DOI: 10.3892/etm.2024.12438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/16/2024] [Indexed: 03/14/2024] Open
Abstract
Current cancer treatments target tumor cells; however, the tumor microenvironment (TME) induces therapeutic resistance, tumor development and metastasis, thus rendering these treatments ineffective. Research on the TME has therefore concentrated on nonmalignant cells. Cancer-associated fibroblasts (CAFs) are a major TME component, which contribute to cancer progression due to their diverse origins, phenotypes and functions, including cancer cell invasion and migration, extracellular matrix remodeling, tumor metabolism modulation and therapeutic resistance. Standard cancer treatment typically exacerbates the senescence-associated secretory phenotype (SASP) of senescent cancer cells and nonmalignant cells that actively leak proinflammatory signals in the TME. Therapy-induced senescence may impair cancer cell activity and compromise treatment responsiveness. CAFs and SASP are well-studied in the formation and progression of cancer. The present review discusses the current data on CAF senescence caused by anticancer treatment and assesses how senescence-like CAFs affect tumor formation. The development of senolytic medication for aging stromal cells is also highlighted. Combining cancer therapies with senolytics may boost therapeutic effects and provide novel possibilities for research.
Collapse
Affiliation(s)
- Qiuhua Zhang
- Department of Oncology, First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yijie Lou
- Department of Oncology, First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Hao Fang
- Department of Oncology, First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Shaopeng Sun
- Department of Oncology, First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Rijuan Jin
- Department of Oncology, First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yunxi Ji
- Department of General Practice, First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310003, P.R. China
| | - Zhe Chen
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Institute of Cancer Research, First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
18
|
Xiong Y, Qiao W, Wang Q, Li K, Jin R, Zhang Y. Construction and validation of a machine learning-based nomogram to predict the prognosis of HBV associated hepatocellular carcinoma patients with high levels of hepatitis B surface antigen in primary local treatment: a multicenter study. Front Immunol 2024; 15:1357496. [PMID: 38601167 PMCID: PMC11004323 DOI: 10.3389/fimmu.2024.1357496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Background Hepatitis B surface antigen (HBsAg) clearance is associated with improved long-term outcomes and reduced risk of complications. The aim of our study was to identify the effects of levels of HBsAg in HCC patients undergoing TACE and sequential ablation. In addition, we created a nomogram to predict the prognosis of HCC patients with high levels of HBsAg (≥1000U/L) after local treatment. Method This study retrospectively evaluated 1008 HBV-HCC patients who underwent TACE combined with ablation at Beijing Youan Hospital and Beijing Ditan Hospital from January 2014 to December 2021, including 334 patients with low HBsAg levels and 674 patients with high HBsAg levels. The high HBsAg group was divided into the training cohort (N=385), internal validation cohort (N=168), and external validation cohort (N=121). The clinical and pathological features of patients were collected, and independent risk factors were identified using Lasso-Cox regression analysis for developing a nomogram. The performance of the nomogram was evaluated by C-index, receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) curves in the training and validation cohorts. Patients were classified into high-risk and low-risk groups based on the risk scores of the nomogram. Result After PSM, mRFS was 28.4 months (22.1-34.7 months) and 21.9 months (18.5-25.4 months) in the low HBsAg level and high HBsAg level groups (P<0.001). The content of the nomogram includes age, BCLC stage, tumor size, globulin, GGT, and bile acids. The C-index (0.682, 0.666, and 0.740) and 1-, 3-, and 5-year AUCs of the training, internal validation, and external validation cohorts proved good discrimination of the nomogram. Calibration curves and DCA curves suggested accuracy and net clinical benefit rates. The nomogram enabled to classification of patients with high HBsAg levels into low-risk and high-risk groups according to the risk of recurrence. There was a statistically significant difference in RFS between the two groups in the training, internal validation, and external validation cohorts (P<0.001). Conclusion High levels of HBsAg were associated with tumor progression. The nomogram developed and validated in the study had good predictive ability for patients with high HBsAg levels.
Collapse
Affiliation(s)
- Yiqi Xiong
- Interventional Therapy Center for Oncology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Wenying Qiao
- Research Center for Biomedical Resources, Beijing You’an Hospital Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qi Wang
- Interventional Radiology Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Kang Li
- Research Center for Biomedical Resources, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Ronghua Jin
- Research Center for Biomedical Resources, Beijing You’an Hospital Capital Medical University, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yonghong Zhang
- Interventional Therapy Center for Oncology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Golonka RM, Yeoh BS, Saha P, Tian Y, Chiang JYL, Patterson AD, Gewirtz AT, Joe B, Vijay-Kumar M. Sex Dimorphic Effects of Bile Acid Metabolism in Liver Cancer in Mice. Cell Mol Gastroenterol Hepatol 2024; 17:719-735. [PMID: 38262588 PMCID: PMC10966305 DOI: 10.1016/j.jcmgh.2024.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is a male-dominant disease, but targeted sex hormone therapies have not been successful. Bile acids are a potential liver carcinogen and are biomolecules with hormone-like effects. A few studies highlight their potential sex dimorphism in physiology and disease. We hypothesized that bile acids could be a potential molecular signature that explains sex disparity in HCC. METHODS & RESULTS We used the farnesoid X receptor knockout (FxrKO) mouse model to study bile acid-dependent HCC. Temporal tracking of circulating bile acids determined more than 80% of FxrKO females developed spontaneous cholemia (ie, serum total bile acids ≥40 μmol/L) as early as 8 weeks old. Opposingly, FxrKO males were highly resistant to cholemia, with ∼23% incidence even when 26 weeks old. However, FxrKO males demonstrated higher levels of deoxycholate than females. Compared with males, FxrKO females had more severe cholestatic liver injury and further aberrancies in bile acid metabolism. Yet, FxrKO females expressed more detoxification transcripts and had greater renal excretion of bile acids. Intervention with CYP7A1 (rate limiting enzyme for bile acid biosynthesis) deficiency or taurine supplementation either completely or partially normalized bile acid levels and liver injury in FxrKO females. Despite higher cholemia prevalence in FxrKO females, their tumor burden was less compared with FxrKO males. An exception to this sex-dimorphic pattern was found in a subset of male and female FxrKO mice born with congenital cholemia due to portosystemic shunt, where both sexes had comparable robust HCC. CONCLUSIONS Our study highlights bile acids as sex-dimorphic metabolites in HCC except in the case of portosystemic shunt.
