1
|
Mushir SI, Chaudry SS, Azmat H, Masood A, Habib M, Sheikh AK. Unlocking the Glioblastoma Enigma: Exploring PD-L1 (Programmed Death-Ligand 1) and IDH1 (Isocitrate Dehydrogenase-1) Expression and Their Immunotherapeutic Implications. Cureus 2025; 17:e76920. [PMID: 39906459 PMCID: PMC11790344 DOI: 10.7759/cureus.76920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2025] [Indexed: 02/06/2025] Open
Abstract
Objective In order to establish a connection between programmed death-ligand 1 (PD-L1) expression and glioma grades as well as the presence of IDH1 mutations, it is necessary to investigate the expression of PD-L1 and isocitrate dehydrogenase-1 (IDH1) in glioma patients and assess their potential as predictive markers for glioblastoma multiforme (GBM) immunotherapy. We analyzed the frequency of PD-L1 expression in glioma samples. Methodology In this two-year retrospective study, 45 glioma cases of varying grades (grades 2 to 4) were examined at a tertiary care hospital. Tumor samples that were formalin-fixed, paraffin-embedded (FFPE) were obtained from the pathology archives of the hospital. According to the WHO Classification of Central Nervous System Tumors, 5th edition, tumor grading and histopathological subtyping were carried out. PD-L1 antibody (clone 28-8) and IDH1 (R132H, clone QM002, Quartett Immunodiagnostika, 1:100 dilution) markers were used for immunohistochemistry (IHC). The sections underwent deparaffinization, rehydration, and antigen retrieval using Leica bond III staining platform. Based on the tumor proportion score (TPS), which is the proportion of viable tumor cells with membranous staining, PD-L1 expression was assessed. The literature's standardized cut-off values were used to determine positive expression. Staining intensity and tumor cell location were used to determine the status of IDH1 mutations. Age, sex, and tumor location were among the clinical and demographic information gathered about the patient. The association between PD-L1 expression, glioma grades, and IDH1 (R132H) mutation status was assessed statistically using SPSS software and a Chi-square test. The threshold for statistical significance was p < 0.05. For every IHC run, positive and negative controls were used as part of the quality control procedures. To reduce bias and guarantee consistency, two pathologists and post graduate residents independently reviewed the results. Results PD-L1 expression was found in 27 out of 36 (75%) grade 4 glioblastoma multiforme cases and six out of nine (66.7%) grade 2 gliomas. Overall, 33/45 (73.3%) of the gliomas had PD-L1 expression. However, PD-L1 expression and glioma grade did not correlate in a statistically significant way. IDH1 (R132H) expression and PD-L1 were found to be inversely correlated (p < 0.05). Conclusion The findings suggest that PD-L1 may be a promising therapeutic target, even in the absence of significant grade-specific trends by demonstrating PD-L1 presence in the majority of glioma cases, highlighting its potential as a therapeutic target in GBM immunotherapy. The results provide insight into the immune landscape of gliomas and pave the way for future research into effective combination therapies for GBM, despite the lack of a significant correlation between glioma grade and PD-L1 expression.
Collapse
Affiliation(s)
- Syeda Iqra Mushir
- Histopathology, Shaheed Zulfiqar Ali Bhutto Medical University/Pakistan Institute of Medical Sciences (PIMS), Islamabad, PAK
| | - Summaya S Chaudry
- Histopathology, Shaheed Zulfiqar Ali Bhutto Medical University/Pakistan Institute of Medical Sciences (PIMS), Islamabad, PAK
| | - Henna Azmat
- Pathology, Federal Government Polyclinic, Islamabad, PAK
| | - Areeba Masood
- Histopathology, Shaheed Zulfiqar Ali Bhutto Medical University/Pakistan Institute of Medical Sciences (PIMS), Islamabad, PAK
| | - Momina Habib
- Histopathology, Shaheed Zulfiqar Ali Bhutto Medical University/Pakistan Institute of Medical Sciences (PIMS), Islamabad, PAK
| | - Ahmareen K Sheikh
- Histopathology, Shaheed Zulfiqar Ali Bhutto Medical University/Pakistan Institute of Medical Sciences (PIMS), Islamabad, PAK
| |
Collapse
|
2
|
