1
|
Katayama Y, Iwasaki T, Yamamoto T, Shimada N, Nakashima M, Toya M, Narutomi F, Tomonaga T, Kato K, Oda Y. Loss of SMARCA4 induces sarcomatogenesis through epithelial-mesenchymal transition in ovarian carcinosarcoma. Cancer Sci 2025; 116:835-845. [PMID: 39716847 PMCID: PMC11875775 DOI: 10.1111/cas.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Ovarian carcinosarcoma (OCS) is a rare and aggressive tumor, and the development of its sarcomatous component is believed to be due to epithelial-mesenchymal transition (EMT). The SWIch/sucrose nonfermentable chromatin remodeling factor (CRF) is closely related to EMT; however, the relationship between CRF and EMT in OCS remains unclear. In this study, we analyzed the protein expression of CRFs, including ARID1A and SMARCA4, and their downstream mRNA expression in 28 OCS cases, two fallopian tube CS cases, and one peritoneal CS case. ARID1A and SMARCA4 exhibited a histological type-specific loss of protein expression in 5 of 11 (45%) endometrioid cases and all 5 serous/homologous OCS cases, respectively. The mRNA analysis suggested that sarcomatogenesis is induced by the transforming growth factor-β and Hippo signaling pathways, both of which regulate YAP1. Immunostaining for YAP1 suggested YAP1-associated sarcomatogenesis in the CRF-retained group, whereas YAP1-unassociated sarcomatogenesis was suggested in the CRF-reduced group. High-grade serous carcinoma cell line experiments showed that the transcriptome of the SMARCA4-knockdown group showed lower expression of the epithelial gene CDH1 and higher expression of mesenchymal genes such as VIM, ZEB1, and SNAI1 than the control group. Moreover, cell adhesion disappeared and cell morphology changed to a spindle shape, indicating sarcomatogenesis. In conclusion, this study reveals a mechanism for sarcoma development in OCS and provides novel therapeutic possibilities.
Collapse
Affiliation(s)
- Yoshihiro Katayama
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Departments of Gynecology and Obstetrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takeshi Iwasaki
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takeo Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Naomi Shimada
- Department of GynecologyKyushu University Beppu HospitalBeppuJapan
| | - Miya Nakashima
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Departments of Gynecology and Obstetrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masato Toya
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Departments of Gynecology and Obstetrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Fumiya Narutomi
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takumi Tomonaga
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kiyoko Kato
- Departments of Gynecology and Obstetrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
2
|
Yavas A, Ozcan K, Adsay NV, Balci S, Tarcan ZC, Hechtman JF, Luchini C, Scarpa A, Lawlor RT, Mafficini A, Reid MD, Xue Y, Yang Z, Haye K, Bellizzi AM, Vanoli A, Benhamida J, Balachandran V, Jarnagin W, Park W, O'Reilly EM, Klimstra DS, Basturk O. SWI/SNF Complex-Deficient Undifferentiated Carcinoma of the Pancreas: Clinicopathologic and Genomic Analysis. Mod Pathol 2024; 37:100585. [PMID: 39094734 PMCID: PMC11585460 DOI: 10.1016/j.modpat.2024.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Inactivating alterations in the SWItch/Sucrose NonFermentable (SWI/SNF) Chromatin Remodeling Complex subunits have been described in multiple tumor types. Recent studies focused on SMARC subunits of this complex to understand their relationship with tumor characteristics and therapeutic opportunities. To date, pancreatic cancer with these alterations has not been well studied, although isolated cases of undifferentiated carcinomas have been reported. Herein, we screened 59 pancreatic undifferentiated carcinomas for alterations in SWI/SNF complex-related (SMARCB1 [BAF47/INI1], SMARCA4 [BRG1], SMARCA2 [BRM]) proteins and/or genes using immunohistochemistry and/or next-generation sequencing. Cases with alterations in SWI/SNF complex-related proteins/genes were compared with cases without alterations, as well as with 96 conventional pancreatic ductal adenocarcinomas (PDAC). In all tumor groups, mismatch repair and PD-L1 protein expression were also evaluated. Thirty of 59 (51%) undifferentiated carcinomas had a loss of SWI/SNF complex-related protein expression or gene alteration. Twenty-seven of 30 (90%) SWI-/SNF-deficient undifferentiated carcinomas had rhabdoid morphology (vs 9/29 [31%] SWI-/SNF-retained undifferentiated carcinomas; P < .001) and all expressed cytokeratin, at least focally. Immunohistochemically, SMARCB1 protein expression was absent in 16/30 (53%) cases, SMARCA2 in 4/30 (13%), and SMARCA4 in 4/30 (13%); both SMARCB1 and SMARCA2 protein expressions were absent in 1/30 (3%). Five of 8 (62.5%) SWI-/SNF-deficient undifferentiated carcinomas that displayed loss of SMARCB1 protein expression by immunohistochemistry were found to have corresponding SMARCB1 deletions by next-generation sequencing. Analysis of canonical driver mutations for PDAC