Collapse
Affiliation(s)
- Rachel M Golonka
- UT Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Beng San Yeoh
- UT Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Piu Saha
- UT Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - John Y L Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Bina Joe
- UT Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Matam Vijay-Kumar
- UT Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.
| |
Collapse
|
20
|
Rajapakse J, Khatiwada S, Akon AC, Yu KL, Shen S, Zekry A. Unveiling the complex relationship between gut microbiota and liver cancer: opportunities for novel therapeutic interventions. Gut Microbes 2023; 15:2240031. [PMID: 37615334 PMCID: PMC10454000 DOI: 10.1080/19490976.2023.2240031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has been linked to the gut microbiota, with recent studies revealing the potential of gut-generated responses to influence several arms of the immune responses relevant to HCC formation. The pro- or anti-tumor effects of specific bacterial strains or gut microbiota-related metabolites, such as bile acids and short-chain fatty acids, have been highlighted in many human and animal studies. The critical role of the gut microbiota in HCC development has spurred interest in modulating the gut microbiota through dietary interventions, probiotics, and fecal microbiota transplantation as a potential strategy to improve liver cancer outcomes. Encouragingly, preclinical and clinical studies have demonstrated that modulation of the gut microbiota can ameliorate liver function, reduce inflammation, and inhibit liver tumor growth, underscoring the potential of this approach to improve HCC outcomes. As research continues to unravel the complex and dynamic mechanisms underlying the gut-liver axis, the development of safe and effective interventions to target this pathway for liver cancer prevention and treatment appears to be on the horizon, heralding a significant advance in our ongoing efforts to combat this devastating disease.
Collapse
Affiliation(s)
- Jayashi Rajapakse
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales (UNSW), Sydney, Australia
| | - Saroj Khatiwada
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales (UNSW), Sydney, Australia
| | - Anna Camille Akon
- St George Hospital, Gastroenterology and Hepatology Department, Sydney, Australia
| | - Kin Lam Yu
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales (UNSW), Sydney, Australia
| | - Sj Shen
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales (UNSW), Sydney, Australia
| | - Amany Zekry
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales (UNSW), Sydney, Australia
- St George Hospital, Gastroenterology and Hepatology Department, Sydney, Australia
| |
Collapse
|
21
|
Cui H, Lian J, Xu B, Yu Z, Xiang H, Shi J, Gao Y, Han T. Identification of a bile acid and bile salt metabolism-related lncRNA signature for predicting prognosis and treatment response in hepatocellular carcinoma. Sci Rep 2023; 13:19512. [PMID: 37945918 PMCID: PMC10636107 DOI: 10.1038/s41598-023-46805-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Bile acids and salts have been shown to play a role in liver carcinogenesis through DNA damage, inflammation, and tumor proliferation. However, the correlation between bile acid metabolism and hepatocellular carcinoma (HCC) prognosis remains unclear. This study aimed to identify a predictive signature of bile acid and bile salt metabolism-related long non-coding RNAs (lncRNAs) for HCC prognosis and treatment response. The study used HCC RNA-sequencing data and corresponding clinical and prognostic data from The Cancer Genome Atlas. A prognostic model consisting of five bile acid and bile salt metabolism-related lncRNAs was developed and evaluated in a training set, a validation set and an external set. The model demonstrated good performance in predicting HCC prognosis and was shown to be an independent biomarker for prognosis. Additionally, our study revealed a significant association between the signature and immune cell infiltration, as well as its predictive value for therapeutic responses to both immunotherapy and chemotherapy. Furthermore, three LncRNAs (LUCAT1, AL031985.3 and AC015908.3) expression levels in our signature were validated through qRT-PCR in a cohort of 50 pairs of HCC patient tumor samples and corresponding adjacent non-tumor samples, along with 10 samples of normal liver tissue adjacent to benign lesions. These findings suggest that this novel bile acid and bile salt metabolism-related lncRNA signature can independently predict the prognosis of patients with HCC and may be utilized as a potential predictor of response to treatment in this setting.
Collapse
Affiliation(s)
- Hao Cui
- Department of Gastroenterology and Hepatology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Jia Lian
- Department of Gastroenterology and Hepatology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Baiguo Xu
- Department of Gastroenterology and Hepatology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Zhenjun Yu
- Department of Gastroenterology and Hepatology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Huiling Xiang
- Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin, China.
| | - Jingxiang Shi
- Department of Hepatobiliary Surgery, The Third Central Hospital of Tianjin, Tianjin, China.
| | - Yingtang Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Nankai University Affinity the Third Central Hospital, Tianjin, China.
| | - Tao Han
- Department of Gastroenterology and Hepatology, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
22
|
Kovacevic B, Jones M, Wagle SR, Ionescu CM, Foster T, Đanić M, Mikov M, Mooranian A, Al-Salami H. Influence of poly-L-ornithine-bile acid nano hydrogels on cellular bioactivity and potential pharmacological applications. Ther Deliv 2023. [PMID: 37667908 DOI: 10.4155/tde-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Aim: Cellular bioactivity and pathophysiological changes associated with chronic disorders are considered pivotal detrimental factors when developing novel formulations for biomedical applications. Methods: This paper investigates the use of bile acids and synthetic polypeptide poly-L-ornithine (PLO) in formulations and their impacts on a variety of cell lines, with a particular focus on their cellular bioactivity. Results: The hepatic cell line was the most negatively affected by the presence of PLO, while the muscle and beta-pancreatic cell lines did not show as profound of a negative impact of PLO on cellular viability. PLO was the least disruptive regarding mitochondrial function for muscle and beta cells. Conclusion: The addition of bile acids generally decreased mitochondrial respiration and altered bioenergetic parameters in all cell lines.