Kraus TFJ, Langwieder CK, Hölzl D, Hutarew G, Schlicker HU, Alinger-Scharinger B, Schwartz C, Sotlar K. Dissecting the Methylomes of EGFR-Amplified Glioblastoma Reveals Altered DNA Replication and Packaging, and Chromatin and Gene Silencing Pathways. Cancers (Basel) 2023; 15:3525. [PMID: 37444635 DOI: 10.3390/cancers15133525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/11/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma IDH wildtype is the most frequent brain tumor in adults. It shows a highly malignant behavior and devastating outcomes. To date, there is still no targeted therapy available; thus, patients' median survival is limited to 12-15 months. Epithelial growth factor receptor (EGFR) is an interesting targetable candidate in advanced precision medicine for brain tumor patients. In this study, we performed integrated epigenome-wide DNA-methylation profiling of 866,895 methylation specific sites in 50 glioblastoma IDH wildtype samples, comparing EGFR amplified and non-amplified glioblastomas. We found 9849 significantly differentially methylated CpGs (DMCGs) with Δβ ≥ 0.1 and p-value < 0.05 in EGFR amplified, compared to EGFR non-amplified glioblastomas. Of these DMCGs, 2380 were annotated with tiling (2090), promoter (117), gene (69) and CpG islands (104); 7460 are located at other loci. Interestingly, the list of differentially methylated genes allocated eleven functionally relevant RNAs: five miRNAs (miR1180, miR1255B1, miR126, miR128-2, miR3125), two long non-coding RNAs (LINC00474, LINC01091), and four antisense RNAs (EPN2-AS1, MNX1-AS2, NKX2-2-AS1, WWTR1-AS1). Gene ontology (GO) analysis showed enrichment of "DNA replication-dependent nucleosome assembly", "chromatin silencing at rDNA", "regulation of gene silencing by miRNA", "DNA packaging", "posttranscriptional gene silencing", "gene silencing by RNA", "negative regulation of gene expression, epigenetic", "regulation of gene silencing", "protein-DNA complex subunit organization", and "DNA replication-independent nucleosome organization" pathways being hypomethylated in EGFR amplified glioblastomas. In summary, dissecting the methylomes of EGFR amplified and non-amplified glioblastomas revealed altered DNA replication, DNA packaging, chromatin silencing and gene silencing pathways, opening potential novel targets for future precision medicine.
Collapse
Affiliation(s)
- Theo F J Kraus
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, A-5020 Salzburg, Austria
| | - Celina K Langwieder
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, A-5020 Salzburg, Austria
| | - Dorothee Hölzl
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, A-5020 Salzburg, Austria
| | - Georg Hutarew
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, A-5020 Salzburg, Austria
| | - Hans U Schlicker
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, A-5020 Salzburg, Austria
| | - Beate Alinger-Scharinger
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, A-5020 Salzburg, Austria
| | - Christoph Schwartz
- Department of Neurosurgery, University Hospital Salzburg, Paracelsus Medical University, Ignaz-Harrer-Str. 79, A-5020 Salzburg, Austria
| | - Karl Sotlar
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, A-5020 Salzburg, Austria
| |
Collapse
|
3
|
Targeting the Tumor Immune Microenvironment Could Become a Potential Therapeutic Modality for Aggressive Pituitary Adenoma. Brain Sci 2023; 13:brainsci13020164. [PMID: 36831707 PMCID: PMC9954754 DOI: 10.3390/brainsci13020164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
OBJECT This study aimed to explore the relationship between the aggressiveness and immune cell infiltration in pituitary adenoma (PA) and to provide the basis for immuno-targeting therapies. METHODS One hundred and three patients with PA who underwent surgery at a single institution were retrospectively identified. The infiltration of macrophages and T-lymphocytes was quantitatively assessed. RESULTS The number of CD68+ macrophages was positively correlated with Knosp (p = 0.003) and MMP-9 expression grades (p = 0.00). The infiltration of CD163+ macrophages differed among Knosp (p = 0.022) and MMP-9 grades (p = 0.04). CD8+ tumor-infiltrating lymphocytes (TILs) were also positively associated with Knosp (p = 0.002) and MMP-9 grades (p = 0.01). Interestingly, MGMT expression was positively correlated with MMP-9 staining extent (p = 0.000). The quantities of CD8+ TILs (p = 0.016), CD68+ macrophages (p = 0.000), and CD163+ macrophages (p = 0.043) were negatively associated with MGMT expression levels. The number of CD68+ macrophages in the PD-L1 negative group was significantly more than that in the PD-L1 positive group (p = 0.01). The rate of PD-L1 positivity was positively correlated with the Ki-67 index (p = 0.046) and p53 expression (p = 0.029). CONCLUSION Targeted therapy for macrophages and CD8+ TILs could be a helpful treatment in the future for aggressive PA. Anti-PD-L1 therapy may better respond to PAs with higher Ki-67 and p53 expression and more infiltrating CD68+ macrophages. Multiple treatment modalities, especially combined with immunotherapy could become a novel therapeutic strategy for aggressive PA.
