1
|
Osborn G, López-Abente J, Adams R, Laddach R, Grandits M, Bax HJ, Chauhan J, Pellizzari G, Nakamura M, Stavraka C, Chenoweth A, Palhares LCGF, Evan T, Lim JHC, Gross A, Moise L, Jatiani S, Figini M, Bianchini R, Jensen-Jarolim E, Ghosh S, Montes A, Sayasneh A, Kristeleit R, Tsoka S, Spicer J, Josephs DH, Karagiannis SN. Hyperinflammatory repolarisation of ovarian cancer patient macrophages by anti-tumour IgE antibody, MOv18, restricts an immunosuppressive macrophage:Treg cell interaction. Nat Commun 2025; 16:2903. [PMID: 40210642 PMCID: PMC11985905 DOI: 10.1038/s41467-025-57870-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/06/2025] [Indexed: 04/12/2025] Open
Abstract
Ovarian cancer is the most lethal gynaecological cancer and treatment options remain limited. In a recent first-in-class Phase I trial, the monoclonal IgE antibody MOv18, specific for the tumour-associated antigen Folate Receptor-α, was well-tolerated and preliminary anti-tumoural activity observed. Pre-clinical studies identified macrophages as mediators of tumour restriction and pro-inflammatory activation by IgE. However, the mechanisms of IgE-mediated modulation of macrophages and downstream tumour immunity in human cancer remain unclear. Here we study macrophages from patients with epithelial ovarian cancers naive to IgE therapy. High-dimensional flow cytometry and RNA-seq demonstrate immunosuppressive, FcεR-expressing macrophage phenotypes. Ex vivo co-cultures and RNA-seq interaction analyses reveal immunosuppressive associations between patient-derived macrophages and regulatory T (Treg) cells. MOv18 IgE-engaged patient-derived macrophages undergo pro-inflammatory repolarisation ex vivo and display induction of a hyperinflammatory, T cell-stimulatory subset. IgE reverses macrophage-promoted Treg cell induction to increase CD8+ T cell expansion, a signature associated with improved patient prognosis. On-treatment tumours from the MOv18 IgE Phase I trial show evidence of this IgE-driven immune signature, with increased CD68+ and CD3+ cell infiltration. We demonstrate that IgE induces hyperinflammatory repolarised states of patient-derived macrophages to inhibit Treg cell immunosuppression. These processes may collectively promote immune activation in ovarian cancer patients receiving IgE therapy.
Collapse
Affiliation(s)
- Gabriel Osborn
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Jacobo López-Abente
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Rebecca Adams
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Roman Laddach
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, UK
| | - Melanie Grandits
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Giulia Pellizzari
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Mano Nakamura
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Chara Stavraka
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Alicia Chenoweth
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| | - Lais C G F Palhares
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Theodore Evan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | | | | | | | | | - Mariangela Figini
- ANP2, Department of Advanced Diagnostics, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University Vienna, Vienna, Austria
| | - Sharmistha Ghosh
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Ana Montes
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Ahmad Sayasneh
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Rebecca Kristeleit
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, UK
| | - James Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Debra H Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK.
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK.
| |
Collapse
|
2
|
Lotter CR, Sherratt JA. Pulmonary epithelial wound healing and the immune system. Mathematical modeling and bifurcation analysis of a bistable system. J Theor Biol 2025; 596:111968. [PMID: 39455020 DOI: 10.1016/j.jtbi.2024.111968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/15/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Respiratory diseases such as asthma, acute respiratory distress syndrome (ARDS), influenza or COVID-19 often directly target the epithelium. Elevated immune levels and a 'cytokine storm' are directly associated with defective healing dynamics of lung diseases such as COVID-19 or ARDS. The infected cells leave wounded regions in the epithelium which must be healed for the lung to return to a healthy state and carry out its main function of gas-exchange. Due to the complexity of the various interactions between cells of the lung epithelium and surrounding tissue, it is necessary to develop models that can complement experiments to fully understand the healing dynamics. In this mathematical study we model the mechanism of epithelial regeneration. We assume that healing is exclusively driven by progenitor cell proliferation, induced by a chemical activator such as epithelial growth factor (EGF) and cytokines such as interleukin-22 (IL22). Contrary to previous studies of wound healing, we consider the immune system, specifically the T effector cells TH1, TH17, TH22 and Treg to strongly contribute to the healing process, by producing IL22 or regulating the immune response. We therefore obtain a coupled system of two ordinary differential equations for the epithelial and immune cell densities and two functions for the levels of chemicals that either induce epithelial proliferation or recruit immune cells. These functions link the two cell equations. We find that to allow the epithelium to regenerate to a healthy state, the immune system must not exceed a threshold value at the onset of the healing phase. This immune threshold is supported experimentally but was not explicitly built into our equations. Our assumptions are therefore sufficient to reproduce experimental results concerning the ratio TH17/Treg cells as a threshold to predict higher mortality rates in patients. This immune threshold can be controlled by parameters of the model, specifically the base-level growth factor concentration. This conclusion is based on a mathematical bifurcation analysis and linearization of the model equations. Our results suggest treatment of severe cases of lung injury by reducing or suppressing the immune response, in an individual patient, assessed by their disease parameters such as course of lung injury and immune response levels.