Collapse
Affiliation(s)
- Bozica Kovacevic
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Melissa Jones
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Susbin Raj Wagle
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Thomas Foster
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Maja Đanić
- Department of Pharmacology, Toxicology & Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology & Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Armin Mooranian
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, 9016, New Zealand
| | - Hani Al-Salami
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
- Medical School, University of Western Australia, Perth, 6000, Australia
| |
Collapse
|
23
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Asai T, Tsuji A, Matsuda S. Potential tactics with certain gut microbiota for the treatment of unresectable hepatocellular carcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:556-568. [PMID: 37720344 PMCID: PMC10501893 DOI: 10.37349/etat.2023.00152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/24/2023] [Indexed: 09/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes an extremely malignant form of primary liver cancer. Intricate connections linking to the immune system might be associated with the pathogenesis of HCC. Meanwhile, immunotherapy with immune checkpoint inhibitors has been established to be a favorable therapeutic possibility for advanced HCC. Although curative opportunities for advanced HCC are restricted, the immune checkpoint immunotherapy has developed as the main choice for treating HCC. However, patients with metabolic-associated fatty liver disease (MAFLD)-linked HCC might be less likely to benefit from the immunotherapy alone. The limitation of the effect of the immunotherapy might be owing to the impaired T cell activation in MAFLD patients, which could be well explained by a dysfunctional gut-liver axis. Gut microbiota and their metabolites including several bile acids could contribute to modulating the responses of the immune checkpoint immunotherapy. Roles of gut microbiota in the development of cancers have expected great interest in the latest studies. Here, an interplay between the gut and liver has been presented, which might suggest to affect the efficacy of immune checkpoint immunotherapy against HCC.
Collapse
Affiliation(s)
- Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Haruka Sawamura
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Tomoko Asai
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
24
|
Shi Q, Yuan X, Xue C, Gu X, Li L. Establishment and Validation of a Novel Risk Score for Hepatocellular Carcinoma Based on Bile Acid and Bile Salt Metabolism-Related Genes. Int J Mol Sci 2023; 24:ijms24108597. [PMID: 37239939 DOI: 10.3390/ijms24108597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
Liver cancer is a public disease burden with an increasing incidence rate globally. Bile acid and bile salt's metabolic pathways participate in liver tumorigenesis and regulate the tumor microenvironment. However, there still remains a lack of systematic analysis of the genes related to bile acid and bile salt metabolic pathways in hepatocellular carcinoma (HCC). The mRNA expression data and clinical follow-up information of patients with HCC were obtained from public databases, including The Cancer Genome Atlas, Hepatocellular Carcinoma Database, Gene Expression Omnibus, and IMvigor210. The bile acid and bile salt metabolism-related genes were extracted from Molecular Signatures Database. Univariate Cox and logistic least absolute shrinkage and selection operator regression analyses were conducted to establish the risk model. Single sample gene set enrichment analysis, Estimation of STromal and Immune cells in MAlignant Tumour tissues using Expression data, and Tumor Immune Dysfunction and Exclusion were adopted to analyze immune status. The efficiency of the risk model was tested using a decision tree and a nomogram. We determined two molecular subtypes based on bile acid and bile salt metabolism-related genes, with the prognosis of the S1 subtype being markedly superior to the S2 subtype. Next, we established a risk model based on the differentially expressed genes between the two molecular subtypes. The high-risk and low-risk groups showed significant differences in the biological pathways, immune score, immunotherapy response, and drug susceptibility. Our results demonstrated the good predictive performance of the risk model in immunotherapy datasets and established that it could be an essential factor affecting the prognosis of HCC. In conclusion, we identified two molecular subtypes based on bile acid and bile salt metabolism-related genes. The risk model established in our study could effectively predict the prognosis of patients with HCC and their immunotherapeutic response, which may contribute to targeted immunotherapy in HCC.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
25
|
Ye M, Huang X, Wu Q, Liu F. Senescent Stromal Cells in the Tumor Microenvironment: Victims or Accomplices? Cancers (Basel) 2023; 15:cancers15071927. [PMID: 37046588 PMCID: PMC10093305 DOI: 10.3390/cancers15071927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Cellular senescence is a unique cellular state. Senescent cells enter a non-proliferative phase, and the cell cycle is arrested. However, senescence is essentially an active cellular phenotype, with senescent cells affecting themselves and neighboring cells via autocrine and paracrine patterns. A growing body of research suggests that the dysregulation of senescent stromal cells in the microenvironment is tightly associated with the development of a variety of complex cancers. The role of senescent stromal cells in impacting the cancer cell and tumor microenvironment has also attracted the attention of researchers. In this review, we summarize the generation of senescent stromal cells in the tumor microenvironment and their specific biological functions. By concluding the signaling pathways and regulatory mechanisms by which senescent stromal cells promote tumor progression, distant metastasis, immune infiltration, and therapy resistance, this paper suggests that senescent stromal cells may serve as potential targets for drug therapy, thus providing new clues for future related research.
