1
|
Pereira JC, de Sousa RWR, Conceição MLP, do Nascimento MLLB, de Almeida ATA, Dos Reis AC, de Sousa Cavalcante ML, Dos Reis Oliveira C, Martins IRR, Torres-Leal FL, Dittz D, de Castro E Sousa JM, Ferreira PMP, Carneiro da Silva FC. Buthionine sulfoximine acts synergistically with doxorubicin as a sensitizer molecule on different tumor cell lines. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:409-431. [PMID: 39815616 DOI: 10.1080/15287394.2024.2448663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The chemotherapeutic drug doxorubicin (DOX) has been widely used for treating solid tumors attributed to its antiproliferative effectiveness; however, its clinical use is limited due to side effects, including cardiotoxicity, myelosuppression, and drug resistance. Combining DOX with buthionine sulfoximine (BSO), a glutathione (GSH) synthesis inhibitor, showed promising results in overcoming these adverse effects, potentially reducing the required DOX dose while maintaining efficacy. The aim of the present study was to examine the effects of different concentrations of BSO and DOX, both individually and in combination, utilizing B16/F10 (murine melanoma), SNB-19 (human glioblastoma), S180 (murine sarcoma), and SVEC4-10 (murine endothelial) cell lines. Cell viability, migration, and clonogenicity were assessed using the following assays MTT, scratch, and colony formation. Antioxidant levels of GSH, as well as activities catalase (CAT), and superoxide dismutase (SOD) were measured. BSO alone exhibited minimal cytotoxic effects, while DOX alone reduced cell viability significantly. The combination of BSO+DOX decreased IC50 values for most cell lines, demonstrating a synergistic effect, especially in B16/F10, S180, and SVEC4-10 cells. BSO+DOX combination significantly inhibited cell migration and clonogenicity compared to DOX alone. While GSH levels were decreased with BSO+DOX treatment activities of CAT and SOD increased following DOX administration but remained unchanged by BSO. These results suggest that BSO may be considered a valuable tool to improve DOX therapeutic efficacy, particularly in cases of chemotherapy-resistant tumors, as BSO enhances DOX activity while potentially reducing systemic chemotherapeutic drug toxicity.
Collapse
Affiliation(s)
- Joedna Cavalcante Pereira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Rayran Walter Ramos de Sousa
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Micaely Lorrana Pereira Conceição
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | | | - Ana Tárcila Alves de Almeida
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Antonielly Campinho Dos Reis
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina-PI, Brazil
| | - Mickael Laudrup de Sousa Cavalcante
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Camila Dos Reis Oliveira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Italo Rossi Roseno Martins
- Academic Unit of Life Sciences, Teachers' Forming Center, Federal University of Campina Grande, Cajazeiras-PB, Brazil
| | - Francisco Leonardo Torres-Leal
- Metabolic Diseases, Exercise and Nutrition Research Group (Domen), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Federal University of Piaui, Teresina-PI, Brazil
| | - Dalton Dittz
- Laboratory of Antineoplastic Pharmacology (Lafan), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina-PI, Brazil
| | - João Marcelo de Castro E Sousa
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina-PI, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
| | - Felipe Cavalcanti Carneiro da Silva
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina-PI, Brazil
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina-PI, Brazil
| |
Collapse
|
2
|
Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, Kass DA, Pereira de Vasconcelos W, Fischmeister R, Brocke S, Epstein PM, Piazza GA, Keeton AB, Zhou G, Abdel-Halim M, Abadi AH, Baillie GS, Giembycz MA, Bolger G, Snyder G, Tasken K, Saidu NEB, Schmidt M, Zaccolo M, Schermuly RT, Ke H, Cote RH, Mohammadi Jouabadi S, Roks AJM. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025; 77:100042. [PMID: 40081105 DOI: 10.1016/j.pharmr.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 03/15/2025] Open
Abstract
