1
|
Zhang H, Wang X, Dong M, Wang J, Ren W. Unveiling novel regulatory mechanisms of miR-5195-3p in pelvic organ prolapse pathogenesis†. Biol Reprod 2025; 112:86-101. [PMID: 39530351 DOI: 10.1093/biolre/ioae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/09/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Pelvic organ prolapse is a condition that significantly affects women's quality of life. The pathological mechanism of pelvic organ prolapse is not yet fully understood, and its pathogenesis is often caused by multiple factors, including the metabolic imbalance of the extracellular matrix. This study aims to investigate the role of miR-5195-3p, a microRNA, in the pathology of pelvic organ prolapse and its regulatory mechanism. Using various molecular biology techniques such as real-time reverse transcription Polymerase Chain Reaction (PCR), fluorescence in situ hybridization, immunohistochemistry, and Western blot, miR-5195-3p expression was examined in vaginal wall tissues obtained from pelvic organ prolapse patients. Results revealed an up-regulation of miR-5195-3p expression in these tissues, showing a negative correlation with the expression of extracellular matrix-related proteins. Further analysis using bioinformatics tools identified Lipoxygenase (LOX) as a potential target in pelvic organ prolapse. Dual luciferase reporter gene experiments confirmed LOX as a direct target of miR-5195-3p. Interestingly, regulating the expression of LOX also influenced the transforming growth factor β1 signaling pathway and had an impact on extracellular matrix metabolism. This finding suggests that miR-5195-3p controls extracellular matrix metabolism by targeting LOX and modulating the TGF-β1 signaling pathway. In conclusion, this study unveils the involvement of miR-5195-3p in the pathological mechanism of pelvic organ prolapse by regulating extracellular matrix metabolism through the LOX/TGF-β1 axis. These findings reveal new mechanisms in the pathogenesis of pelvic organ prolapse, providing a theoretical foundation and therapeutic targets for further research on pelvic organ prolapse treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xinlu Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Meng Dong
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jie Wang
- Department of Health Management, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, China
| | - Weidong Ren
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
2
|
Li H, Tie XJ. Exploring research progress in studying serum exosomal miRNA-21 as a molecular diagnostic marker for breast cancer. Clin Transl Oncol 2024; 26:2166-2171. [PMID: 38602645 DOI: 10.1007/s12094-024-03454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
Breast cancer is one of the most prevalent malignancies affecting women globally and poses a significant public health challenge. Early clinical detection plays a pivotal role in providing optimal treatment opportunities and favorable prognoses, crucial for reducing breast cancer mortality and enhancing patients' quality of life. Therefore, the timely identification and diagnosis of breast cancer are imperative. Conventional tumor markers, such as carcinoembryonic antigen (CEA) and carbohydrate antigen 15-3 (CA15-3), serve as reliable methods for actively monitoring disease progression and have become a routine auxiliary diagnostic approach in clinical settings. However, these biomarkers exhibit limitations in sensitivity and specificity, particularly in the early screening and diagnosis of tumors, often yielding results inconsistent with clinical manifestations. In recent years, research has increasingly focused on exosomes released by tumor cells as potential new biomarkers for early stage breast cancer screening. Exosomes carry various components, including tumor-derived proteins, nucleic acids, and lipids. This paper delves into the specific utilization of serum exosomal microRNA-21 (miR-21) as a biomarker for early detection and diagnosis of breast cancer, evaluating its efficacy within this framework.
Collapse
Affiliation(s)
- Hang Li
- Department of Laboratory Medicine, Kaifeng Central Hospital, 85 HeDao Street, Kaifeng, 475000, China.
| | - Xiao-Jing Tie
- Department of Oncology, Kaifeng Central Hospital, Kaifeng, 475000, China
| |
Collapse
|
3
|
Sathipati SY, Tsai MJ, Aimalla N, Moat L, Shukla S, Allaire P, Hebbring S, Beheshti A, Sharma R, Ho SY. An evolutionary learning-based method for identifying a circulating miRNA signature for breast cancer diagnosis prediction. NAR Genom Bioinform 2024; 6:lqae022. [PMID: 38406797 PMCID: PMC10894035 DOI: 10.1093/nargab/lqae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/11/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Breast cancer (BC) is one of the most commonly diagnosed cancers worldwide. As key regulatory molecules in several biological processes, microRNAs (miRNAs) are potential biomarkers for cancer. Understanding the miRNA markers that can detect BC may improve survival rates and develop new targeted therapeutic strategies. To identify a circulating miRNA signature for diagnostic prediction in patients with BC, we developed an evolutionary learning-based method called BSig. BSig established a compact set of miRNAs as potential markers from 1280 patients with BC and 2686 healthy controls retrieved from the serum miRNA expression profiles for the diagnostic prediction. BSig demonstrated outstanding prediction performance, with an independent test accuracy and area under the receiver operating characteristic curve were 99.90% and 0.99, respectively. We identified 12 miRNAs, including hsa-miR-3185, hsa-miR-3648, hsa-miR-4530, hsa-miR-4763-5p, hsa-miR-5100, hsa-miR-5698, hsa-miR-6124, hsa-miR-6768-5p, hsa-miR-6800-5p, hsa-miR-6807-5p, hsa-miR-642a-3p, and hsa-miR-6836-3p, which significantly contributed towards diagnostic prediction in BC. Moreover, through bioinformatics analysis, this study identified 65 miRNA-target genes specific to BC cell lines. A comprehensive gene-set enrichment analysis was also performed to understand the underlying mechanisms of these target genes. BSig, a tool capable of BC detection and facilitating therapeutic selection, is publicly available at https://github.com/mingjutsai/BSig.