Collapse
Affiliation(s)
- Minghan Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu 610065, China
| | - Xinyi Huang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250100, China
| | - Qianju Wu
- Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen 361008, China
- Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu 610065, China
| |
Collapse
|
26
|
Xing L, Zhang Y, Li S, Tong M, Bi K, Zhang Q, Li Q. A Dual Coverage Monitoring of the Bile Acids Profile in the Liver-Gut Axis throughout the Whole Inflammation-Cancer Transformation Progressive: Reveal Hepatocellular Carcinoma Pathogenesis. Int J Mol Sci 2023; 24:ijms24054258. [PMID: 36901689 PMCID: PMC10001964 DOI: 10.3390/ijms24054258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the terminal phase of multiple chronic liver diseases, and evidence supports chronic uncontrollable inflammation being one of the potential mechanisms leading to HCC formation. The dysregulation of bile acid homeostasis in the enterohepatic circulation has become a hot research issue concerning revealing the pathogenesis of the inflammatory-cancerous transformation process. We reproduced the development of HCC through an N-nitrosodiethylamine (DEN)-induced rat model in 20 weeks. We achieved the monitoring of the bile acid profile in the plasma, liver, and intestine during the evolution of "hepatitis-cirrhosis-HCC" by using an ultra-performance liquid chromatography-tandem mass spectrometer for absolute quantification of bile acids. We observed differences in the level of primary and secondary bile acids both in plasma, liver, and intestine when compared to controls, particularly a sustained reduction of intestine taurine-conjugated bile acid level. Moreover, we identified chenodeoxycholic acid, lithocholic acid, ursodeoxycholic acid, and glycolithocholic acid in plasma as biomarkers for early diagnosis of HCC. We also identified bile acid-CoA:amino acid N-acyltransferase (BAAT) by gene set enrichment analysis, which dominates the final step in the synthesis of conjugated bile acids associated with the inflammatory-cancer transformation process. In conclusion, our study provided comprehensive bile acid metabolic fingerprinting in the liver-gut axis during the inflammation-cancer transformation process, laying the foundation for providing a new perspective for the diagnosis, prevention, and treatment of HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing Li
- Correspondence: (Q.Z.); (Q.L.)
| |
Collapse
|
27
|
Colosimo S, Tomlinson JW. Bile acids as drivers and biomarkers of hepatocellular carcinoma. World J Hepatol 2022; 14:1730-1738. [PMID: 36185719 PMCID: PMC9521453 DOI: 10.4254/wjh.v14.i9.1730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/18/2022] [Accepted: 08/18/2022] [Indexed: 02/06/2023] Open
Abstract
The prevalence of hepatocellular carcinoma (HCC) is rapidly increasing, driven not least in part by the escalating prevalence of non-alcoholic fatty liver disease. Bile acid (BA) profiles are altered in patients with HCC and there is a developing body of evidence from in vitro human cellular models as well as rodent data suggesting that BA are able to modulate fundamental processes that impact on cellular phenotype predisposing to the development of HCC including senescence, proliferation and epithelial-mesenchymal transition. Changes in BA profiles associated with HCC have the potential to be exploited clinically. Whilst excellent diagnostic and imaging tools are available, their use to screen populations with advanced liver disease at risk of HCC is limited by high cost and low availability. The mainstay for HCC screening among subjects with cirrhosis remains frequent interval ultrasound scanning. Importantly, currently available serum biomarkers add little to diagnostic accuracy. Here, we review the current literature on the use of BA measurements as predictors of HCC incidence in addition to their use as a potential screening method for the early detection of HCC. Whilst these approaches do show early promise, there are limitations including the relatively small cohort sizes, the lack of a standardized approach to BA measurement, and the use of inappropriate control comparator samples.
Collapse
Affiliation(s)
- Santo Colosimo
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
- School of Nutrition Science, University of Milan, Milan 20133, Italy
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
| |
Collapse
|
28
|
Okamura K, Sato M, Suzuki T, Nohara K. Inorganic arsenic exposure-induced premature senescence and senescence-associated secretory phenotype (SASP) in human hepatic stellate cells. Toxicol Appl Pharmacol 2022; 454:116231. [PMID: 36089002 DOI: 10.1016/j.taap.2022.116231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 01/10/2023]
Abstract
Exposure to inorganic arsenic has been known to induce cancers in various organs, however, the underlying mechanisms remain unclear. Premature senescence refers to the irreversible growth arrest induced by stress stimuli. The senescence-associated secretory phenotype (SASP), particularly in fibroblasts, has been shown to promote cancer development. In this study, we examined whether arsenite exposure causes premature senescence and induction of SASP in liver fibroblasts using the human hepatic stellate cell line, LX-2. Exposure of LX-2 cells to 5 or 7.5 μM of sodium arsenite for 144 h induced the features of senescence in the cells, including morphological changes, growth inhibition, increased senescence-associated β-galactosidase activity, increased P21 gene expression, and decreased LAMINB1 gene expression. The mRNA expressions of SASP factors, such as MMP1, MMP3, IL-8, IL-1β, and CXCL1, were also highly upregulated. The wound healing assay revealed that the conditioned medium from LX-2 cells with arsenite-induced senescence increased the migration activity of cells of the human hepatoma cell line, Huh-7. Gene expression data of liver cancer samples from the Human Protein Atlas showed that high expression levels of the SASP factors that were upregulated in the cells with arsenite-induced senescence were strongly associated with a poor prognosis. In addition, the cellular levels of γ-H2AX, a DNA double-strand break marker, were increased by arsenite exposure, suggesting that DNA damage could contribute to premature senescence induction. These results show that arsenite exposure induces premature senescence in hepatic stellate cells and suggest that the SASP factors from the senescent cells promote hepatic carcinogenesis.
Collapse
Affiliation(s)
- Kazuyuki Okamura
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan.
| | - Miyuki Sato
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Takehiro Suzuki
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Keiko Nohara
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| |
Collapse
|
29
|
Peng H, Zhu E, Zhang Y. Advances of cancer-associated fibroblasts in liver cancer. Biomark Res 2022; 10:59. [PMID: 35971182 PMCID: PMC9380339 DOI: 10.1186/s40364-022-00406-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Liver cancer is one of the most common malignant tumors worldwide, it is ranked sixth in incidence and fourth in mortality. According to the distinct origin of malignant tumor cells, liver cancer is mainly divided into hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Since most cases are diagnosed at an advanced stage, the prognosis of liver cancer is poor. Tumor growth depends on the dynamic interaction of various cellular components in the tumor microenvironment (TME). As the most abundant components of tumor stroma, cancer-associated fibroblasts (CAFs) have been involved in the progression of liver cancer. The interplay between CAFs and tumor cells, immune cells, or vascular endothelial cells in the TME through direct cell-to-cell contact or indirect paracrine interaction, affects the initiation and development of tumors. Additionally, CAFs are not a homogeneous cell population in liver cancer. Recently, single-cell sequencing technology has been used to help better understand the diversity of CAFs in liver cancer. In this review, we mainly update the knowledge of CAFs both in HCC and CCA, including their cell origins, chemoresistance, tumor stemness induction, tumor immune microenvironment formation, and the role of tumor cells on CAFs. Understanding the context-dependent role of different CAFs subsets provides new strategies for precise liver cancer treatment.