Collapse
|
4
|
Jiang H, Sun Z, Li F, Chen Q. Prognostic value of γ‐aminobutyric acidergic synapse-associated signature for lower-grade gliomas. Front Immunol 2022; 13:983569. [PMID: 36405708 PMCID: PMC9668880 DOI: 10.3389/fimmu.2022.983569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Background Synapse-associated proteins (SAPs) play important roles in central nervous system (CNS) tumors. Recent studies have reported that γ-aminobutyric acidergic (GABAergic) synapses also play critical roles in the development of gliomas. However, biomarkers of GABAergic synapses in low-grade gliomas (LGGs) have not yet been reported. Methods mRNA data from normal brain tissue and gliomas were obtained from the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases, respectively. A validation dataset was also obtained from the Chinese Glioma Genome Atlas (CGGA) database. The expression patterns of GABAergic synapse-related genes (GSRGs) were evaluated with difference analysis in LGGs. Then, a GABAergic synapse-related risk signature (GSRS) was constructed with least absolute shrinkage and selection operator (LASSO) Cox regression analysis. According to the expression value and coefficients of identified GSRGs, the risk scores of all LGG samples were calculated. Univariate and multivariate Cox regression analyses were conducted to evaluate related risk scores for prognostic ability. Correlations between characteristics of the tumor microenvironment (TME) and risk scores were explored with single-sample gene set enrichment analysis (ssGSEA) and immunity profiles in LGGs. The GSRS-related pathways were investigated by gene set variation analysis (GSVA). Real-time PCR and the Human Protein Atlas (HPA) database were applied to explore related expression of hub genes selected in the GSRS. Results Compared with normal brain samples, 25 genes of 31 GSRGs were differentially expressed in LGG samples. A constructed five-gene GSRS was related to clinicopathological features and prognosis of LGGs by the LASSO algorithm. It was shown that the risk score level was positively related to the infiltrating level of native CD4 T cells and activated dendritic cells. GSVA identified several cancer-related pathways associated with the GSRS, such as P53 pathways and the JAK-STAT signaling pathway. Additionally, CA2, PTEN, OXTR, and SLC6A1 (hub genes identified in the GSRS) were regarded as the potential predictors in LGGs. Conclusion A new five-gene GSRS was identified and verified by bioinformatics methods. The GSRS provides a new perspective in LGG that may contribute to more accurate prediction of prognosis of LGGs.
Collapse
Affiliation(s)
- Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhiqiang Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fei Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Fei Li, ; Qianxue Chen,
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Fei Li, ; Qianxue Chen,
| |
Collapse
|
5
|
Methylome Profiling of PD-L1-Expressing Glioblastomas Shows Enrichment of Post-Transcriptional and RNA-Associated Gene Regulation. Cancers (Basel) 2022; 14:cancers14215375. [PMID: 36358793 PMCID: PMC9656473 DOI: 10.3390/cancers14215375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Glioblastomas are the most frequent primary brain tumors in adults. They show highly malignant behavior and devastating outcomes. Since there are still no targeted therapies available, median survival remains in the range of 12 to 15 months for glioblastoma patients. Programmed Cell Death Ligand 1 (PD-L1) is a promising novel candidate in precision medicine. Here, we performed integrated epigenome-wide methylation profiling of 866,895 methylation-specific sites in 20 glioblastoma samples comparing PD-L1 high- (i.e., TPS (tumor proportion score) > 30%) and PD-L1 low-expressing glioblastomas (i.e., TPS < 10%). We found 12,597 significantly differentially methylated CpGs (DMCG) (Δβ ≥ 0.1 and p-value < 0.05) in PD-L1 high- compared with PD-L1 low-expressing glioblastomas. These DMCGs were annotated to 2546 tiling regions, 139 promoters, 107 genes, and 107 CpG islands. PD-L1 high-expressing glioblastomas showed hypomethylation in 68% of all DMCGs. Interestingly, the list of the top 100 significantly differentially methylated genes showed the enrichment of regulatory RNAs with 19 DMCGs in miRNA, snoRNAs, lincRNAs, and asRNAs. Gene Ontology analysis showed the enrichment of post-transcriptional and RNA-associated pathways in the hypermethylated gene regions. In summary, dissecting the methylomes depending on PD-L1 status revealed significant alterations in RNA regulation and novel molecular targets in glioblastomas.