Collapse
Affiliation(s)
| | - Ming-Ju Tsai
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew Senior Life, Boston, MA 02131, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02131, USA
| | - Nikhila Aimalla
- Department of Internal Medicine-Pediatrics, Marshfield Clinic Health System, Marshfield, WI 54449, USA
| | - Luke Moat
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Patrick Allaire
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Scott Hebbring
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA94035, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rohit Sharma
- Department of Surgical Oncology, Marshfield Clinic Health System, Marshfield, WI 54449, USA
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
4
|
Yahya SMM, Nabih HK, Elsayed GH, Mohamed SIA, Elfiky AM, Salem SM. Restoring microRNA-34a overcomes acquired drug resistance and disease progression in human breast cancer cell lines via suppressing the ABCC1 gene. Breast Cancer Res Treat 2024; 204:133-149. [PMID: 38057687 PMCID: PMC10806220 DOI: 10.1007/s10549-023-07170-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Breast cancer is one of the leading types of cancer diagnosed in women. Despite the improvements in chemotherapeutic cure strategies, drug resistance is still an obstacle leading to disease aggressiveness. The small non-coding RNA molecules, miRNAs, have been implicated recently to be involved as regulators of gene expression through the silencing of mRNA targets that contributed to several cellular processes related to cancer metastasis. Hence, the present study aimed to investigate the beneficial role and mechanism of miRNA-34a-based gene therapy as a novel approach for conquering drug resistance mediated by ATP-binding cassette (ABC) transporters in breast cancer cells, besides exploring the associated invasive behaviors. MATERIAL AND METHODS Bioinformatics tools were used to predict miRNA ABC transporter targets by tracking the ABC transporter pathway. After the establishment of drug-resistant breast cancer MCF-7 and MDA-MB-231 sublines, cells were transfected with the mimic or inhibitor of miRNA-34a-5p. The quantitative expression of genes involved in drug resistance was performed by QRT-PCR, and the exact ABC transporter target specification interaction was confirmed by dual-luciferase reporter assay. Furthermore, flow cytometric analysis was utilized to determine the ability of miRNA-34a-treated cells against doxorubicin uptake and accumulation in cell cycle phases. The spreading capability was examined by colony formation, migration, and wound healing assays. The apoptotic activity was estimated as well. RESULTS Our findings firstly discovered the mechanism of miRNA-34a-5p restoration as an anti-drug-resistant molecule that highly significantly attenuates the expression of ABCC1 via the direct targeting of its 3'- untranslated regions in resistant breast cancer cell lines, with a significant increase of doxorubicin influx by MDA-MB-231/Dox-resistant cells. Additionally, the current data validated a significant reduction of metastatic potentials upon miRNA-34a-5p upregulation in both types of breast cancer-resistant cells. CONCLUSION The ectopic expression of miRNA-34a ameliorates the acquired drug resistance and the migration properties that may eventually lead to improved clinical strategies and outcomes for breast cancer patients. Additionally, miRNA-34a could be monitored as a diagnostic/prognostic biomarker for resistant conditions.
Collapse
Affiliation(s)
- Shaymaa M M Yahya
- Hormones Department, Medicine and Clinical Studies Research Institute, and Stem Cell Lab, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Heba K Nabih
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt.
| | - Ghada H Elsayed
- Hormones Department, Medicine and Clinical Studies Research Institute, and Stem Cell Lab, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | | | - Asmaa M Elfiky
- Environmental and Occupational Medicine Department, Environmental and Climate Change Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Sohair M Salem
- Molecular Genetics and Enzymology Department, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
5
|
Ranković B, Hauptman N. Circulating microRNA Panels for Detection of Liver Cancers and Liver-Metastasizing Primary Cancers. Int J Mol Sci 2023; 24:15451. [PMID: 37895131 PMCID: PMC10607808 DOI: 10.3390/ijms242015451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Malignant liver tumors, including primary malignant liver tumors and liver metastases, are among the most frequent malignancies worldwide. The disease carries a poor prognosis and poor overall survival, particularly in cases involving liver metastases. Consequently, the early detection and precise differentiation of malignant liver tumors are of paramount importance for making informed decisions regarding patient treatment. Significant research efforts are currently directed towards the development of diagnostic tools for different types of cancer using minimally invasive techniques. A prominent area of focus within this research is the evaluation of circulating microRNA, for which dysregulated expression is well documented in different cancers. Combining microRNAs in panels using serum or plasma samples derived from blood holds great promise for better sensitivity and specificity for detection of certain types of cancer.