Collapse
Affiliation(s)
- Hao Peng
- Medical School, Southeast University, Nanjing, 210009, China
| | - Erwei Zhu
- The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Lianyungang, 222006, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
30
|
Qin H, Yuan B, Huang W, Wang Y. Utilizing Gut Microbiota to Improve Hepatobiliary Tumor Treatments: Recent Advances. Front Oncol 2022; 12:924696. [PMID: 35924173 PMCID: PMC9339707 DOI: 10.3389/fonc.2022.924696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatobiliary tumors, which include cholangiocarcinoma, hepatocellular carcinoma (HCC), and gallbladder cancer, are common cancers that have high morbidity and mortality rates and poor survival outcomes. In humans, the microbiota is comprised of symbiotic microbial cells (10-100 trillion) that belong to the bacterial ecosystem mainly residing in the gut. The gut microbiota is a complicated group that can largely be found in the intestine and has a dual role in cancer occurrence and progression. Previous research has focused on the crucial functions of the intestinal microflora as the main pathophysiological mechanism in HCC development. Intestinal bacteria produce a broad range of metabolites that exhibit a variety of pro- and anticarcinogenic effects on HCC. Therefore, probiotic alteration of the gut microflora could promote gut flora balance and help prevent the occurrence of HCC. Recent evidence from clinical and translational studies suggests that fecal microbiota transplant is one of the most successful therapies to correct intestinal bacterial imbalance. We review the literature describing the effects and mechanisms of the microbiome in the gut in the context of HCC, including gut bacterial metabolites, probiotics, antibiotics, and the transplantation of fecal microbiota, and discuss the potential influence of the microbiome environment on cholangiocarcinoma and gallbladder cancer. Our findings are expected to reveal therapeutic targets for the prevention of hepatobiliary tumors, and the development of clinical treatment strategies, by emphasizing the function of the gut microbiota.
Collapse
Affiliation(s)
- Hao Qin
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baowen Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Wei Huang, ; Yan Wang,
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Wei Huang, ; Yan Wang,
| |
Collapse
|
31
|
Mancinelli R, Ceci L, Kennedy L, Francis H, Meadows V, Chen L, Carpino G, Kyritsi K, Wu N, Zhou T, Sato K, Pannarale L, Glaser S, Chakraborty S, Alpini G, Gaudio E, Onori P, Franchitto A. The Effects of Taurocholic Acid on Biliary Damage and Liver Fibrosis Are Mediated by Calcitonin-Gene-Related Peptide Signaling. Cells 2022; 11:1591. [PMID: 35563897 PMCID: PMC9104610 DOI: 10.3390/cells11091591] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND & AIMS Cholangiocytes are the target cells of liver diseases that are characterized by biliary senescence (evidenced by enhanced levels of senescence-associated secretory phenotype, SASP, e.g., TGF-β1), and liver inflammation and fibrosis accompanied by altered bile acid (BA) homeostasis. Taurocholic acid (TC) stimulates biliary hyperplasia by activation of 3',5'-cyclic cyclic adenosine monophosphate (cAMP) signaling, thereby preventing biliary damage (caused by cholinergic/adrenergic denervation) through enhanced liver angiogenesis. Also: (i) α-calcitonin gene-related peptide (α-CGRP, which activates the calcitonin receptor-like receptor, CRLR), stimulates biliary proliferation/senescence and liver fibrosis by enhanced biliary secretion of SASPs; and (ii) knock-out of α-CGRP reduces these phenotypes by decreased cAMP levels in cholestatic models. We aimed to demonstrate that TC effects on liver phenotypes are dependent on changes in the α-CGRP/CALCRL/cAMP/PKA/ERK1/2/TGF-β1/VEGF axis. METHODS Wild-type and α-CGRP-/- mice were fed with a control (BAC) or TC diet for 1 or 2 wk. We measured: (i) CGRP levels by both ELISA kits in serum and by qPCR in isolated cholangiocytes (CALCA gene for α-CGRP); (ii) CALCRL immunoreactivity by immunohistochemistry (IHC) in liver sections; (iii) liver histology, intrahepatic biliary mass, biliary senescence (by β-GAL staining and double immunofluorescence (IF) for p16/CK19), and liver fibrosis (by Red Sirius staining and double IF for collagen/CK19 in liver sections), as well as by qPCR for senescence markers in isolated cholangiocytes; and (iv) phosphorylation of PKA/ERK1/2, immunoreactivity of TGF-β1/TGF- βRI and angiogenic factors by IHC/immunofluorescence in liver sections and qPCR in isolated cholangiocytes. We measured changes in BA composition in total liver by liquid chromatography/mass spectrometry. RESULTS TC feeding increased CALCA expression, biliary damage, and liver inflammation and fibrosis, as well as phenotypes that were associated with enhanced immunoreactivity of the PKA/ERK1/2/TGF-β1/TGF-βRI/VEGF axis compared to BAC-fed mice and phenotypes that were reversed in α-CGRP-/- mice fed TC coupled with changes in hepatic BA composition. CONCLUSION Modulation of the TC/ α-CGRP/CALCRL/PKA/ERK1/2/TGF-β1/VEGF axis may be important in the management of cholangiopathies characterized by BA accumulation.
Collapse
Affiliation(s)
- Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.M.); (L.P.); (E.G.); (P.O.)
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.C.); (L.K.); (H.F.); (V.M.); (L.C.); (K.K.); (N.W.); (T.Z.); (K.S.); (G.A.)