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains. Thus, PDEs govern short-term protein phosphorylation, long-term protein expression, and even epigenetic mechanisms by modulating cyclic nucleotide levels. Consequently, their involvement in both health and disease is extensively investigated. PDE inhibition has emerged as a promising clinical intervention method, with ongoing developments aiming to enhance its efficacy and applicability. In this comprehensive review, we extensively look into the intricate landscape of PDEs biochemistry, exploring their diverse roles in various tissues. Furthermore, we outline the underlying mechanisms of PDEs in different pathophysiological conditions. Additionally, we review the application of PDE inhibition in related diseases, shedding light on current advancements and future prospects for clinical intervention. SIGNIFICANCE STATEMENT: Regulating PDEs is a critical checkpoint for numerous (patho)physiological conditions. However, despite the development of several PDE inhibitors aimed at controlling overactivated PDEs, their applicability in clinical settings poses challenges. In this context, our focus is on pharmacodynamics and the structure activity of PDEs, aiming to illustrate how selectivity and efficacy can be optimized. Additionally, this review points to current preclinical and clinical evidence that depicts various optimization efforts and indications.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Neurobiology, Center for Research on Aging, University of Maryland School of Medicine, Baltimore, Maryland
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, Louisville
| | - Claire Lugnier
- Translational CardioVascular Medicine, CRBS, UR 3074, Strasbourg, France
| | | | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Orsay, France
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, Connecticut
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gretchen Snyder
- Molecular Neuropharmacology, Intra-Cellular Therapies Inc (ITI), New York, New York
| | - Kjetil Tasken
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nathaniel E B Saidu
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ralph T Schermuly
- Department of internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Soroush Mohammadi Jouabadi
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J M Roks
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Sinha SJ, Kumar B, Prasad CP, Chauhan SS, Kumar M. Emerging Research and Future Directions on Doxorubicin: A Snapshot. Asian Pac J Cancer Prev 2025; 26:5-15. [PMID: 39873980 PMCID: PMC12082430 DOI: 10.31557/apjcp.2025.26.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Doxorubicin, a widely used anthracycline antibiotic, has been a cornerstone in cancer chemotherapy since the 1960s. In addition to doxorubicin, anthracycline chemotherapy medications include daunorubicin, idarubicin, and epirubicin. For many years, doxorubicin has been the chemotherapy drug of choice for treating a broad variety of cancers. Despite its efficacy, doxorubicin therapy is hindered by serious side effects, primarily cardiotoxicity, and the challenges of drug resistance. Recent research has focused on optimizing doxorubicin's therapeutic index by developing cardioprotective strategies, such as dexrazoxane, and utilizing non-invasive monitoring techniques to reduce cardiac risk. To counteract drug resistance, innovative formulations like nanoparticle-based delivery systems, enhance targeted drug delivery and overcome cellular resistance mechanisms. Furthermore, using combination approaches involving immunotherapy, photodynamic therapy, and genetic modulation, offer promising synergies to maximize tumor eradication. Personalized approaches, supported by pharmacogenomics and predictive biomarkers, are enhancing individualized treatment regimens, aiming to increase effectiveness and minimize toxicity. Future research on doxorubicin focuses on developing advanced drug delivery systems, such as nanoparticle and liposomal formulations, to enhance targeted delivery, minimize systemic toxicity, and improve therapeutic precision. Efforts are also underway to design combination therapies that integrate doxorubicin with immunotherapies, photodynamic approaches, and gene-based treatments, aiming to overcome resistance and increase tumor-specific effects. These advancements signify a transition toward more personalized and effective doxorubicin-based cancer therapies, prioritizing reduced side effects and improved patient outcomes. This article focusses on the ongoing innovations aimed at maximizing the therapeutic potential of doxorubicin while addressing its limitations.