Collapse
|
6
|
Ohno M, Kitano S, Satomi K, Yoshida A, Miyakita Y, Takahashi M, Yanagisawa S, Tamura Y, Ichimura K, Narita Y. Assessment of radiographic and prognostic characteristics of programmed death-ligand 1 expression in high-grade gliomas. J Neurooncol 2022; 160:463-472. [DOI: 10.1007/s11060-022-04165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 10/31/2022]
|
7
|
Jiang H, Li F, Cai L, Chen Q. Role of the TSPO–NOX4 axis in angiogenesis in glioblastoma. Front Pharmacol 2022; 13:1001588. [PMID: 36278207 PMCID: PMC9585329 DOI: 10.3389/fphar.2022.1001588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Angiogenesis is a pathological feature of glioblastoma. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) is a vital source of reactive oxygen species (ROS) related to angiogenesis. However, signaling pathways correlated with the isoform oxidase are unknown. The aim of this study was to elucidate the detailed mechanism of the role of NOX4 in angiogenesis in glioblastoma. Methods: Public datasets were searched for studies on immunohistochemistry and western blotting to evaluate NOX4 expression in glioma. The location of NOX4 expression was detected by immunofluorescence. We conducted conditional deletion of the translocator protein (TSPO) targeting the protein with the synthetic ligand XBD173 in the glioblastoma mouse model. NOX4 downregulation was conducted with the NOX4 inhibitor GLX351322, and ROS production and angiogenesis were detected in glioma tissues. Results: Clinical samples and public datasets showed that NOX4 was upregulated and associated with the prognosis. NOX4 is mainly expressed in endothelial cells of glioblastoma. Both TSPO and NOX4 promoted angiogenesis in an ROS-dependent manner, suggesting that TSPO triggered ROS production in glioblastoma via NOX4. Conclusion: These results showed that TSPO is an upstream target of NOX4-derived mitochondrial ROS, which is indispensable for NOX4-derived mitochondrial ROS-induced angiogenesis in glioblastoma. TSPO–NOX4 signaling could serve as a molecular target for therapeutic strategies for glioblastoma.
Collapse
Affiliation(s)
- Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fei Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linzhi Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Linzhi Cai, ; Qianxue Chen,
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Linzhi Cai, ; Qianxue Chen,
| |
Collapse
|
8
|
EGFR Amplification Is a Phenomenon of IDH Wildtype and TERT Mutated High-Grade Glioma: An Integrated Analysis Using Fluorescence In Situ Hybridization and DNA Methylome Profiling. Biomedicines 2022; 10:biomedicines10040794. [PMID: 35453544 PMCID: PMC9033057 DOI: 10.3390/biomedicines10040794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Gliomas are the most common intrinsic brain tumors in adults, and in accordance with their clinical behavior and patients’ outcome, they are graded by the World Health Organization (WHO) classification of brain tumors. One very interesting candidate for targeted tumor therapy may be epidermal growth factor receptor (EGFR) amplification. Here, we performed an integrated comparative analysis of EGFR amplification in 34 glioma samples using standard fluorescence in situ hybridization (FISH) and Illumina EPIC Infinium Methylation Bead Chip and correlated results with molecular glioma hallmarks. We found that the EPIC analysis showed the same power of detecting EGFR amplification compared with FISH. EGFR amplification was detectable in high-grade gliomas (25%). Moreover, EGFR amplification was found to be present solely in IDH wildtype gliomas (26%) and TERT mutated gliomas (27%), occurring independently of MGMT promoter methylation status and being mutually exclusive with 1p/19q codeletion (LOH). In summary, EPIC Bead Chip analysis is a reliable tool for detecting EGFR amplification and is comparable with the standard method FISH. EGFR amplification is a phenomenon of IDH wildtype TERT mutated high-grade gliomas.