in these cases showed KRAS (2/5) and TP53 (2/5) abnormalities. Median combined positive score for PD-L1 (E1L3N) was significantly higher in the undifferentiated carcinomas with/without SWI/SNF deficiency compared with the conventional PDACs (P < .001). SWI-/SNF-deficient undifferentiated carcinomas were larger (P < .001) and occurred in younger patients (P < .001). Patients with SWI-/SNF-deficient undifferentiated carcinoma had worse overall survival compared with patients with SWI-/SNF-retained undifferentiated carcinoma (P = .004) and PDAC (P < .001). Our findings demonstrate that SWI-/SNF-deficient pancreatic undifferentiated carcinomas are frequently characterized by rhabdoid morphology, exhibit highly aggressive behavior, and have a negative prognostic impact. The ones with SMARCB1 deletions appear to be frequently KRAS wild type. Innovative developmental therapeutic strategies targeting this genomic basis of the SWI/SNF complex and the therapeutic implications of EZH2 inhibition (NCT03213665), SMARCA2 degrader (NCT05639751), or immunotherapy are currently under investigation.
Collapse
Affiliation(s)
- Aslihan Yavas
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Now with Institute of Pathology, Heinrich Heine University and University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Kerem Ozcan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Now with Department of Pathology and Laboratory Medicine, Henry Ford Hospital, Detroit, Michigan
| | - N Volkan Adsay
- The Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Serdar Balci
- Department of Pathology, Memorial Healthcare Group, Istanbul, Turkey
| | - Zeynep C Tarcan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York
| | - Jaclyn F Hechtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Now with Caris Life Sciences, Miami, Florida
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy; ARC-Net Research Center, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Rita T Lawlor
- Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Andrea Mafficini
- Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Michelle D Reid
- Department of Pathology, School of Medicine, Emory University, Atlanta, Georgia
| | - Yue Xue
- Department of Pathology, University Hospitals, Cleveland, Ohio
| | - Zhaohai Yang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kester Haye
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Andrew M Bellizzi
- Department of Pathology, University of Iowa, Iowa City, Iowa; Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, Pavia, Italy
| | - Alessandro Vanoli
- Unit of Anatomic Pathology, Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | - Jamal Benhamida
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vinod Balachandran
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William Jarnagin
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wungki Park
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eileen M O'Reilly
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David S Klimstra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Now with Paige.AI, New York, New York
| | - Olca Basturk
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; David M. Rubenstein Center for Pancreatic Cancer Research, New York, New York.
| |
Collapse
|
3
|
Liang H, Zheng X, Zhang X, Zhang Y, Zheng J. The role of SWI/SNF complexes in digestive system neoplasms. Med Oncol 2024; 41:119. [PMID: 38630164 DOI: 10.1007/s12032-024-02343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 04/19/2024]
Abstract
Chromatin remodeling is a critical step in the DNA damage response, and the ATP-dependent chromatin remodelers are a group of epigenetic regulators that alter nucleosome assembly and regulate transcription factor accessibility to DNA, preventing genomic instability and tumorigenesis caused by DNA damage. The SWI/SNF chromatin remodeling complex is one of them, and mutations in the gene encoding the SWI/SNF subunit are frequently found in digestive tumors. We review the most recent literature on the role of SWI/SNF complexes in digestive tumorigenesis, with different SWI/SNF subunits playing different roles. They regulate the biological behavior of tumor cells, participate in multiple signaling pathways, interact with multiple genes, and have some correlation with the prognosis of patients. Their carcinogenic properties may help discover new therapeutic targets. Understanding the mutations and defects of SWI/SNF complexes, as well as the underlying functional mechanisms, may lead to new strategies for treating the digestive system by targeting relevant genes or modulating the tumor microenvironment.
Collapse
Affiliation(s)
- Hanyun Liang
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang, 261053, China
| | - Xin Zheng
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang, 261053, China
| | - Xiao Zhang
- Department of Ultrasound, Weifang People's Hospital, Weifang, 261041, China
| | - Yan Zhang
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261053, China.
| | - Jie Zheng
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang, 261053, China.
