1
|
Li J, Li X, Liu H. Sesquiterpene lactones and cancer: new insight into antitumor and anti-inflammatory effects of parthenolide-derived Dimethylaminomicheliolide and Micheliolide. Front Pharmacol 2025; 16:1551115. [PMID: 40051564 PMCID: PMC11882563 DOI: 10.3389/fphar.2025.1551115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
The isolation and application of biological macromolecules (BMMs) have become central in applied science today, with these compounds serving as anticancer, antimicrobial, and anti-inflammatory agents. Parthenolide (PTL), a naturally occurring sesquiterpene lactone derived from Tanacetum parthenium (feverfew), is among the most important of these BMMs. PTL has been extensively studied for its anticancer and anti-inflammatory properties, making it a promising candidate for further research and drug development. This review summarizes the anticancer and anti-inflammatory effects of PTL and its derivatives, with a focus on Micheliolide (MCL) and Dimethylaminomicheliolide (DMAMCL). These compounds, derived from PTL, have been developed to overcome PTL's instability in acidic and basic conditions and its low solubility. We also explore their potential in targeted and combination therapies, providing a comprehensive overview of their therapeutic mechanisms and highlighting their significance in future cancer treatment strategies.
Collapse
Affiliation(s)
| | | | - Hongwei Liu
- Department of Thyroid Head and Neck Surgery, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Liu Y, Yao L, Liu Y, Yang Y, Liang A, He H, Lei Y, Cao W, Chen Z. Micheliolide Alleviates Hepatic Fibrosis by Inhibiting Autophagy in Hepatic Stellate Cells via the TrxR1/2-Mediated ROS/MEK/ERK Pathway. Pharmaceuticals (Basel) 2025; 18:287. [PMID: 40143066 PMCID: PMC11944820 DOI: 10.3390/ph18030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/25/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Hepatic fibrosis is a major global health issue without an optimal drug treatment, highlighting the urgent need to find effective therapies. This study aimed to clarify the role and mechanism of micheliolide in treating hepatic fibrosis. Methods: The efficacy of MCL was evaluated in a mouse model of CCl4-induced hepatic fibrosis. LX-2 cells were subjected to MCL treatment, and subsequent changes in fibrosis markers, autophagy, and the MEK/ERK pathway were analyzed using transcriptomics and Western blotting. The interaction between MCL and TrxR1 or TrxR2 were validated using cellular thermal shift assays (CETSA) and drug affinity responsive target stability (DARTS) assays. Results: Our findings indicated that MCL significantly alleviated CCl4-induced hepatic fibrosis, improved liver function, and downregulated the expression of fibrosis markers. Additionally, MCL significantly inhibited LX-2 cell activation by suppressing cell proliferation, extracellular matrix (ECM) production, and autophagy, while activating the MEK/ERK pathway. Moreover, MCL elevated intracellular and mitochondrial reactive oxygen species (ROS) levels, reduced mitochondrial membrane potential, and altered mitochondrial morphology. The ROS scavenger N-acetylcysteine (NAC) attenuated MCL-induced MEK/ERK pathway activation and increased collagen type I alpha 1 (COL1A1) and fibronectin (FN) expression. Further analysis confirmed that MCL directly interacts with TrxR1 and TrxR2, leading to the inhibition of their enzymatic activities and the induction of ROS generation. Ultimately, MCL attenuated the fibrotic process and autophagic flux in LX-2 cells. Conclusions: The findings of our study confirmed that MCL has the potential to alleviate hepatic fibrosis, thereby introducing a novel candidate drug and therapeutic strategy for management of this condition.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ling Yao
- College of Traditional Chinese Medicine, Chongqing University of Chinese Medicine, Chongqing 402760, China
| | - Yuanyuan Liu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yunheng Yang
- Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ailing Liang
- Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Honglin He
- Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yao Lei
- Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wenfu Cao
- Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zhiwei Chen
- Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- College of Traditional Chinese Medicine, Chongqing University of Chinese Medicine, Chongqing 402760, China
| |
Collapse
|
3
|
Wu CY, Wang KQ, Qin YY, Wang HW, Wu MM, Zhu XD, Lu XY, Zhu MM, Lu CS, Hu QQ. Micheliolide ameliorates severe acute pancreatitis in mice through potentiating Nrf2-mediated anti-inflammation and anti-oxidation effects. Int Immunopharmacol 2024; 143:113490. [PMID: 39467351 DOI: 10.1016/j.intimp.2024.113490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Severe acute pancreatitis (SAP) is an acute inflammatory injury disease with significant mortality rate and currently without effective strategy being available. Inflammation and oxidative stress play central roles in the etiology of SAP. Micheliolide (MCL), an active monomeric component isolated from Michelia champaca, has been proved its multiple therapeutic properties including anti-inflammatory, antioxidant and anti-cancer. Nevertheless, the therapeutic effect and underlying mechanism of MCL in SAP still remain unclear. Here, we found that caerulein with lipopolysaccharide (LPS)-induced SAP murine models exhibited severe pancreatic injury, including necrosis, edema, and vacuolation of acinar cells in the pancreas, elevated serum levels of amylase and lipase, and reduced number of the exocrine cells. As expected, MCL treatment alleviated these side effects. Mechanistically, MCL triggered nuclear factor erythroid 2-related factor 2 (Nrf2) activation, thereby activating Nrf2-regulated antioxidative pathways and inhibiting nuclear factor kappa B p65 (NF-κB p65)-mediated inflammatory response, resulting in protection against pancreatic injury in SAP mice. In addition, Nrf2 gene deficiency abolished the beneficial effects of MCL on SAP-induced pancreatic inflammation and oxidative stress and blocked the ability of MCL to alleviate the pancreatic injury in SAP mice. Collectively, these findings indicated that the suppression of SAP-induced pancreatic injury by MCL was at least in part due to Nrf2-mediated anti-oxidation effect and inhibition of inflammation.