Collapse
Affiliation(s)
- Clara R Lotter
- Department of Mathematics, Heriot-Watt University and Maxwell Institute for Mathematical Sciences, Edinburgh, EH14 4AS, UK.
| | - Jonathan A Sherratt
- Department of Mathematics, Heriot-Watt University and Maxwell Institute for Mathematical Sciences, Edinburgh, EH14 4AS, UK
| |
Collapse
|
3
|
Maffini F, Lepanto D, Chu F, Tagliabue M, Vacirca D, De Berardinis R, Gandini S, Vignati S, Ranghiero A, Taormina S, Rappa A, Cossu Rocca M, Alterio D, Chiocca S, Barberis M, Preda L, Pagni F, Fusco N, Ansarin M. A Transcriptomic Analysis of Laryngeal Dysplasia. Int J Mol Sci 2024; 25:9685. [PMID: 39273632 PMCID: PMC11395940 DOI: 10.3390/ijms25179685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
This article describes how the transcriptional alterations of the innate immune system divide dysplasias into aggressive forms that, despite the treatment, relapse quickly and more easily, and others where the progression is slow and more treatable. It elaborates on how the immune system can change the extracellular matrix, favoring neoplastic progression, and how infections can enhance disease progression by increasing epithelial damage due to the loss of surface immunoglobulin and amplifying the inflammatory response. We investigated whether these dysregulated genes were linked to disease progression, delay, or recovery. These transcriptional alterations were observed using the RNA-based next-generation sequencing (NGS) panel Oncomine Immune Response Research Assay (OIRRA) to measure the expression of genes associated with lymphocyte regulation, cytokine signaling, lymphocyte markers, and checkpoint pathways. During the analysis, it became apparent that certain alterations divide dysplasia into two categories: progressive or not. In the future, these biological alterations are the first step to provide new treatment modalities with different classes of drugs currently in use in a systemic or local approach, including classical chemotherapy drugs such as cisplatin and fluorouracile, older drugs like fenretinide, and new checkpoint inhibitor drugs such as nivolumab and pembrolizumab, as well as newer options like T cell therapy (CAR-T). Following these observed alterations, it is possible to differentiate which dysplasias progress or not or relapse quickly. This information could, in the future, be the basis for determining a close follow-up, minimizing surgical interventions, planning a correct and personalized treatment protocol for each patient and, after specific clinical trials, tailoring new drug treatments.
Collapse
Affiliation(s)
- Fausto Maffini
- Department of Surgical Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Daniela Lepanto
- Department of Surgical Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Francesco Chu
- Division of Otolaryngology Head and Neck Surgery, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Marta Tagliabue
- Division of Otolaryngology Head and Neck Surgery, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Davide Vacirca
- Department of Surgical Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Rita De Berardinis
- Division of Otolaryngology Head and Neck Surgery, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Sara Gandini
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Silvano Vignati
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Alberto Ranghiero
- Department of Surgical Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Sergio Taormina
- Department of Surgical Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Alessandra Rappa
- Department of Surgical Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Maria Cossu Rocca
- Medical Oncology Division of Urogenital and Head and Neck Tumors, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Daniela Alterio
- Department of Radiotherapy, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Massimo Barberis
- Department of Surgical Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Lorenzo Preda
- Diagnostic Imaging Unit, National Center of Oncological Hadron-Therapy (CNAO), 27100 Pavia, Italy;
- State University School of Medicine, University of Pavia, 27100 Pavia, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, IRCCS Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, 20126 Milan, Italy
| | - Nicola Fusco
- Department of Surgical Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy
- State University School of Medicine, University of Milan, 20122 Milan, Italy
| | - Mohssen Ansarin
- Division of Otolaryngology Head and Neck Surgery, European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
4
|