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.C.); (L.K.); (H.F.); (V.M.); (L.C.); (K.K.); (N.W.); (T.Z.); (K.S.); (G.A.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.C.); (L.K.); (H.F.); (V.M.); (L.C.); (K.K.); (N.W.); (T.Z.); (K.S.); (G.A.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.C.); (L.K.); (H.F.); (V.M.); (L.C.); (K.K.); (N.W.); (T.Z.); (K.S.); (G.A.)
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.C.); (L.K.); (H.F.); (V.M.); (L.C.); (K.K.); (N.W.); (T.Z.); (K.S.); (G.A.)
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy;
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.C.); (L.K.); (H.F.); (V.M.); (L.C.); (K.K.); (N.W.); (T.Z.); (K.S.); (G.A.)
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.C.); (L.K.); (H.F.); (V.M.); (L.C.); (K.K.); (N.W.); (T.Z.); (K.S.); (G.A.)
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.C.); (L.K.); (H.F.); (V.M.); (L.C.); (K.K.); (N.W.); (T.Z.); (K.S.); (G.A.)
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.C.); (L.K.); (H.F.); (V.M.); (L.C.); (K.K.); (N.W.); (T.Z.); (K.S.); (G.A.)
| | - Luigi Pannarale
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.M.); (L.P.); (E.G.); (P.O.)
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, Bryan, TX 77807, USA; (S.G.); (S.C.)
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University, Bryan, TX 77807, USA; (S.G.); (S.C.)
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.C.); (L.K.); (H.F.); (V.M.); (L.C.); (K.K.); (N.W.); (T.Z.); (K.S.); (G.A.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.M.); (L.P.); (E.G.); (P.O.)
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.M.); (L.P.); (E.G.); (P.O.)
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.M.); (L.P.); (E.G.); (P.O.)
| |
Collapse
|
32
|
Režen T, Rozman D, Kovács T, Kovács P, Sipos A, Bai P, Mikó E. The role of bile acids in carcinogenesis. Cell Mol Life Sci 2022; 79:243. [PMID: 35429253 PMCID: PMC9013344 DOI: 10.1007/s00018-022-04278-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
AbstractBile acids are soluble derivatives of cholesterol produced in the liver that subsequently undergo bacterial transformation yielding a diverse array of metabolites. The bulk of bile acid synthesis takes place in the liver yielding primary bile acids; however, other tissues have also the capacity to generate bile acids (e.g. ovaries). Hepatic bile acids are then transported to bile and are subsequently released into the intestines. In the large intestine, a fraction of primary bile acids is converted to secondary bile acids by gut bacteria. The majority of the intestinal bile acids undergo reuptake and return to the liver. A small fraction of secondary and primary bile acids remains in the circulation and exert receptor-mediated and pure chemical effects (e.g. acidic bile in oesophageal cancer) on cancer cells. In this review, we assess how changes to bile acid biosynthesis, bile acid flux and local bile acid concentration modulate the behavior of different cancers. Here, we present in-depth the involvement of bile acids in oesophageal, gastric, hepatocellular, pancreatic, colorectal, breast, prostate, ovarian cancer. Previous studies often used bile acids in supraphysiological concentration, sometimes in concentrations 1000 times higher than the highest reported tissue or serum concentrations likely eliciting unspecific effects, a practice that we advocate against in this review. Furthermore, we show that, although bile acids were classically considered as pro-carcinogenic agents (e.g. oesophageal cancer), the dogma that switch, as lower concentrations of bile acids that correspond to their serum or tissue reference concentration possess anticancer activity in a subset of cancers. Differences in the response of cancers to bile acids lie in the differential expression of bile acid receptors between cancers (e.g. FXR vs. TGR5). UDCA, a bile acid that is sold as a generic medication against cholestasis or biliary surge, and its conjugates were identified with almost purely anticancer features suggesting a possibility for drug repurposing. Taken together, bile acids were considered as tumor inducers or tumor promoter molecules; nevertheless, in certain cancers, like breast cancer, bile acids in their reference concentrations may act as tumor suppressors suggesting a Janus-faced nature of bile acids in carcinogenesis.
Collapse
Affiliation(s)
- Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tünde Kovács
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
| | - Patrik Kovács
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
| |
Collapse
|
33
|
Fu J, Yu M, Xu W, Yu S. Research Progress of Bile Acids in Cancer. Front Oncol 2022; 11:778258. [PMID: 35127481 PMCID: PMC8810494 DOI: 10.3389/fonc.2021.778258] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/27/2021] [Indexed: 01/09/2023] Open
Abstract
Bile acids (BAs) were originally known as detergents to facilitate the digestion and absorption of lipids. And our current knowledge of BAs has been extended to potential carcinogenic or cancer suppressor factors due to constant research. In fact, BAs were regarded as a tumor promoters as early as the 1940s. Differential bile acid signals emitted by various bile acid profiles can produce distinct pathophysiological traits, thereby participating in the occurrence and development of tumors. Nevertheless, in recent years, more and more studies have noticed the value of BAs as therapeutic targets. And several studies have applied BAs as a therapeutic agent for various diseases including cancer. Based on the above evidence, we acknowledge that the role of BAs in cancer has yet to be exploited, although considerable efforts have been made to probe the functions of BAs. In this review, we describe the characteristics of BAs as a double-edged sword in cancer, hoping to provide references for future cancer treatments.
Collapse
Affiliation(s)
- Junhao Fu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Min Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wenxia Xu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shian Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- *Correspondence: Shian Yu,
| |
Collapse
|
34
|
Yang R, Qian L. Research on Gut Microbiota-Derived Secondary Bile Acids in Cancer Progression. Integr Cancer Ther 2022; 21:15347354221114100. [PMID: 35880833 PMCID: PMC9421216 DOI: 10.1177/15347354221114100] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The interaction between gut microbiota-derived metabolites and the body plays a
significant role in the occurrence and development of cancer. Secondary bile
acids (BAs) are the important products produced from gut microbial fermentation
of primary BAs, mainly deoxycholic acid (DCA) and lithocholic acid (LCA). In the
gut, they can influence the structure of the microbial communities. Several
studies have demonstrated that secondary BAs, as signaling molecules, can
activate a variety of signaling pathways. They can inhibit the apoptosis of
cancer cells, induce the progression of cancer cell cycles, enhance the ability
of metastasis and invasion of cancer cells, and promote the transformation of
cells into cancer stem cells (CSCs). Moreover, secondary BAs promote cancer by
regulating the function of immune cells. Therefore, targeted manipulation of gut
microbial and secondary BAs has the potential to be developed as for treatment
and prevention of various cancers.