Collapse
Affiliation(s)
| | - Nina Hauptman
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
6
|
Muñoz JP, Pérez-Moreno P, Pérez Y, Calaf GM. The Role of MicroRNAs in Breast Cancer and the Challenges of Their Clinical Application. Diagnostics (Basel) 2023; 13:3072. [PMID: 37835815 PMCID: PMC10572677 DOI: 10.3390/diagnostics13193072] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
MicroRNAs (miRNAs) constitute a subclass of non-coding RNAs that exert substantial influence on gene-expression regulation. Their tightly controlled expression plays a pivotal role in various cellular processes, while their dysregulation has been implicated in numerous pathological conditions, including cancer. Among cancers affecting women, breast cancer (BC) is the most prevalent malignant tumor. Extensive investigations have demonstrated distinct expression patterns of miRNAs in normal and malignant breast cells. Consequently, these findings have prompted research efforts towards leveraging miRNAs as diagnostic tools and the development of therapeutic strategies. The aim of this review is to describe the role of miRNAs in BC. We discuss the identification of oncogenic, tumor suppressor and metastatic miRNAs among BC cells, and their impact on tumor progression. We describe the potential of miRNAs as diagnostic and prognostic biomarkers for BC, as well as their role as promising therapeutic targets. Finally, we evaluate the current use of artificial intelligence tools for miRNA analysis and the challenges faced by these new biomedical approaches in its clinical application. The insights presented in this review underscore the promising prospects of utilizing miRNAs as innovative diagnostic, prognostic, and therapeutic tools for the management of BC.
Collapse
Affiliation(s)
- Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| | - Pablo Pérez-Moreno
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile
| | - Yasmín Pérez
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
7
|
El-Daly SM, El-Bana MA, Abd El-Rahman SS, Latif YA, Medhat D. Dynamic expression of H19 and MALAT1 and their correlation with tumor progression biomarkers in a multistage hepatocarcinogenesis model. Cell Biochem Funct 2023; 41:331-343. [PMID: 36861261 DOI: 10.1002/cbf.3785] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/29/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Hepatocellular carcinoma (HCC) progresses sequentially in a stepwise pattern. Long noncoding RNA (lncRNA) can regulate the complex cascade of hepatocarcinogenesis. Our study aimed to elucidate the expression profile of H19 and MALAT1 during the different stages of hepatocarcinogenesis and the correlation between H19 and MALAT1 with the genes implicated in the carcinogenesis cascade. We employed a chemically induced hepatocarcinogenesis murine model to mimic the successive stages of human HCC development. Using real-time PCR, we analyzed the expression patterns of H19 and MALAT1, as well as the expression of biomarkers implicated in the Epithelial-Mesenchymal transition (EMT). The protein expression of the mesenchymal marker vimentin was also evaluated using immunohistochemistry in the stepwise induced stages. The histopathological evaluation of the liver tissue sections revealed significant changes during the experiment, with HCC developing at the final stage. Throughout the stages, there was a dynamic significant increase in the expression of H19 and MALAT1 compared to the normal control. Nevertheless, there was no significant difference between each stage and the preceding one. The tumor progression biomarkers (Matrix Metalloproteinases, vimentin, and β-catenin) exhibited the same trend of steadily increasing levels. However, in the case of Zinc finger E-box-binding homeobox 1 and 2 (ZEB1 and ZEB2), the significant elevation was only detected at the last stage of induction. The correlation between lncRNAs and the tumor progression biomarkers revealed a strong positive correlation between the expression pattern of H19 and MALAT1 with Matrix Metalloproteinases 2 and 9 and vimentin. Our findings imply that genetic and epigenetic alterations influence HCC development in a stepwise progressive pattern.
Collapse
Affiliation(s)
- Sherien M El-Daly
- Medical Biochemistry Department, National Research Centre, Dokki, Cairo, Egypt.,Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo, Egypt
| | - Mona A El-Bana
- Medical Biochemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Sahar S Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Yasmin Abdel Latif
- Medical Biochemistry Department, National Research Centre, Dokki, Cairo, Egypt.,Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th October, Giza, Egypt
| | - Dalia Medhat
- Medical Biochemistry Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|