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
4
|
Chen IY, Ettel MG, Bell PD, Huber AR, Findeis-Hosey JJ, Wang W, Hezel AF, Dunne RF, Drage MG, Agostini-Vulaj D. SWI/SNF chromatin remodeling complex in pancreatic ductal adenocarcinoma: Clinicopathologic and immunohistochemical study. Hum Pathol 2024; 144:40-45. [PMID: 38307342 DOI: 10.1016/j.humpath.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
The SWItch/Sucrose Non-Fermentable (SWI/SNF) complex is a multimeric protein involved in transcription regulation and DNA damage repair. SWI/SNF complex abnormalities are observed in approximately 14-34 % of pancreatic ductal adenocarcinomas (PDACs). Herein, we evaluated the immunohistochemical expression of a subset of the SWI/SNF complex proteins (ARID1A, SMARCA4/BRG1, SMARCA2/BRM, and SMARCB1/INI1) within our PDAC tissue microarray to determine whether SWI/SNF loss is associated with any clinicopathologic features or patient survival in PDAC. In our cohort, 13 of 353 (3.7 %) PDACs showed deficient SWI/SNF complex expression, which included 11 (3.1 %) with ARID1A loss, 1 (0.3 %) with SMARCA4/BRG1 loss, and 1 (0.3 %) with SMARCA2/BRM loss. All cases were SMARCB1/INI1 proficient. The SWI/SNF-deficient PDACs were more frequently identified in older patients with a mean age of 71.6 years (SD = 7.78) compared to the SWI/SNF-proficient PDACs which occurred at a mean age of 65.2 years (SD = 10.95) (P = 0.013). The SWI/SNF-deficient PDACs were associated with higher histologic grade, compared to the SWI/SNF-proficient PDACs (P = 0.029). No other significant clinicopathologic differences were noted between SWI/SNF-deficient and SWI/SNF-proficient PDACs. On follow-up, no significant differences were seen for overall survival and progression-free survival between SWI/SNF-deficient and SWI/SNF-proficient PDACs (both with P > 0.05). In summary, SWI/SNF-deficient PDACs most frequently demonstrate ARID1A loss. SWI/SNF-deficient PDACs are associated with older age and higher histologic grade. No other significant associations among other clinicopathologic parameters were seen in SWI/SNF-deficient PDACs including survival.
Collapse
Affiliation(s)
- Irene Y Chen
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Mark G Ettel
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Phoenix D Bell
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aaron R Huber
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer J Findeis-Hosey
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Wenjia Wang
- Department of Medicine, Division of Hematology and Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Aram F Hezel
- Department of Medicine, Division of Hematology and Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard F Dunne
- Department of Medicine, Division of Hematology and Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael G Drage
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Diana Agostini-Vulaj
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
5
|
Kan M, Kouchi Y, Ohyama H, Usui G, Fukuyo M, Takano S, Kishimoto T, Kaneda A, Ohtsuka M, Kato N. Genomic Analysis of Undifferentiated Carcinoma of the Pancreas with Squamous Differentiation: A Case Report. Cureus 2024; 16:e55175. [PMID: 38558649 PMCID: PMC10980578 DOI: 10.7759/cureus.55175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 04/04/2024] Open
Abstract
Pancreatic cancer is an intractable malignancy associated with a dismal prognosis. Undifferentiated carcinoma, a rare subtype, poses a clinical challenge owing to a limited understanding of its molecular characteristics. In this study, we conducted genomic analysis specifically on a case of undifferentiated carcinoma of the pancreas exhibiting squamous differentiation. An 80-year-old male, previously treated for colorectal cancer, presented with a mass with central cystic degeneration in the pancreatic tail. The mass was diagnosed pathologically as undifferentiated carcinoma of the pancreas with squamous differentiation. Despite surgical resection and chemotherapy, the patient faced early postoperative recurrence, emphasizing the aggressive nature of this malignancy. Genomic analysis of distinct histologic components revealed some common mutations between undifferentiated and squamous components, including Kirsten rat sarcoma virus (KRAS) and TP53. Notably, the squamous component harbored some specific mutations in SMARCA4 and SMARCB1 genes that code for members of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. The common mutations in the undifferentiated and squamous cell carcinoma components from this analysis suggest that they originate from a common origin. The discussion also underscores the scarcity of genomic analyses on undifferentiated carcinoma of the pancreas, with existing literature pointing to SWI/SNF complex-related gene mutations. However, our case introduces chromatin remodeling factor mutations as relevant in squamous differentiation. In conclusion, this study provides valuable insights into the genomic landscape of undifferentiated pancreatic carcinoma with squamous differentiation. These findings suggest the importance of further research and targeted therapies to improve the management of undifferentiated carcinoma of the pancreas and enhance patient outcomes.