Collapse
Affiliation(s)
- Rong Yang
- Medical College, Yangzhou University, Yangzhou, China
| | - Li Qian
- Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
35
|
Choi S, Chung J, Cho ML, Park D, Choi SS. Analysis of changes in microbiome compositions related to the prognosis of colorectal cancer patients based on tissue-derived 16S rRNA sequences. J Transl Med 2021; 19:485. [PMID: 34844611 PMCID: PMC8628381 DOI: 10.1186/s12967-021-03154-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/18/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Comparing the microbiome compositions obtained under different physiological conditions has frequently been attempted in recent years to understand the functional influence of microbiomes in the occurrence of various human diseases. METHODS In the present work, we analyzed 102 microbiome datasets containing tumor- and normal tissue-derived microbiomes obtained from a total of 51 Korean colorectal cancer (CRC) patients using 16S rRNA amplicon sequencing. Two types of comparisons were used: 'normal versus (vs.) tumor' comparison and 'recurrent vs. nonrecurrent' comparison, for which the prognosis of patients was retrospectively determined. RESULTS As a result, we observed that in the 'normal vs. tumor' comparison, three phyla, Firmicutes, Actinobacteria, and Bacteroidetes, were more abundant in normal tissues, whereas some pathogenic bacteria, including Fusobacterium nucleatum and Bacteroides fragilis, were more abundant in tumor tissues. We also found that bacteria with metabolic pathways related to the production of bacterial motility proteins or bile acid secretion were more enriched in tumor tissues. In addition, the amount of these two pathogenic bacteria was positively correlated with the expression levels of host genes involved in the cell cycle and cell proliferation, confirming the association of microbiomes with tumorigenic pathway genes in the host. Surprisingly, in the 'recurrent vs. nonrecurrent' comparison, we observed that these two pathogenic bacteria were more abundant in the patients without recurrence than in the patients with recurrence. The same conclusion was drawn in the analysis of both normal and tumor-derived microbiomes. CONCLUSIONS Taken together, it seems that understanding the composition of tissue microbiomes is useful for predicting the prognosis of CRC patients.
Collapse
Affiliation(s)
- Sukjung Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | | | - Mi-La Cho
- Department of Medical Life Science, College of Medicine, Catholic University of Korea, Seoul, 06591, Republic of Korea
| | | | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
36
|
Senescence in HBV-, HCV- and NAFLD- Mediated Hepatocellular Carcinoma and Senotherapeutics: Current Evidence and Future Perspective. Cancers (Basel) 2021; 13:cancers13184732. [PMID: 34572959 PMCID: PMC8468315 DOI: 10.3390/cancers13184732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
Cell senescence constitutes a physiological process that serves as protection from malignant transformation of cells. However, recent scientific discoveries also identify cell senescence as pivotal in hepatocellular cancer (HCC) biology. The review herein aimed to accumulate evidence on senescence as a mediator of HCC occurrence in hepatitis B (HBV), C (HCV) virus infections, and non-alcoholic fatty liver disease (NAFLD). In HBV infection, the carcinogenic HBV X protein frequently mutates during chronic infection, and subsequently exhibits different effects on senescence. In HCV infection, senescent non-functional T-cells do not effectively clear pre-malignant hepatocytes. Furthermore, the HCV Core protein inhibits the occurrence of normal stress-induced hepatocyte senescence, allowing damaged cells to maintain their proliferative potential. In NAFLD-mediated HCC, current data point towards the gut microbiome and hepatic stellate cell senescence. Additionally, senescence contributes in the development of resistance in targeted therapies, such as sorafenib. Finally, the promising role of senotherapeutics in HCC was also explored. Overall, although we may still be at a primitive stage in fully unraveling the role of senescence in cancer, it seems that understanding and harnessing senescence may have the potential to revolutionize the way we treat hepatocellular cancer.
Collapse
|
37
|
Zhang M, Serna-Salas S, Damba T, Borghesan M, Demaria M, Moshage H. Hepatic stellate cell senescence in liver fibrosis: Characteristics, mechanisms and perspectives. Mech Ageing Dev 2021; 199:111572. [PMID: 34536446 DOI: 10.1016/j.mad.2021.111572] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/15/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023]
Abstract
Myofibroblasts play an important role in fibrogenesis. Hepatic stellate cells are the main precursors of myofibroblasts. Cellular senescence is the terminal cell fate in which proliferating cells undergo irreversible cell cycle arrest. Senescent hepatic stellate cells were identified in liver fibrosis. Senescent hepatic stellate cells display decreased collagen production and proliferation. Therefore, induction of senescence could be a protective mechanism against progression of liver fibrosis and the concept of therapy-induced senescence has been proposed to treat liver fibrosis. In this review, characteristics of senescent hepatic stellate cells and the essential signaling pathways involved in senescence are reviewed. Furthermore, the potential impact of senescent hepatic stellate cells on other liver cell types are discussed. Senescent cells are cleared by the immune system. The persistence of senescent cells can remodel the microenvironment and interact with inflammatory cells to induce aging-related dysfunction. Therefore, senolytics, a class of compounds that selectively induce death of senescent cells, were introduced as treatment to remove senescent cells and consequently decrease the disadvantageous effects of persisting senescent cells. The effects of senescent hepatic stellate cells in liver fibrosis need further investigation.