Collapse
Affiliation(s)
- Saket Jitendre Sinha
- All India Institute of Medical Sciences, Department of Biochemistry, Bathinda, India.
| | - Bhupender Kumar
- All India Institute of Medical Sciences, Department of Medicine, Bilaspur, India.
| | - Chandra Prakash Prasad
- All India Institute of Medical Sciences, Department of Medical Oncology, New Delhi, India.
| | - Shyam Singh Chauhan
- All India Institute of Medical Sciences, Department of Biochemistry, New Delhi, India.
| | - Manish Kumar
- All India Institute of Medical Sciences, Department of Biochemistry, Vijaypur, Jammu, India.
| |
Collapse
|
4
|
Miwa S, Hayashi K, Taniguchi Y, Asano Y, Demura S. What are the Optimal Systemic Treatment Options for Rhabdomyosarcoma? Curr Treat Options Oncol 2024; 25:784-797. [PMID: 38750399 DOI: 10.1007/s11864-024-01206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2024] [Indexed: 07/04/2024]
Abstract
OPINION STATEMENT Rhabdomyosarcoma, a soft tissue sarcoma commonly observed in childhood, requires multidisciplinary treatment, including surgical tumor resection, chemotherapy, and radiation therapy. Although long-term survival can be expected in patients with localized rhabdomyosarcoma, the clinical outcomes in patients with metastatic or unresectable rhabdomyosarcoma remain unsatisfactory. To improve the outcomes of rhabdomyosarcoma, it is important to explore effective systemic treatments for metastatic rhabdomyosarcoma. Currently, multiagent chemotherapy comprising vincristine, actinomycin D, and ifosfamide/cyclophosphamide remains standard systemic treatment for rhabdomyosarcoma. On the other hand, new treatment, such as immune checkpoint inhibitors and molecular targeted drugs, have demonstrated superior clinical outcomes compared to those of standard treatments in various type of malignancies. Therefore, it is necessary to assess the efficacies of these treatments in patients with rhabdomyosarcoma. Recent clinical studies have shown efficacies and safeties of temozolomide combined with vincristine/irinotecan, olaratumab combined with doxorubicin or vincristine/irinotecan, and long-term maintenance therapy. Furthermore, basic researches demonstrated new therapeutic targets. Future studies using these approaches are required to assess their clinical significances.
Collapse
Affiliation(s)
- Shinji Miwa
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8640, Japan.
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8640, Japan
| | - Yuta Taniguchi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8640, Japan
| | - Yohei Asano
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8640, Japan
| | - Satoru Demura
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, 920-8640, Japan
| |
Collapse
|
5
|
Rawat SG, Tiwari RK, Kumar A. Blockade of phosphodiesterase 5 by sildenafil reduces tumor growth and potentiates tumor-killing ability of cisplatin in vivo against T cell lymphoma: Implication of modulated apoptosis, reactive oxygen species homeostasis, glucose metabolism, and pH regulation. ENVIRONMENTAL TOXICOLOGY 2024; 39:1909-1922. [PMID: 38059649 DOI: 10.1002/tox.24074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023]
Abstract
In the past years, PDE5 has emerged as a promising therapeutic target for many cancers due to its highly upregulated expression. Interestingly, a recent in vitro study by our group has shown the antitumor and chemopotentiating action of sildenafil against T cell lymphoma. Our study showed that lower doses of sildenafil (50 μM) and cisplatin (0.5 μg/mL) exhibited 4% and 23% cytotoxicity against HuT78 cells, respectively, which was dramatically increased up to 50% when treated with both. Hence, the present study was designed to evaluate the antitumor and chemo-potentiating action of sildenafil in a murine model of T cell lymphoma (popularly called as Dalton's lymphoma [DL]). In the present study, DL-bearing mice were administered with vehicle (PBS), sildenafil (5 mg/kg bw), cisplatin (5 mg/kg bw), and sildenafil and cisplatin followed by evaluation of their impact on tumor growth by analyzing various parameters. The apoptosis was assessed by Wright-Giemsa, annexin-V, and DAPI staining. Reactive oxygen species (ROS) level was examined through DCFDA staining. The expression of genes and proteins were estimated by RT-PCR and Western blotting, respectively. The experimental findings of the study demonstrate for the first time that sildenafil inhibits tumor growth and potentiates tumor inhibitory ability of cisplatin by altering apoptosis, glycolysis, ROS homeostasis, and pH regulation in T cell lymphoma-carrying host. In addition, our investigation also showed amelioration of tumor-induced liver and kidney damage by sildenafil. Overall, the experimental data of our study strongly advocate the use and repurposing of SDF in designing promising chemotherapeutic regimens against malignancies of T cells.