Collapse
Affiliation(s)
| | | | | | - Genki Usui
- Molecular Oncology, Chiba University, Chiba, JPN
| | | | | | | | | | | | - Naoya Kato
- Gastroenterology, Chiba University, Chiba, JPN
| |
Collapse
|
6
|
Land G, Van Haeringen B, Cooper C, Andelkovic V, O'Rourke T. A Rare Case of Rhabdoid Pancreatic Carcinoma: Prolonged Disease-Free Survival Following Upfront Resection and Adjuvant Chemotherapy. Cureus 2023; 15:e50145. [PMID: 38186431 PMCID: PMC10771581 DOI: 10.7759/cureus.50145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
The rhabdoid subtype of undifferentiated pancreatic carcinoma is rarely reported. The clinical course of this disease is therefore poorly understood, although it is apparently an aggressive malignancy. We herein discuss the case of a 69-year-old man presenting with a rapidly enlarging mass of the pancreatic body and tail who was diagnosed with locally advanced SMARCB1-deficient undifferentiated pancreatic carcinoma with rhabdoid features, treated with radical resection and adjuvant chemotherapy, and has achieved 18-month disease-free survival ongoing at the time of article publication. We identify and contrast our case with 15 similar tumors reported in the English literature, briefly discuss the biology of this tumor, its relationship to malignant rhabdoid tumors of childhood, the role of SMARCB1 and its parent complex switch/sucrose-non-fermentable chromatin remodeling complex (SWI/SNF) in modulating the behavior of pancreatic malignancy, and the potential therapeutic avenues available for SWI/SNF-mutated malignancies.
Collapse
Affiliation(s)
- Gabriel Land
- General Surgery, Princess Alexandra Hospital, Brisbane, AUS
| | | | - Caroline Cooper
- Anatomical Pathology, Princess Alexandra Hospital, Brisbane, AUS
| | | | - Thomas O'Rourke
- Hepatobiliary Surgery, Princess Alexandra Hospital, Brisbane, AUS
| |
Collapse
|
7
|
Liu S, Liu P, Zhu C, Yang R, He Z, Li Y, Li Y, Fei X, Hou J, Wang X, Pan Y. FBXO28 promotes proliferation, invasion, and metastasis of pancreatic cancer cells through regulation of SMARCC2 ubiquitination. Aging (Albany NY) 2023; 15:5381-5398. [PMID: 37348029 PMCID: PMC10333084 DOI: 10.18632/aging.204780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
The E3 ligase F-box only protein 28 (FBXO28) belongs to the F-box family of proteins that play a critical role in tumor development. However, the potential function of FBXO28 in pancreatic cancer (PC) and its molecular mechanism remain unclear. In this study, we examined FBXO28 expression in PC and its biological role and explored the mechanism of FBXO28-mediated proliferation, invasion, and metastasis of PC cells. Compared with paracancerous tissues and human normal pancreatic ductal epithelial cells, FBXO28 was highly expressed in PC tissues and cell lines. High expression of FBXO28 was negatively correlated with the survival prognosis of patients with PC. Functional assays indicated that FBXO28 promoted PC cell proliferation, invasion, and metastasis in vitro and in vivo. Furthermore, immunoprecipitation-mass spectrometry was used to identify SMARCC2 as the target of FBXO28; upregulation of SMARCC2 can reverse the effect of overexpression of FBXO28 on promoting the proliferation, invasion, and metastasis of PC cells. Mechanistically, FBXO28 inhibited SMARCC2 expression in post-translation by increasing SMARCC2 ubiquitination and protein degradation. In conclusion, FBXO28 has a potential role in PC, possibly promoting PC progression through SMARCC2 ubiquitination. Thus, FBXO28 might be a potential treatment target in PC.
Collapse
Affiliation(s)
- Songbai Liu
- Guizhou Medical University, Guiyang 550000, Guizhou, China
| | - Peng Liu
- Guizhou Medical University, Guiyang 550000, Guizhou, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou, China
| | - Changhao Zhu
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang 550000, Guizhou, China
| | - Rui Yang
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen 518055, Guangdong, China
| | - Zhiwei He
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen 518055, Guangdong, China
| | - Yongning Li
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou, China
| | - Ying Li
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang 550000, Guizhou, China
| | - Xiaobin Fei
- Guizhou Medical University, Guiyang 550000, Guizhou, China
| | - Junyi Hou
- Guizhou Medical University, Guiyang 550000, Guizhou, China
| | - Xing Wang
- Guizhou Medical University, Guiyang 550000, Guizhou, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang 550000, Guizhou, China
| | - Yaozhen Pan
- Guizhou Medical University, Guiyang 550000, Guizhou, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang 550000, Guizhou, China
| |
Collapse
|