1
|
Zhang W, Ge L, Zhang Y, Zhang Z, Zhang W, Song F, Huang P, Xu T. Targeted intervention of tumor microenvironment with HDAC inhibitors and their combination therapy strategies. Eur J Med Res 2025; 30:69. [PMID: 39905506 PMCID: PMC11792708 DOI: 10.1186/s40001-025-02326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
Histone deacetylation represents a significant epigenetic mechanism that involves the removal of acetyl groups from histones, subsequently influencing gene transcription. Overexpression of histone deacetylases (HDACs) is prevalent across various cancer types, positioning HDAC inhibitors as broadly applicable therapeutic agents. These inhibitors are known to enhance tumor immune antigenicity, potentially slowing tumor progression. Furthermore, the tumor microenvironment, which is intricately linked to cancer development, acts as a mediator in the proliferation of numerous cancers and presents a viable target for oncological therapies. This paper primarily explores how HDAC inhibitors can regulate cancer progression via the tumor microenvironment and suppress tumor growth through multiple pathways, in addition to examining the synergistic effects of combined drug therapies involving HDAC inhibitors.
Collapse
Affiliation(s)
- Wanli Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Luqi Ge
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China
| | - Zhentao Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wen Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China.
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Yan G, Wang X, Zhang G. Unraveling the landscape of non-melanoma skin cancer through single-cell RNA sequencing technology. Front Oncol 2024; 14:1500300. [PMID: 39558960 PMCID: PMC11570581 DOI: 10.3389/fonc.2024.1500300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Non-melanoma skin cancer (NMSC) mainly includes basal cell carcinoma, cutaneous squamous cell carcinoma, and Merkel cell carcinoma, showing a low mortality rate but the highest incidence worldwide. In recent decades, research has focused on understanding the pathogenesis and clinical treatments of NMSC, leading to significant advances in our knowledge of these diseases and the development of novel therapies, including immunotherapy. Nevertheless, the low to moderate objective response rate, high recurrence, and therapeutic resistance remain persistent challenges, which are partly attributable to the intratumoral heterogeneity. This heterogeneity indicates that tumor cells, immune cells, and stromal cells in the tumor microenvironment can be reshaped to a series of phenotypic and transcriptional cell states that vary in invasiveness and treatment responsiveness. The advent of single-cell RNA sequencing (scRNA-seq) has enabled the comprehensive profiling of gene expression heterogeneity at the single-cell level, which has been applied to NMSC to quantify cell compositions, define states, understand tumor evolution, and discern drug resistance. In this review, we highlight the key findings, with a focus on intratumoral heterogeneity and the mechanism of drug resistance in NMSC, as revealed by scRNA-seq. Furthermore, we propose potential avenues for future research in NMSC using scRNA-seq.
Collapse
Affiliation(s)
- Guorong Yan
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Xiuli Wang
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Guolong Zhang
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Lei KC, Srinivas N, Chandra M, Kervarrec T, Coyaud E, Spassova I, Peiffer L, Houben R, Shuda M, Hoffmann D, Schrama D, Becker JC. Merkel cell polyomavirus pan-T antigen knockdown reduces cancer cell stemness and promotes neural differentiation independent of RB1. J Med Virol 2024; 96:e29789. [PMID: 38988206 DOI: 10.1002/jmv.29789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Merkel cell carcinoma (MCC) is a highly aggressive skin cancer associated with integration of Merkel cell polyomavirus (MCPyV). MCPyV-encoded T-antigens (TAs) are pivotal for sustaining MCC's oncogenic phenotype, i.e., repression of TAs results in reactivation of the RB pathway and subsequent cell cycle arrest. However, the MCC cell line LoKe, characterized by a homozygous loss of the RB1 gene, exhibits uninterrupted cell cycle progression after shRNA-mediated TA repression. This unique feature allows an in-depth analysis of the effects of TAs beyond inhibition of the RB pathway, revealing the decrease in expression of stem cell-related genes upon panTA-knockdown. Analysis of gene regulatory networks identified members of the E2F family (E2F1, E2F8, TFDP1) as key transcriptional regulators that maintain stem cell properties in TA-expressing MCC cells. Furthermore, minichromosome maintenance (MCM) genes, which encodes DNA-binding licensing proteins essential for stem cell maintenance, were suppressed upon panTA-knockdown. The decline in stemness occurred simultaneously with neural differentiation, marked by the increased expression of neurogenesis-related genes such as neurexins, BTG2, and MYT1L. This upregulation can be attributed to heightened activity of PBX1 and BPTF, crucial regulators of neurogenesis pathways. The observations in LoKe were confirmed in an additional MCPyV-positive MCC cell line in which RB1 was silenced before panTA-knockdown. Moreover, spatially resolved transcriptomics demonstrated reduced TA expression in situ in a part of a MCC tumor characterized by neural differentiation. In summary, TAs are critical for maintaining stemness of MCC cells and suppressing neural differentiation, irrespective of their impact on the RB-signaling pathway.
Collapse
Affiliation(s)
- Kuan Cheok Lei
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Nalini Srinivas
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Mitalee Chandra
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Thibault Kervarrec
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Etienne Coyaud
- Department of Biology, University Lille, INSERM, Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Lille, France
| | - Ivelina Spassova
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Lukas Peiffer
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Masahiro Shuda
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Jürgen C Becker
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| |
Collapse
|
4
|
Myers E, Uhde M. Hiding in Plain Sight: An Atypical Presentation of the Uncommon Merkel Cell Carcinoma. Cureus 2024; 16:e55613. [PMID: 38586682 PMCID: PMC10995650 DOI: 10.7759/cureus.55613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Merkel cell carcinoma (MCC) is a cutaneous neoplasm that is challenging to diagnose secondary to its rarity. We report a case involving a 76-year-old Caucasian female with a seemingly benign skin nodule on her right forearm. Histopathological analysis revealed characteristics of MCC, including uniform round cells with minimal cytoplasm and fine granular chromatin. Immunohistochemical staining confirmed insulinoma-associated protein 1 (INSM1) positivity, a marker with high sensitivity and specificity in localized MCC diagnosis. The subsequent treatment plan involved wide local excision, sentinel lymph node evaluation, and radiation therapy, aligning with therapeutic standards for MCC. Negative positron emission tomography (PET) scans and follow-up for one year have demonstrated no evidence of recurrence or additional lesions. This case demonstrates the challenges in diagnosing MCC and the need for histopathological and immunohistochemical assessments for an accurate diagnosis. Diagnostic markers, INSM1, are important distinguishing factors between MCC and other skin cancers. In conclusion, our case contributes to the literature in diagnosing MCC and successful treatment, while emphasizing the need for immunohistochemical markers for accurate diagnosis and guiding therapeutic decisions.
Collapse
Affiliation(s)
- Elisha Myers
- Dermatology, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, USA
| | - Matthew Uhde
- Dermatology, Palm Beach Dermatology Group, Delray Beach, USA
| |
Collapse
|