Collapse
|
9
|
Fierro J, DiPasquale J, Perez J, Chin B, Chokpapone Y, Tran AM, Holden A, Factoriza C, Sivagnanakumar N, Aguilar R, Mazal S, Lopez M, Dou H. Dual-sgRNA CRISPR/Cas9 knockout of PD-L1 in human U87 glioblastoma tumor cells inhibits proliferation, invasion, and tumor-associated macrophage polarization. Sci Rep 2022; 12:2417. [PMID: 35165339 PMCID: PMC8844083 DOI: 10.1038/s41598-022-06430-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) plays a key role in glioblastoma multiforme (GBM) immunosuppression, vitality, proliferation, and migration, and is therefore a promising target for treating GBM. CRISPR/Cas9-mediated genomic editing can delete both cell surface and intracellular PD-L1. This systemic deliverable genomic PD-L1 deletion system can be used as an effective anti-GBM therapy by inhibiting tumor growth and migration, and overcoming immunosuppression. To target PD-L1 for CRISPR/Cas9 gene editing, we first identified two single guide RNA (sgRNA) sequences located on PD-L1 exon 3. The first sgRNA recognizes the forward strand of human PD-L1 near the beginning of exon 3 that allows editing by Cas9 at approximately base pair 82 (g82). The second sgRNA recognizes the forward strand of exon 3 that directs cutting at base pair 165 (g165). A homology-directed repair template (HDR) combined with the dual-sgRNAs was used to improve PD-L1 knockout specificity and efficiency. sgRNAs g82 and g165 were cloned into the multiplex CRISPR/Cas9 assembly system and co-transfected with the HDR template in human U87 GBM cells (g82/165 + HDR). T7E1 analysis suggests that the dual-sgRNA CRISPR/Cas9 strategy with a repair template was capable of editing the genomic level of PD-L1. This was further confirmed by examining PD-L1 protein levels by western blot and immunofluorescence assays. Western blot analysis showed that the dual-sgRNAs with the repair template caused a 64% reduction of PD-L1 protein levels in U87 cells, while immunostaining showed a significant reduction of intracellular PD-L1. PD-L1 deletion inhibited proliferation, growth, invasion and migration of U87 cells, indicating intracellular PD-L1 is necessary for tumor progression. Importantly, U87 cells treated with g82/165 + HDR polarized tumor-associated macrophages (TAM) toward an M1 phenotype, as indicated by an increase in TNF-α and a decrease in IL-4 secretions. This was further confirmed with flow cytometry that showed an increase in the M1 markers Ly6C + and CD80 +, and a decrease in the M2 marker CD206 + both in vitro and in vivo. Utilizing dual-sgRNAs and an HDR template with the CRISPR/Cas9 gene-editing system is a promising avenue for the treatment of GBM.
Collapse
Affiliation(s)
- Javier Fierro
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Jake DiPasquale
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Joshua Perez
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Brandon Chin
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Yathip Chokpapone
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - An M Tran
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Arabella Holden
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Chris Factoriza
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Nikhi Sivagnanakumar
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Rocio Aguilar
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Sarah Mazal
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA
| | - Melissa Lopez
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Huanyu Dou
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, 5001 El Paso Drive, El Paso, TX, 79905-2827, USA.
- Graduate School of Biomedical Sciences, Texas Tech University Health Science Center, El Paso, TX, USA.
| |
Collapse
|
10
|
Menna G, Manini I, Cesselli D, Skrap M, Olivi A, Ius T, Della Pepa GM. Immunoregulatory effects of glioma-associated stem cells on the glioblastoma peritumoral microenvironment: a differential PD-L1 expression from core to periphery? Neurosurg Focus 2022; 52:E4. [PMID: 35104793 DOI: 10.3171/2021.11.focus21589] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/15/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Glioma-associated stem cells (GASCs) have been indicated as possible players in supporting growth and recurrence in glioblastoma. However, their role in modulating immune response in the peritumoral area has not yet been described. In this study, the authors aimed to investigate programmed death-ligand 1 (PD-L1) differential expression at the protein level in GASCs derived from different tumor areas (core, periphery, and surrounding healthy brain). METHODS Tumor tissue samples were collected from patients who underwent surgery for a histopathologically confirmed diagnosis of glioblastoma. Sampling sites were confirmed via neuronavigation and categorized on 5-aminolevulinic acid (5-ALA) fluorescence as bright (ALA+), pale (ALA PALE), or negative (ALA-), which corresponds to the tumor mass, infiltrated peritumoral area, and healthy brain, respectively, during surgery. GASCs were first isolated from the 3 regions and analyzed; then Western blot analysis was used to evaluate the level of PD-L1 expression in the GASCs. RESULTS Overall, 7 patients were included in the study. For all patients, the mean values ± SD of PD-L1 expression in GASCs for ALA+, ALA PALE, and ALA- were 1.12 ± 1.14, 0.89 ± 0.63, and 0.57 ± 0.18, respectively. The differentially expressed values of PD-L1 in GASCs sampled from the 3 areas were found to be significant (p < 0.05) for 3 of the 7 patients: patient S470 (ALA+ vs ALA- and ALA PALE vs ALA-), patient S473 (ALA+ vs ALA PALE and ALA PALE vs ALA-), and patient S509 (ALA+ vs ALA-). CONCLUSIONS This analysis showed, for the first time, that GASCs expressed a constitutive level of PD-L1 and that PD-L1 expression in GASCs was not uniform among patients or within the same patient. GASC analysis combined with 5-ALA-guided sampling (from core to periphery) made it possible to highlight the role of the tumor microenvironment at the infiltrating margin, which might cause clinical resistance, opening interesting perspectives for the future.