Collapse
Affiliation(s)
- Chen-Yu Wu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ke-Qi Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yu-Ying Qin
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hong-Wei Wang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Min-Min Wu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xian-Dong Zhu
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xin-Yu Lu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; The First Clinical Medical College of Wenzhou Medical University, Wenzhou 325000, China
| | - Mian-Mian Zhu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chao-Sheng Lu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Qing-Qing Hu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
4
|
Uddin J, Fatima M, Riaz A, Kamal GM, Muhsinah AB, Ahmed AR, Iftikhar R. Pharmacological potential of micheliolide: A focus on anti-inflammatory and anticancer activities. Heliyon 2024; 10:e27299. [PMID: 38496875 PMCID: PMC10944196 DOI: 10.1016/j.heliyon.2024.e27299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Micheliolide (MCL) is a chief constituent of plants such as Magnolia grandiflora L., Michelia compressa (Maxim.) Sarg. and Michelia champaca L. It is known to exhibit significant anticancer activity by various scientific investigations. This review aims to emphasize the anticancer and antiinflammatory activities of MCL. In this review, we summarized the published data in peer-reviewed manuscripts published in English. Our search was based on the following scientific search engines and databases: Scopus, Google Scholar, ScienceDirect, Springer, PubMed, and SciFinder, MCL possesses a broad spectrum of medicinal properties like other sesquiterpene lactones. The anticancer activity of this compound may be attributed to the modulation of several signaling cascades (PI3K/Akt and NF-κB pathways). It also induces apoptosis by arresting the cell cycle at the G1/G0 phase, S phase, and G2/M phase in many cancer cell lines. Very little data is available on its modulatory action on other signaling cascades like MAPK, STAT3, Wnt, TGFβ, Notch, EGFR, etc. This compound can be potentiated as a novel anticancer drug after thorough investigations in vitro, in vivo, and in silico-based studies.
Collapse
Affiliation(s)
- Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Asir, 61421, Saudi Arabia
| | - Mehwish Fatima
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Ammara Riaz
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Ghulam Mustafa Kamal
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Asir, 61421, Saudi Arabia
| | - Abdul Razzaq Ahmed
- Department of Prosthodontics, College of Dentistry, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ramsha Iftikhar
- School of Chemistry, University of New South Wales, 2033, Sydney, Australia
| |
Collapse
|
5
|
Luo X, Wang Y, Zhu X, Chen Y, Xu B, Bai X, Weng X, Xu J, Tao Y, Yang D, Du J, Lv Y, Zhang S, Hu S, Li J, Jia H. MCL attenuates atherosclerosis by suppressing macrophage ferroptosis via targeting KEAP1/NRF2 interaction. Redox Biol 2024; 69:102987. [PMID: 38100883 PMCID: PMC10761782 DOI: 10.1016/j.redox.2023.102987] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/03/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Micheliolide (MCL), which is the active metabolite of parthenolide, has demonstrated promising clinical application potential. However, the effects and underlying mechanisms of MCL on atherosclerosis are still unclear. METHOD ApoE-/- mice were fed with high fat diet, with or without MCL oral administration, then the plaque area, lipid deposition and collagen content were determined. In vitro, MCL was used to pretreat macrophages combined by ox-LDL, the levels of ferroptosis related proteins, NRF2 activation, mitochondrial function and oxidative stress were detected. RESULTS MCL administration significantly attenuated atherosclerotic plaque progress, which characteristics with decreased plaque area, less lipid deposition and increased collagen. Compared with HD group, the level of GPX4 and xCT in atherosclerotic root macrophages were increased in MCL group obviously. In vitro experiment demonstrated that MCL increased GPX4 and xCT level, improved mitochondrial function, attenuated oxidative stress and inhibited lipid peroxidation to suppress macrophage ferroptosis induced with ox-LDL. Moreover, MCL inhibited KEAP1/NRF2 complex formation and enhanced NRF2 nucleus translocation, while the protective effect of MCL on macrophage ferroptosis was abolished by NRF2 inhibition. Additionally, molecular docking suggests that MCL may bind to the Arg483 site of KEAP1, which also contributes to KEAP1/NRF2 binding. Furthermore, Transfection Arg483 (KEAP1-R483S) mutant plasmid can abrogate the anti-ferroptosis and anti-oxidative effects of MC in macrophages. KEAP1-R483S mutation also limited the protective effect of MCL on atherosclerosis progress and macrophage ferroptosis in ApoE-/- mice. CONCLUSION MCL suppressed atherosclerosis by inhibiting macrophage ferroptosis via activating NRF2 pathway, the related mechanism is through binding to the Arg483 site of KEAP1 competitively.
Collapse
Affiliation(s)
- Xing Luo
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Yuehong Wang
- State Key Laboratory of Systems Medicine for Cancer, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, 200127, PR China
| | - Xinxin Zhu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Yuwu Chen
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Biyi Xu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Xiaoxuan Bai
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Xiuzhu Weng
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Jinmei Xu
- Department of Endocrinology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Yangyang Tao
- Department of Ultrasound, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Dan Yang
- Department of Forensic Medicine, Harbin Medical University, Harbin, 150001, PR China
| | - Jie Du
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Ying Lv
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Shan Zhang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Sining Hu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Ji Li
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China
| | - Haibo Jia
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; National Key Laboratory of Frigid Zone Cardiovascular Diseases; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, PR China.
| |
Collapse
|