Collapse
Affiliation(s)
- Shiv Govind Rawat
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rajan Kumar Tiwari
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
6
|
Pușcașu C, Zanfirescu A, Negreș S, Șeremet OC. Exploring the Multifaceted Potential of Sildenafil in Medicine. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2190. [PMID: 38138293 PMCID: PMC10744870 DOI: 10.3390/medicina59122190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Phosphodiesterase type 5 (PDE5) is pivotal in cellular signalling, regulating cyclic guanosine monophosphate (cGMP) levels crucial for smooth muscle relaxation and vasodilation. By targeting cGMP for degradation, PDE5 inhibits sustained vasodilation. PDE5 operates in diverse anatomical regions, with its upregulation linked to various pathologies, including cancer and neurodegenerative diseases. Sildenafil, a selective PDE5 inhibitor, is prescribed for erectile dysfunction and pulmonary arterial hypertension. However, considering the extensive roles of PDE5, sildenafil might be useful in other pathologies. This review aims to comprehensively explore sildenafil's therapeutic potential across medicine, addressing a gap in the current literature. Recognising sildenafil's broader potential may unveil new treatment avenues, optimising existing approaches and broadening its clinical application.
Collapse
Affiliation(s)
| | - Anca Zanfirescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.); (O.C.Ș.)
| | | | | |
Collapse
|
7
|
Adamczewska-Wawrzynowicz K, Wiącek A, Kozłowska A, Mikosza K, Szefler L, Dudlik W, Dey S, Varghese N, Derwich K. Modern treatment strategies in pediatric oncology and hematology. Discov Oncol 2023; 14:98. [PMID: 37314524 PMCID: PMC10267092 DOI: 10.1007/s12672-023-00658-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 06/15/2023] Open
Abstract
Every year, approximately 400 00 children worldwide are diagnosed with cancer. Although treatment results in most types of childhood neoplasms are excellent with survival more than 80%, there are some with poor prognosis. Also recurrent and resistant to treatment childhood cancer remain a therapeutic challenge. Besides chemotherapy, which has been the basis of cancer therapy for years, molecular methods and precisely targeted therapies have recently found their usage. As a result of that, survival has improved and has positively impacted the rate of toxicities associated with chemotherapy (Butler et al. in CA Cancer J Clin 71:315-332, 2021). These achievements have contributed to better quality of patients' lives. Current methods of treatment and ongoing trials give hope for patients with relapses and resistance to conventional chemotherapy. This review focuses on the most recent progress in pediatric oncology treatments and discusses specific therapy methods for particular cancers types of cancer. Targeted therapies and molecular approaches have become more beneficial but research need to be continued in this field. Despite significant breakthroughs in pediatric oncology in the last few years, there is still a need to find new and more specific methods of treatment to increase the survival of children with cancer.
Collapse
Affiliation(s)
- Katarzyna Adamczewska-Wawrzynowicz
- Institute of Pediatrics, Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Szpitalna 27/33 street, 61-572, Poznan, Poland
| | - Anna Wiącek
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Klaudia Mikosza
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Lidia Szefler
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Weronika Dudlik
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Shreya Dey
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Noel Varghese
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Derwich
- Institute of Pediatrics, Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Szpitalna 27/33 street, 61-572, Poznan, Poland.