Collapse
Affiliation(s)
- Grazia Menna
- 1Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University, Rome
| | - Ivana Manini
- 2Institute of Pathology, University Hospital, Udine; and
| | | | - Miran Skrap
- 3Neurosurgery Unit, Department of Neuroscience, Santa Maria della Misericordia, University Hospital, Udine, Italy
| | - Alessandro Olivi
- 1Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University, Rome
| | - Tamara Ius
- 3Neurosurgery Unit, Department of Neuroscience, Santa Maria della Misericordia, University Hospital, Udine, Italy
| | - Giuseppe Maria Della Pepa
- 1Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University, Rome
| |
Collapse
|
11
|
PD-L1 tumor expression is associated with poor prognosis and systemic immunosuppression in glioblastoma. J Neurooncol 2022; 156:453-464. [DOI: 10.1007/s11060-021-03907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
|
12
|
Kraus TFJ, Schwartz C, Machegger L, Zellinger B, Hölzl D, Schlicker HU, Pöppe J, Ladisich B, Spendel M, Kral M, Sotlar K. A patient with two gliomas with independent oligodendroglioma and glioblastoma biology proved by DNA-methylation profiling: a case report and review of the literature. Brain Tumor Pathol 2022; 39:111-119. [PMID: 35018523 PMCID: PMC9090705 DOI: 10.1007/s10014-021-00423-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/12/2021] [Indexed: 12/21/2022]
Abstract
AbstractHere, we report on a patient presenting with two histopathologically distinct gliomas. At the age of 42, the patient underwent initial resection of a right temporal oligodendroglioma IDH mutated 1p/19q co-deleted WHO Grade II followed by adjuvant radiochemotherapy with temozolomide. 15 months after initial diagnosis, the patient showed right hemispheric tumor progression and an additional new left frontal contrast enhancement in the subsequent imaging. A re-resection of the right-sided tumor and resection of the left frontal tumor were conducted. Neuropathological work-up showed recurrence of the right-sided oligodendroglioma with features of an anaplastic oligodendroglioma WHO Grade III, but a glioblastoma WHO grade IV for the left frontal lesion. In depth molecular profiling revealed two independent brain tumors with distinct molecular profiles of anaplastic oligodendroglioma IDH mutated 1p/19q co-deleted WHO Grade III and glioblastoma IDH wildtype WHO grade IV. This unique and rare case of a patient with two independent brain tumors revealed by in-depth molecular work-up and epigenomic profiling emphasizes the importance of integrated work-up of brain tumors including methylome profiling for advanced patient care.
Collapse
Affiliation(s)
- Theo F J Kraus
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria.
| | - Christoph Schwartz
- Department of Neurosurgery, University Hospital Salzburg, Paracelsus Medical University, Ignaz-Harrer-Str. 79, 5020, Salzburg, Austria
| | - Lukas Machegger
- Institute of Neuroradiology, University Hospital Salzburg, Paracelsus Medical University, Ignaz-Harrer-Str. 79, 5020, Salzburg, Austria
| | - Barbara Zellinger
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Dorothee Hölzl
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Hans U Schlicker
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Johannes Pöppe
- Department of Neurosurgery, University Hospital Salzburg, Paracelsus Medical University, Ignaz-Harrer-Str. 79, 5020, Salzburg, Austria
| | - Barbara Ladisich
- Department of Neurosurgery, University Hospital Salzburg, Paracelsus Medical University, Ignaz-Harrer-Str. 79, 5020, Salzburg, Austria
| | - Mathias Spendel
- Department of Neurosurgery, University Hospital Salzburg, Paracelsus Medical University, Ignaz-Harrer-Str. 79, 5020, Salzburg, Austria
| | - Michael Kral
- Department of Neurosurgery, University Hospital Salzburg, Paracelsus Medical University, Ignaz-Harrer-Str. 79, 5020, Salzburg, Austria
| | - Karl Sotlar
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria.
| |
Collapse
|