Maowulieti G, Zhao S, Zhao M, Yuan H. The role of inflammatory factors and T-cell subsets in the diagnosis of recurrence in epithelial ovarian cancer patients and the effect of olaparin treatment on them. Immun Inflamm Dis 2023; 11:e1059. [PMID: 37904699 PMCID: PMC10599274 DOI: 10.1002/iid3.1059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/18/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The aim of the study is to investigate the role of serum inflammatory factors and T-cell subsets in the diagnosis of recurrence in epithelial ovarian cancer patients and the effect of olaparib on inflammatory factor and T-lymphocyte subsets in patients with recurrent epithelial ovarian cancer. METHODS In this study, 100 patients diagnosed as recurrent epithelial ovarian cancer in our hospital and 100 patients without recurrent epithelial ovarian cancer in the same period were selected. According to the treatment plan, the recurrent patients were divided into conventional therapy group (Paclitaxel and Carboplatin) and combined therapy group (Paclitaxel, Carboplatin, and olaparib). The levels of serum inflammatory factors were evaluated by enzyme-linked immunosorbent assay. The peripheral blood T-lymphocyte subsets in each group were detected by flow cytometry. RESULTS Compared with nonrecurrent patients, recurrent patients have higher serum interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels (p < .05), and lower interferon-γ (IFN-γ) level and the CD4+/CD8+ ratio. After adjusting for confounding factors, the results showed that the serum IL-6, IFN-γ, and TNF-α levels were influencing factors of recurrence in epithelial ovarian cancer patients. The area under the receiver operating curve and the sensitivity of serum TNF-α in predicting ovarian cancer recurrence were higher than those of IL-6 and IFN-γ. After secondary chemotherapy and/or olaparib maintenance treatment, the IL-6 (p < .001) and TNF-α (p < .001) levels in combined therapy group were lower than those in the conventional therapy, whereas the IFN-γ level (p < .001), the CD4+ T-cell proportion (p = .0069) and the CD4+/CD8+ ratio (p = .0201) were higher than those in the conventional therapy. CONCLUSION The serum IL-6, TNF-α, and IFN-γ levels were closely related to the recurrence of ovarian cancer. Olaparib maintenance treatment can significantly decrease the IL-6 and TNF-α level, and increase IFN-γ level and the CD4+/CD8+ ratio in patients with recurrent ovarian cancer.
Collapse
Affiliation(s)
- Gulijianati Maowulieti
- Department of Gynaecology, Wuxi Maternity and Child Health Care HospitalWomen's Hospital of Jiangnan University, Jiangnan UniversityWuxiJiangsuChina
| | - Shaojie Zhao
- Department of Gynaecology, Wuxi Maternity and Child Health Care HospitalWomen's Hospital of Jiangnan University, Jiangnan UniversityWuxiJiangsuChina
| | - Min Zhao
- Department of Gynaecology, Wuxi Maternity and Child Health Care HospitalWomen's Hospital of Jiangnan University, Jiangnan UniversityWuxiJiangsuChina
| | - Hua Yuan
- Department of Gynaecology, Wuxi Maternity and Child Health Care HospitalWomen's Hospital of Jiangnan University, Jiangnan UniversityWuxiJiangsuChina
| |
Collapse
|
5
|
Wilczyński JR, Wilczyński M, Paradowska E. "DEPHENCE" system-a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer-a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies. Front Oncol 2023; 13:1201497. [PMID: 37448521 PMCID: PMC10338102 DOI: 10.3389/fonc.2023.1201497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the "DEPHENCE" system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the "DEPHENCE" system postulates.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother's Health Center-Research Institute, Lodz, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
6
|
Silva RCMC, Lopes MF, Travassos LH. Distinct T helper cell-mediated antitumor immunity: T helper 2 cells in focus. CANCER PATHOGENESIS AND THERAPY 2023; 1:76-86. [PMID: 38328613 PMCID: PMC10846313 DOI: 10.1016/j.cpt.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/07/2022] [Accepted: 11/02/2022] [Indexed: 02/09/2024]
Abstract
The adaptive arm of the immune system is crucial for appropriate antitumor immune responses. It is generally accepted that clusters of differentiation 4+ (CD4+) T cells, which mediate T helper (Th) 1 immunity (type 1 immunity), are the primary Th cell subtype associated with tumor elimination. In this review, we discuss evidence showing that antitumor immunity and better prognosis can be associated with distinct Th cell subtypes in experimental mouse models and humans, with a focus on Th2 cells. The aim of this review is to provide an overview and understanding of the mechanisms associated with different tumor outcomes in the face of immune responses by focusing on the (1) site of tumor development, (2) tumor properties (i. e., tumor metabolism and cytokine receptor expression), and (3) type of immune response that the tumor initially escaped. Therefore, we discuss how low-tolerance organs, such as lungs and brains, might benefit from a less tissue-destructive immune response mediated by Th2 cells. In addition, Th2 cells antitumor effects can be independent of CD8+ T cells, which would circumvent some of the immune escape mechanisms that tumor cells possess, like low expression of major histocompatibility-I (MHC-I). Finally, this review aims to stimulate further studies on the role of Th2 cells in antitumor immunity and briefly discusses emerging treatment options.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Marcela Freitas Lopes
- Laboratory of Immunity Biology George DosReis,Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Holanda Travassos
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|