Collapse
Affiliation(s)
- Mengfan Zhang
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sandra Serna-Salas
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Turtushikh Damba
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Michaela Borghesan
- European Research Institute on the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marco Demaria
- European Research Institute on the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Han Moshage
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
38
|
Ezhilarasan D. Hepatic stellate cells in the injured liver: Perspectives beyond hepatic fibrosis. J Cell Physiol 2021; 237:436-449. [PMID: 34514599 DOI: 10.1002/jcp.30582] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022]
Abstract
Over the last two decades, our understanding of the pathological role of hepatic stellate cells (HSCs) in fibrotic liver disease has increased dramatically. As HSCs are identified as the principal collagen-producing cells in the injured liver, several experimental and clinical studies have targeted HSCs to treat liver fibrosis. However, HSCs also play a critical role in developing nonfibrotic liver diseases such as cholestasis, portal hypertension, and hepatocellular carcinoma (HCC). Therefore, this review exclusively focuses on the role of activated HSCs beyond hepatic fibrosis. In cholestasis conditions, elevated bile salts and bile acids activate HSCs to secrete collagen and other extracellular matrix products, which cause biliary fibrosis and cholangitis. In the chronically injured liver, autocrine and paracrine signaling from liver sinusoidal endothelial cells activates HSCs to induce portal hypertension via endothelin-1 release. In the tumor microenvironment (TME), activated HSCs are the major source of cancer-associated fibroblasts (CAF). The crosstalk between activated HSC/CAF and tumor cells is associated with tumor cell proliferation, migration, metastasis, and chemoresistance. In TME, activated HSCs convert macrophages to tumor-associated macrophages and induce the differentiation of dendritic cells (DCs) and monocytes to regulatory DCs and myeloid-derived suppressor cells, respectively. This differentiation, in turn, increases T cells proliferation and induces their apoptosis leading to reduced immune surveillance in TME. Thus, HSCs activation in chronically injured liver is a critical process involved in the progression of cholestasis, portal hypertension, and liver cancer.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, The Blue Lab, Molecular Medicine and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
39
|
You DG, Oh BH, Nguyen VQ, Lim GT, Um W, Jung JM, Jeon J, Choi JS, Choi YC, Jung YJ, Lee J, Jo DG, Cho YW, Park JH. Vitamin A-coupled stem cell-derived extracellular vesicles regulate the fibrotic cascade by targeting activated hepatic stellate cells in vivo. J Control Release 2021; 336:285-295. [PMID: 34174353 DOI: 10.1016/j.jconrel.2021.06.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
Allogeneic transplantation of mesenchymal stem cell-derived extracellular vesicles (EVs) offers great potential for treating liver fibrosis. However, owing to their intrinsic surface characteristics, bare EVs are non-specifically distributed in the liver tissue after systemic administration, leading to limited therapeutic efficacy. To target activated hepatic stellate cells (HSCs), which are responsible for hepatic fibrogenesis, vitamin A-coupled small EVs (V-EVs) were prepared by incorporating vitamin A derivative into the membrane of bare EVs. No significant differences were found in the particle size and morphology between bare and V-EVs. In addition, surface engineering of EVs did not affect the expression of surface marker proteins (e.g., CD63 and CD9), as demonstrated by flow cytometry. Owing to the surface incorporation of vitamin A, V-EVs were selectively taken up by activated HSCs via receptor-mediated endocytosis. When systemically administered to mice with liver fibrosis, V-EVs effectively targeted activated HSCs in the liver tissue, resulting in reversal of the fibrotic cascade. Consequently, even at a 10-fold lower dose, V-EVs exhibited comparable anti-fibrotic effects to those of bare EVs, substantiating their therapeutic potential for liver fibrosis.
Collapse
Affiliation(s)
- Dong Gil You
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Byeong Hoon Oh
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Van Quy Nguyen
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gyeong Taek Lim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Wooram Um
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jae Min Jung
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jueun Jeon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Ji Suk Choi
- Department of Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea; ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Young Chan Choi
- Department of Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea; ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Youn Jae Jung
- Department of Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea; ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Jungmi Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Dong-Gyu Jo
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea; School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), , Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yong Woo Cho
- Department of Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea; ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea; ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), , Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|
40
|
Ji XW, Wang J, Shen QM, Li ZY, Jiang YF, Liu DK, Tan YT, Li HL, Xiang YB. Dietary fat intake and liver cancer incidence: A population-based cohort study in Chinese men. Int J Cancer 2021; 148:2982-2996. [PMID: 33559177 DOI: 10.1002/ijc.33507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
To date, limited studies have focused on the association between dietary fat and liver cancer risk, especially in China. Our study aims to evaluate the association between dietary fat intake and liver cancer incidence risk in men. Dietary fat intake was obtained through a validated food frequency questionnaire in a Chinese prospective cohort. The Cox regression model was utilized to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). After exclusion, 59 998 recruitments were finally analyzed with a total follow-up time of 714 339 person-years, 431 incident liver cancer cases were newly identified among them. The adjusted HRs (95% CIs) for the highest vs lowest quartile of total fat, saturated fat, monounsaturated fat (MUFA), and polyunsaturated fat (PUFA) were 1.33 (1.01-1.75), 1.50 (1.13-1.97), 1.26 (0.96-1.65), and 1.41 (1.07-1.86), and the corresponding P-trend values were .008, .005, .034, and .005, respectively. In the secondary analysis among participants tested for hepatitis B virus, we found that higher intakes of saturated fat and PUFA were also associated with increased liver cancer risks. Besides, high risks of per standard deviation alterations of the total fat, saturated fat and MUFA were detected in liver cancer, and these results were similar to those concluded from the full-cohort analysis. In conclusion, dietary intakes of total fat, saturated fat, PUFA, and probably MUFA might increase liver cancer risks. Our study provides suggestive advice to public administration on dietary suggestions, and related measures taken from managing dietary fat intake might reduce liver cancer incidence.
Collapse
Affiliation(s)
- Xiao-Wei Ji
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qiu-Ming Shen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhuo-Ying Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yu-Fei Jiang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Da-Ke Liu
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yu-Ting Tan
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hong-Lan Li
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|