| |
Collapse
|
8
|
Morsi DS, Barnawi IO, Ibrahim HM, El-Morsy AM, El Hassab MA, Abd El Latif HM. Immunomodulatory, apoptotic and anti-proliferative potentials of sildenafil in Ehrlich ascites carcinoma murine model: In vivo and in silico insights. Int Immunopharmacol 2023; 119:110135. [PMID: 37080065 DOI: 10.1016/j.intimp.2023.110135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023]
Abstract
Sildenafil is a potent phosphodiesterase-5 (PDE5) inhibitor that effectively inhibits cGMP and increases the strength of nitric oxide. PDE5 was overexpressed in several carcinomas, including breast cancer, which inhibited tumor growth and cell division. The current research aims to investigate the in vivo sildenafil's immunomodulatory and antineoplastic potentials against Ehrlich Ascites Carcinoma. This study looked at the effects of sildenafil mono-treatment and co-treatment with cisplatin; tumor cell count, viability and the inhibition rate were determined. Apoptosis, cell cycle distribution, alterations in tumor cells and splenocytes proliferation, changes in splenocytes immunophenotyping using flowcytometry, plasma levels of malondialdehyde (MDA), reduced glutathione (GSH), interferone (IFN)-γ, granzyme B, alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, creatinine and hematological alterations were detected. Additionally, docking study was conducted to get further insights on how Sildenafil exerts its activity. Sildenafil mono-treatment and co-treatment with cisplatin markedly reduced tumor cell count, viability, growth rate and proliferative capability accompanied by apoptosis enhancement and G0/G1 and sub G1 cells cycle arrest. Fortunately, sildenafil evoked efficient cellular immune response by increasing plasma levels of granzyme B and IFN-γ, proportion of splenic T cytotoxic (CD3+CD8+) and T helper (CD3+CD4+), accompanied by decrease in the proportion of splenic regulatory T cells. . Moreover, in silico data suggest LcK and MAPKs as the potential targets of sildenafil. Furthermore, sildenafil rebalanced the oxidant-antioxidant status by decreasing MDA and increasing GSH plasma levels. Sildenafil successfully retrieved various hematological values besides renal and hepatic functions in EAC-bearing animals. In conclusion, our results suggest that sildenafil could be potential safe anti-tumor agent with immuno-modulatory properties against Ehrlich ascites carcinoma.
Collapse
Affiliation(s)
- Dalia S Morsi
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt.
| | - Ibrahim O Barnawi
- Department of Biological Sciences, Faculty of Science, Taibah University, Al-Madinah Al-Munawwarah 41321, Saudi Arabia
| | - Hany M Ibrahim
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Asmaa M El-Morsy
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Mahmoud A El Hassab
- Department of Pharmaceutical Chemistry, School of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Heba M Abd El Latif
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| |
Collapse
|
9
|
Ribeiro E, Costa B, Vasques-Nóvoa F, Vale N. In Vitro Drug Repurposing: Focus on Vasodilators. Cells 2023; 12:671. [PMID: 36831338 PMCID: PMC9954697 DOI: 10.3390/cells12040671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Drug repurposing aims to identify new therapeutic uses for drugs that have already been approved for other conditions. This approach can save time and resources compared to traditional drug development, as the safety and efficacy of the repurposed drug have already been established. In the context of cancer, drug repurposing can lead to the discovery of new treatments that can target specific cancer cell lines and improve patient outcomes. Vasodilators are a class of drugs that have been shown to have the potential to influence various types of cancer. These medications work by relaxing the smooth muscle of blood vessels, increasing blood flow to tumors, and improving the delivery of chemotherapy drugs. Additionally, vasodilators have been found to have antiproliferative and proapoptotic effects on cancer cells, making them a promising target for drug repurposing. Research on vasodilators for cancer treatment has already shown promising results in preclinical and clinical studies. However, additionally research is needed to fully understand the mechanisms of action of vasodilators in cancer and determine the optimal dosing and combination therapy for patients. In this review, we aim to explore the molecular mechanisms of action of vasodilators in cancer cell lines and the current state of research on their repurposing as a treatment option. With the goal of minimizing the effort and resources required for traditional drug development, we hope to shed light on the potential of vasodilators as a viable therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bárbara Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Francisco Vasques-Nóvoa
- Cardiovascular R&D Center, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|